压力管道应力分析基础理论

合集下载

压力管道应力分析

压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。

管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。

本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。

压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。

薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。

该方法适用于绝大部分工程中的压力管道计算。

薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。

压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。

轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。

周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。

切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。

在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。

压力管道的应力分析受到多个因素的影响。

首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。

管道的材料特性直接决定了管道的耐压能力和变形能力。

其次是管道的几何形状,包括内径、外径、壁厚等。

几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。

再次是管道的工作条件,包括温度、压力等。

不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。

最后是管道的固定和支撑方式。

固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。

为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。

应力分析主要通过有限元分析和解析方法进行。

有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。

压力管道应力分析基础理论

压力管道应力分析基础理论
疲劳失效的研究最早由A.R.C. Markl et. al.在上世纪 40至50年代进行;
疲劳失效
温度的变化导致结构可能在冷热两个状态下产生屈 服变形;
疲劳失效
与垮塌性荷载不同的是,当材料发生屈服时,如果 应力峰值满足一定条件下,并不会立即发生非自限 性的失效,而是系统停止运行后,产生自限性的残 余应力。
强度理论
我们如何来评价失效?——通过强度理论 第一强度理论:最大主应力理论(Rankine) 第二强度理论:最大伸长线应变 第三强度理论:最大剪应力理论(Tresca) 第四强度理论:最大变形能理论(Von mises)
强度理论
第三强度理论: 第四强度理论:
S13
S 1 21 2 2 2 3 2 3 1 2
CAESAR II 管道应力分析理论
AECSOFT
前言
我们为什么要进行管道应力分析? 我们需要做什么? 我们如何模拟一个管道系统? 我们如何来分析计算的结果?
我们为什么要进行管道应力分析?
复杂管线中可能存在压力、重量、温度、风、海浪、土壤约 束以及地震、动设备的振动、阀门关闭、开启导致的水锤气 锤等外力载荷作用。载荷是管道产生应力问题的原因。
梁单元上纯弯曲的概念:
当梁发生纯弯曲时,各截面上的弯矩值唯一(整个 截面的弯矩由唯一值表示),且不存在剪力,截面 发生转动,梁轴线变为弧线,但转动后各截面仍为 平面。在这种假设下,应力S=M/Z.(胡克定律)
如果不使用纯弯曲假设,则上式不一定适用。
3D梁单元示例
这是一个简单的悬臂梁模型:当在自由端作用集中 载荷P之后,其挠度为:
应力计算式:
S 1 F A / X A m M / Z P / 4 t d S h
一次应力通常暗示了支架跨距是否满足要求;

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道通常需要在其线路中使用曲线管来满足管线的转弯需求。

这些曲线管与直管连接起来通常需要一些特殊的结构,以确保管道在工作中能够维持其正常运行。

这篇文章将会对压力管道的弯管与直管连接结构进行应力分析,探讨其应力特点和设计原则。

首先,弯管与直管连接处的应力特点需要根据管道工作环境的不同而定。

例如,在高压和高温的环境中,管道的应力水平可能会比其他工作环境更高。

但一般来说,弯管与直管连接处的应力主要来自以下几个方面:1. 管体弯曲引起的应变应力弯管的曲率半径与管径之比决定了管体在弯曲过程中所需的应变。

应变过大会导致管体产生应变能。

当弯管与直管连接时,由于曲率半径和管径的不同,管体在连接处即产生了应变,进而形成了应力。

这种应力会在管道工作后不断累计,直至形成管体的韧性断裂。

2. 管道内部介质的压力应力弯管与直管连接处由于管径不同,液体在弯管和直管连接处的流速会变化。

这种流速的变化会导致液体在连接处产生压力应力,进而形成一种压力差,即产生流动阻力。

当管道内介质的压力水平越高时,这种应力越显著。

3. 管道的自重应力管道的自重通常也会对其弯管与直管连接处产生应力。

由于曲率半径和管径的不同,连接处的管体在弯曲或水平的工作状态下会受到重力的作用,因此产生自重应力。

根据上述应力特点,设计出一种合理和可靠的弯管与直管连接结构需要遵循以下几个原则:1. 应根据弯管的弯曲半径和直管的管径来选择适当的连接件。

连接件的设计应该满足弯管和直管的直径差异,以确保连接处的应变和应力得以分散。

合适的连接件可以确保管体的韧性,并应对连结处所产生的应力和应变有所缓解。

适当的连接件还可以改善管体的流动特性,并降低压力差。

2. 连接件的安装位置及其环境应符合相关的标准和要求。

连接件应安装到充分的标准上,选取合适的材料和工艺。

同时,安装环境也应满足相关的要求,如适当的温度和湿度。

任何其他环境条件的不合规都会导致连接件安装不稳定。

压力管道应力分析部分

压力管道应力分析部分

压力管道应力分析部分第一章任务与职责1.管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1)因应力过大或金属疲劳而引起管道破坏;2)管道接头处泄漏;3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4)管道的推力或力矩过大引起管道支架破坏;2.压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10)GB 150-1998《钢制压力容器》3.专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4.工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型 U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10)设置、调整支吊架11)设置、调整补偿器12)评定管道应力13)评定设备接口受力14)编制设计文件15)施工现场技术服务5.工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1.管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。

压力管道应力动态分析理论

压力管道应力动态分析理论

02 压力管道应力动态分析理 论基础
材料力学基础
材料力学是研究材料在各种力和力矩 作用下的应力和应变行为的科学。它 为压力管道应力动态分析提供了基本 原理和计算方法,包括材料的弹性模 量、泊松比、剪切模量等参数的确定。
VS
材料力学还涉及到材料的强度理论, 例如最大剪应力理论、最大伸长线应 变理论和能量理论等,这些理论为压 力管道的强度设计和校核提供了依据。
意义
通过应力分析,可以优化管道设计,降低制造成本,提高设备运行效率,保障人员和财产安全。
应力分析的方法和步骤
方法
常用的应力分析方法包括有限元法、有限差分法和边界元法等数值分析方法,以及基于力学理论的解 析法。
步骤
应力分析通常包括前处理、求解和后处理三个步骤。前处理阶段涉及建立模型、设定边界条件和载荷 等;求解阶段通过数值方法计算管道应力;后处理阶段则是对计算结果进行评估和优化。
04 压力管道应力动态分析理 论与其他理论的关联
与流体力学理论的关联
流体力学理论在压力管道应力动态分析中起 着重要作用,特别是在流体流动和压力分布 的计算方面。流体的动力学和热力学性质对 管道中的应力分布和疲劳寿命有显著影响。
压力管道中的流体流动可能导致管道产生振 动和应力集中,这些因素进一步影响管道的 稳定性和安全性。流体力学理论提供了流体 动力学和热力学的基本原理,有助于预测和
压力管道应力分析的未来发展方向
方向1
随着数值计算技术和计算机技术的不断发展,未来应力分析将更加精确和高效,能够更 好地模拟管道的实际运行工况。
方向2
随着新材料和新工艺的不断涌现,未来管道材料的性能将更加优异,能够满足更高压力 和温度的要求。
方向3
随着智能化和远程监控技术的发展,未来管道应力分析将更加智能化和远程化,能够实 现实时监测和预警,提高管道运行的安全性和可靠性。

压力钢管安全鉴定的应力分析与强度计算

压力钢管安全鉴定的应力分析与强度计算

压力钢管安全鉴定的应力分析与强度计算压力钢管作为一种用于输送气体或液体的重要管道设备,其安全鉴定对于保障工业生产和人员安全至关重要。

在进行安全鉴定时,应力分析和强度计算是必不可少的步骤。

本文将针对压力钢管的应力分析和强度计算进行探讨。

一、应力分析1.1 弹性应力分析弹性应力分析通过对压力钢管所受力的计算,确定其在工作条件下的应力状态。

弹性应力可以分为轴向应力、周向应力和切向应力。

轴向应力是指压力钢管在管轴方向上受到的拉伸或压缩作用产生的应力。

其计算公式为:σz = (P * D) / (2 * t)其中,σz表示轴向应力,P表示管内的压力,D表示管道的直径,t 表示管壁的厚度。

周向应力是指在管壁厚度方向上产生的应力。

其计算公式为:σθ = (P * D) / (4 * t)切向应力是指在周向应力方向上的切应力。

其计算公式为:τ = (P * D) / (2 * t)1.2 塑性应力分析当压力钢管的应力超过弹性极限时,塑性应力开始发挥作用。

塑性应力分析需要考虑材料的屈服强度、变形硬化指数等因素。

塑性应力的计算涉及到材料的本构关系,常用的本构关系有屈服准则、应变硬化准则等。

根据材料的特性和具体情况,可以选取适合的本构关系进行计算。

二、强度计算2.1 材料的强度计算压力钢管的强度计算主要涉及材料的屈服强度和破坏强度。

屈服强度是指在材料屈服时承受的最大应力,破坏强度是指材料在极限状态下承受的最大应力。

通常采用屈服准则或破坏准则进行强度计算。

常用的屈服准则有von Mises准则、Tresca准则等,常用的破坏准则有最大应力准则、最大应变准则等。

2.2 结构的强度计算压力钢管的结构强度计算需要考虑管道本身的结构特点和外部载荷等因素。

常用的计算方法有弹性理论法、有限元法等。

弹性理论法是一种简化的计算方法,适用于结构相对简单、载荷较小的情况。

有限元法是一种更为精确的计算方法,可以考虑更复杂的结构和不同的载荷条件。

压力管道应力分析

压力管道应力分析

压力管道应力分析引言压力管道作为输送流体的重要管线,承受的压力和温度都是极高的。

这样就会导致管道中的应力和变形问题,从而产生一定的安全隐患。

因此,对于压力管道的应力分析就显得尤为重要。

压力管道的应力压力管道在运行过程中,会受到各种力的作用,如内压、重力、支架反力、温度等,这些力作用在管道上,就会造成管道内部的应力,如轴向应力、周向应力、径向应力等。

•轴向应力轴向应力是指管道轴向方向的应力,通常是指由流体作用产生的内压力和拉力两部分的影响。

在管道内部,如果内压力太大,轴向应力就会增大,会导致管道的卡铁暴力现象。

•周向应力周向应力是指管道周向方向的应力,主要受到流体和温度两个因素的影响。

当管道内部温度升高,周向应力也会随之升高,如果超过极限值,就可能导致管道的破裂。

•径向应力径向应力是指与管道中心轴线垂直方向的应力,通常是由于弯曲、扭转等变形所引起的。

如果弯曲半径过小或者存在缺陷,就会导致径向应力过大,从而容易引起管道的破裂。

压力管道应力分析压力管道应力分析是针对管道内各种应力进行综合分析的过程。

在分析的过程中,通常需要采用有限元分析等方法,通过建立合适的数学模型和计算,得出管道内部的应力情况和强度,并评估管道是否存在危险的可能性。

在进行应力分析时,一般需要考虑以下几个方面。

1. 材料力学性能材料力学性能直接影响管道的使用寿命和安全性。

因此,对于材料的强度、韧性、塑性等性能参数,都需要进行准确的测定和分析。

常见的材料包括石墨、钢铁、铝合金等。

2. 工况分析针对不同的工况,管道所受的力也会不同。

因此,在进行应力分析之前,需要准确确定工况参数,如内压、外界温度等,以便进行有针对性的分析。

3. 有限元分析有限元分析是应用计算机模拟技术,将管道模型分割成有限个小模型,通过对小模型的计算和组合,分析管道内部的应力和强度分布。

这种方法可以更直观地了解管道内部应力的变化情况,有效评估管道的安全性和强度。

压力管道应力分析是管道设计和使用过程中必不可少的环节。

压力管道应力分析内容及特点

压力管道应力分析内容及特点

压力管道应力分析的内容及特点【摘要】:本文概括论述了压力管道应力分析的内容和任务,并对压力管道安全评定的特点进行了说明。

【关键词】:压力管道应力分析1.引言压力、重力、风、地震、压力脉动、冲击等外力荷载和热膨胀的存在,是管道产生应力问题的主要原因。

其中,热膨胀问题是管道应力分析所要解决的最常见和最主要的问题。

2. 管道应力分析的任务2.1 管道静力分析的任务管道静力分析需要完成的任务:(1)计算管道的应力并使之满足标准规范的要求,保证管道自身的安全(包括防止法兰泄漏);(2)计算管道对与其相连的设备的作用力,并使之满足标准规范的要求;(3)计算管道对支吊架和土建结构的作用力,为支吊架和土建结构的设计提供依据;(4)计算管道位移,防止位移过大造成支架脱落或管道碰撞,并为弹簧支吊架的选用提供依据。

2.2 管道动力分析的任务管道动力分析需要完成的任务:(1)管道的地震分析,防止管道在地震中发生破坏;(2)往复压缩机和往复泵管道的固有频率和振型分析,防止管道系统发生机械共振;(3)往复压缩机管道气体压力脉动分析,避免气柱共振和压力脉动过大,从而防止管道振动过大;(4)水锤、安全阀泄放荷载和两相流所产生的支架荷载计算,为支架和土建结构的设计提供依据。

在进行上述分析的过程中,应该根据实际情况不断对管道布置和支吊架的设置加以修改,在满足安全性的前提下,力求得到最优化的结果。

3.压力管道安全评定的方法3.1 静设备的允许荷载(1)管道作用于容器设备管口的荷载不应超过设备制造商或设备专业规定的允许值,(2)管道作用于工业炉管口的荷载不应超过工业炉制造商或工业炉专业规定的允许值,3.2 转动机器的允许荷载管道作用于转动机器管口的荷载不应超过机器制造商或机械专业规定的允许值,当制造商或机械专业无数据时,可参考相关标准进行核算(1)离心泵管口的允许荷载可参考api 610的规定;(2)汽轮机管口的允许荷载可参考nema sm23的规定;(3)离心压缩机管口的允许荷载可参考api 617的规定;(4)螺杆式压缩机管口的允许荷载可参考api 619的规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 管道应力分析的任务,实际上是在满足标准规范的前提下对 管道进行包括应力计算在内的力学分析,从而保证管道自身 和与其相连的机器、设备以及土建结构的安全。
2020/7/19
AECsoft
什么情况下需要对管道进行力学分析?
• 1.管径大于75mm的管道 • 2.与转动、往复设备连接的管道(泵、压缩机 等) • 3.与空冷器、汽轮机、换热器相连的管道 • 4.温度高于300°C的所有尺寸管线 • 5.管径大于150mm,设计温度高于175°C的焊接管线 • 6.高压管道(高于14MPa),10MPa以上压力的管线也会出现问题,多与支架的设置有关 • 7.大直径薄壁管(450mm以上),或直径与壁厚比超过90的管线 • 8.使用特殊补偿的管线(使用膨胀节) • 9.埋地管线 • 10.夹套管线 • 11.位于关键区域的管线 • 12.超压保护管线(安全阀) • 13.压力骤增管线(水锤、气锤) • 14.等等…
将法向应力称为正应力,将切向应力称为剪应 力;
2020/7/19
AECsoft
摩尔应力圆
• 将任意截面上的正应力,剪切应力数值反映在 坐标轴上就得到摩尔应力圆,如下图所示:
2020/7/19
AECsoft
主应力及最大剪应力
• 主应力表示在某个截面上只有正应力而无剪切 应力,这种情况是确实存在的;
P L3
3EI
2020/7/19
AECsoft
如何评定管道的应力?
• 通过节点分析; • 管道截面上存在3向主应力: • 轴向 • 环向 • 径向
2020/7/19
AECsoft
基本应力分类
• 轴向应力:F/A ,PD/4t ,M/Z(弯矩导致的最大 轴向应力通常出现在管壁外表面上);
• 环向应力: PD/2t; • 径向应力:0(在外表面上不存在); • 剪切应力:T/2Z(在主应力截面上,剪切应力
2020/7/19
AECsoft
分析之前我们需要做什么?
• 1.确认需要计算的管线; • 2.选用正确的校核规范,确认校核工况(载荷); • 3.确认计算管线的必须数据及边界条件(管线走向、管道直
径壁厚、长度、材料、操作压力&温度、支架位置及形式、管 口初始位移……等)。
2020/7/19
AECsoft
应力的概念
• 取管道截面上一个无限小的微元,并对其进 行研究。每个微元上均有正应力和剪应力, 所有微元上正应力、剪应力的合成即为截面 应力。
2020/7/19
AECsoft
力学模型——3D梁单元
• 管道模型最终能够简化为纯力学模型 • 主要的变形特征为弯曲
2020/7/19
AECsoft
力学模型——3D梁单元
➢忽略局部变形(不考虑大直径管道的失稳); ➢假设管道任意截面不出现翘曲(即认为管道遵循纯弯曲
变形); ➢假设不考虑管道之间的碰撞影响; ➢剪切力不是分析的重点; ➢支撑作用在单元中心线上;
2020/7/19
AECsoft
3D梁单元的力学假设
• 梁单元上纯弯曲的概念: • 当梁发生纯弯曲时,各截面上的弯矩值唯一
• 最大剪应力则是指在某个截面上的剪切应力最 大;
为0)
2020/7/19
AECsoft
应力状态的简化
• 当同时考虑轴向、径向、环向应力时,结构处 于三向应力状态,根据前面的叙述,我们略掉 径向应力分量,则应力状态从三维变为二维 (即忽略下图中的σR);
2020/7/19
AECsoft
载荷的转化
• 应力乘以单位面积=载荷 • 静态下,任意截面上均应保持静力平衡; • 任意截面上均存在法向应力及切向应力,我们
– 管道对机器、设备作用力的计算——防止作用力过大,保证 机器、设备正常运行;
– 管道支吊架的受力计算——未支吊架设计提供依据; – 管道上法兰的受力计算——防止法兰泄漏; – 管系位移计算——防止管道碰撞和支吊点位移过大。
2020/7/19
AECsoft
动态分析
• 动力分析则主要指往复压缩机和往复泵管道的振动分析、管道 的地震分析、水锤和冲击荷载作用下管道的振动分析。
– 往复压缩机(泵)管道气(液)柱固有频率分析-----防止气 (液)柱共振; – 往复压缩机(泵)管道压力脉动分析-----控制压力脉动值; – 管道固有频率分析-----防止管道系统共振; – 管道强迫振动响应分析-----控制管道振动及应力; – 冲击荷载作用下管道应力分析-----防止管道振动和应力过大; – 管道地震分析-----防止管道地震力过大。
(整个截面的弯矩由唯一值表示),且不存在 剪力,截面发生转动,梁轴线变为弧线,但转 动后各截面仍为平面。在这种假设下,应力 S=M/Z.(胡克定律) • 如果不使用纯弯曲假设,则上式不一定适用。
2020/7/19
AECsoft
3D梁单元示例
• 这是一个简单的悬臂梁模型:当在自由端作 用集中载荷P之后,其挠度为:
• 主要的变形特征为弯曲 • 每一个单元的力学行为均通过端点来描述,包
括推力、位移、应力 • 计算梁单元构造的管道分析模型所需要的材料
基本参数包括:刚度、直径、壁厚、长度、弹 性模量、泊松比、线胀系数、密度等等…
2020/7/19
AECsoft
3D梁单元的力学假设
• 梁单元的使用将把管道模拟为刚性杆,其力学 特性需要做以下假设:
2020/7/19
AECsoft
管道应力分析的分类
• 一般来讲,管道应力分析可以分为静力分析和 动力分析两部分。
2020/7静力分析是指在静力载荷的作用下对管道进行力学分析
– 压力、重力等荷载作用下的管道一次应力计算——防止塑性 变形破坏;
– 热胀冷缩以及端点附加位移等位移荷载作用下的管道二次应 力计算---防止疲劳破坏;
CAESAR II 管道应力分析理论
AECSOFT
前言
• 我们为什么要进行管道应力分析? • 我们需要做什么? • 我们如何模拟一个管道系统? • 我们如何来分析计算的结果?
2020/7/19
AECsoft
我们为什么要进行管道应力分析?
• 复杂管线中可能存在压力、重量、温度、风、海浪、土壤约 束以及地震、动设备的振动、阀门关闭、开启导致的水锤气 锤等外力载荷作用。载荷是管道产生应力问题的原因。
相关文档
最新文档