排列(优限法、捆绑法、插空法的运用%20)高品质版
排列(优限法、捆绑法、插空法的运用_)

a
b 甲c
d 乙e
练习:甲、乙和丙三个同学都不能相邻的排法共有 多少种?
解:先将其余四个同学排好有P44种方法,此时他们留 下五个“空”,再将甲、乙和丙三个同学分别插入这 五个“空”有P53种方法,所以一共有P44P53=1440种 不同的方法.
小 结 三 : 对于 元 素 不相邻问题 ,先将其余元素全排列,再将这 些不相邻的元素插入空挡中, 这种方法称为插空法.(特殊元 素后考虑).
三、【巩固练习】: 三名女生和五名男生排成一排:
⑴如果女生全排在一起,有多少种不同排法? P66P33=4320
⑵如果女生全分开,有多少种不同排法?
P55P63=14400 ⑶如果两端都不能排女生,有多少种不同排法?
方法1、P52P66=14400 方法2、P63P55=14400
四、【课堂小结】:
个位置上,有P52种方法;第二步:其余剩下的同学全排 列有P55种方法;所以一共有P52P55=2400种排列方法.
小结一:对于“在”与“不在”等有特殊 限 制的元素或位置的排列问题,通常是优先处 理受特殊限制的元素(或位置),这种方法 称为优限法.
例:7位同学站成一排.
⑶甲、乙两同学必须相邻的排法共有多少种? 解:先将甲、乙两位同学“捆绑”在一起看成一个元素 与其余的5个元素(同学)一起进行全排列有P66种方法; 再将甲、乙两个同学“松绑”进行排列有P22种方法.所 以这样的排法一共有P66P22 =1440种.
③④
⑤
甲
dБайду номын сангаас
e
a
b
⑥
⑦
c
乙
例:7位同学站成一排. ⑵甲、乙不能站在排头和排尾的排法共有多少种?
排列组合--插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空得数量)【基本题型】有n个相同得元素,要求分到不同得m组中,且每组至少有一个元素,问有多少种分法?图中“"表示相同得名额,“”表示名额间形成得空隙,设想在这几个空隙中插入六块“挡板",则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含得名额数分给第一、二、三……七所学校,则“挡板"得一种插法恰好对应了10 个名额得一种分配方法,反之,名额得一种分配方法也决定了档板得一种插法,即挡板得插法种数与名额得分配方法种数就是相等得,【总结】ﻫ需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素得n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
ﻫ注意:这样对于很多得问题,就是不能直接利用插板法解题得。
但,可以通过一定得转变,将其变成符合上面3个条件得问题,这样就可以利用插板法解决,并且常常会产生意想不到得效果。
插板法就就是在n个元素间得(n—1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组得方法.应用插板法必须满足三个条件:(1) 这n个元素必须互不相异(2)所分成得每一组至少分得一个元素ﻫ(3)分成得组别彼此相异举个很普通得例子来说明把10个相同得小球放入3个不同得箱子,每个箱子至少一个,问有几种情况?问题得题干满足条件(1)(2),适用插板法,c9 2=36 ﻫ下面通过几道题目介绍下插板法得应用e二次插板法ﻫ例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?ﻫ-o — o -o-o -o—o —三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共就是c71×c81×c9 1=504种【基本解题思路】将n个相同得元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m—1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序得m份,每个组依次按组序号分到对应位置得几个元素(可能就是1个、2个、3个、4个、…。
排列组合插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列(优限法、捆绑法、插空法的运用)

插空法案例
总结词
插空法适用于在排列组合问题中,当需要将 一个元素插入到已经排好的元素序列中时, 可以采用插空法。
详细描述
插空法是一种实用的排列组合解题方法,它 通过将需要插入的元素插入到已经排好的元 素序列中的空位中,简化问题,提高解题效 率。在插空法中,我们首先找到已经排好的 元素序列中的空位,再将需要插入的元素插 入到合适的空位中。
排列(优限法、捆绑法 、插空法的运用)
目录 CONTENT
• 优限法 • 捆绑法 • 插空法 • 三种方法的比较与选择 • 实际应用案例分析
01
优限法
定义与特点
定义
优限法是指在排列组合问题中,先对 元素进行优先级排序,再根据优先级 进行排列的方法。
特点
优限法主要关注元素的优先级,根据 优先级的高低进行排列,可以快速确 定最优解或近似最优解。
捆绑法案例
总结词
捆绑法适用于在排列组合问题中,当需要将若干个元素 捆绑在一起作为一个整体来处理时,可以采用捆绑法。
详细描述
捆绑法是一种有效的排列组合解题方法,它通过将若干 个元素捆绑在一起作为一个整体来处理,简化问题,提 高解题效率。在捆绑法中,我们首先将需要捆绑的元素 视为一个整体,再与其他元素进行排列组合。
04
三种方法的比较与选择
适用条件比时。
捆绑法
适用于排列组合问题中,当某些元素必须作为一 个整体进行排列时。
插空法
适用于排列组合问题中,当需要将某些元素插入 到其他元素之间或两端时。
优缺点比较
优限法
优点是简单易懂,易于操作;缺点是可能存在多种分组方式,需要 仔细考虑。
优限法的应用场景
任务调度
在任务调度中,可以根据任务的紧急程度、优先级等因素, 使用优限法进行排列,确保任务按照优先级顺序执行。
排列组合中关于捆绑法、插空法、插隔板法的应用 (1)

排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4分两种情况考虑C=8种1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14P=12种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。
A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有P=12。
一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=6,综上,共有6*12=72种这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。
A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=2,综上,共有48种。
排列组合常用四种方法-周丽红

排列组合常用四种方法中公教育研究与辅导专家 周丽红排列组合是行测数量关系里面比较常见的一种题型,通常用来解决求方法数情况数这一类计数问题。
而这种题型在计算和解题思维上与其他题型差异很大,很多同学对于排列组合问题不知如何下手,在这里,中公教育辅导专家给大家整理出排列组合常考的四种方法,希望对各位考生有所帮助。
例题:用 1、2、3、4、5 这 5 个数字组成一个无重复数字的五位数。
一、优限法:优先安排有绝对限制的元素或者位置,再去解决其他元素或者位置。
1、若数字1只能在首位或者是末尾的五位数,有多少种情况?解析:先安排1,在首位或者末尾,有12C ,再将剩下的数字全排列有44A ,我们相当于分成了两步才将这个五位数排好,故将两步的结果数相乘。
12C 44A =2×24=48。
二、捆绑法:元素要求相邻、连续时,我们可以先将相邻元素看成一个大整体与其他元素进行相应排列,再考虑大整体内部元素的顺序问题。
2、若组成的这个数中,所有奇数都相邻、所有偶数也都相邻,有多少种情况?解析:奇数看成整体,偶数看成整体,两个整体排序22A ,奇数整体内部3个元素,偶数整体内部元素2个,并且内部元素换了位置对结果有影响,故两个整体内部排序为33A 22A 。
最终结果表示为:22A 33A 22A =2×6×2=24。
三、插空法:先将其他元素排好,再将要求不相邻的元素放其空隙或者两端的位置。
3、若组成的这个数中,所有偶数都不相邻,有多少种情况?解析:我们先将3个奇数排好33A ,形成的空隙包含两端共有4个,再从4个空隙中选2个空隙放两个偶数24A 。
最终结果表示为:33A 24A =6×12=72四、间接法:有些题目直接考虑起来情况数比较多,会比较麻烦,而其对立面却只能一两种情况,很好计算,这时我们就会先算出总的情况数减去对立面的情况数即可。
4、若组成的这个数不能被 4 整除,有多少种情况?解析:一个五位数不能被4整除要求的是后两位不满足4的倍数,显然题干中组成的五位数后两位不满足的情况很多。
排列与组合的应用举例(常见排列组合问题的解题方法)

解析:(2)按题意,个位数字只可能是0,1,2,3,4共5种情况,
分别有个 ,
个,合并总计300个,
或
个。
5.不相邻问题插空法: 对于某两个元素或者几个元素要条件的元素按要求 插入排好元素的空档之中即可 .
解析:方法一(排除法):逆向思考,至少各一台的反面就是分别只 取一种型号,不取另一种型号的电视机,故不同的取法共有
7.“至少”“至多”问题用间接排除法或分类法: “至少”“至多”问题用间接排除法或分类法:抽取两类混合
元素不能分步抽.
例7.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型 电视机各一台,则不同的取法共有 ( )
解析:把4名学生分成3组有 种方法,再把三组学生分配到3所学校
有种,则不同的保送方案共有
种
解决排列组合问题的一般过程如下: 1、认真审题弄清要做什么事。 2、怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同 时进行,确定分多少步及多少类。 3、确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数 是多少及取出多少个元素。 4、解决排列组合综合性问题,往往分类与分步交叉,因此必须掌握一 些常用的解题方法,根据题目的条件,我们就可以选取不同的方法来解 决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用 把复杂的问题简单化,举一反三,触类旁通。
人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的
选法共有
。
7.“至少”“至多”问题用间接排除法或分类法: “至少”“至多”问题用间接排除法或分类法:抽取两类混合
元素不能分步抽.
例7.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型 电视机各一台,则不同的取法共有 ( )
公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。
一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。
【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①②
③④
⑤
⑥
⑦
甲
d
e
a
b
c
乙
A22
①②
③ A55 ④
⑤
乙
c
a
e
b
⑥
⑦
d
甲
⑵甲、乙不能站在排头和排尾的排法共有多少种?
解法一:第一步 从(除去甲、乙)其余的5位同学中选2 位同学站在排头和排尾有A52种方法;第二步 从余下的5位 同学中选5位进行排列(全排列)有A55种方法 ,所以一共 有A52 A55 =2400种排列方法. 解法二:若甲站在排头有A66种方法;若乙站在排尾有A66 种方法;若甲站在排头且乙站在排尾则有A55种方法.所 以甲不能站在排头,乙不能排在排尾的排法共有 A77 - 2 A66 + A55=2400种.
创新练习
• 某班8运动员在运动会 后排成一排照像留念,
• (1)若甲乙两人之间 必须间隔一人,有多 少种不同排法?
拓展:①甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有A55A33 =720种. ②甲、乙两同学必须相邻,而且丙不能站在排头和排尾 的排法有多少种?
解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共 有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元 素中选取2个元素放在排头和排尾,有A52种方法;将剩下的4个元素 进行全排列有A44种方法;最后将甲、乙两个同学“松绑”进行排 列有A22种方法.所以这样的排法一共有A52 A44 A22 =960种方法.
的排法? 解⑵:7问位题同可学以站看成作一:排7个,元其素中的全甲排站列在A中77=间5的04位0 置,
共有多少种不同的排法? 解⑶:7问位题同可学以站看成作一:排余下,的其6中个元甲素不的站全在排首列位A6,6 =共72有0 多
少种不同的排法?
解一:甲站其余六个位置之一有A61种,其余6人全排列有 A66 种,共有A61 A66 =4320。 解二:从其他6人中先选出一人站首位,有A61,剩下6人
解法二:将甲、乙两同学“捆绑”在一起看成一个元素, 此时一共有6个元素,若丙站在排头或排尾有2A55种方法, 所 以 丙 不 能 站 在 排 头 和 排 尾 的 排 法 有 ( A66 2A55)·A22=960种方法. 解法三:将甲、乙两同学“捆绑”在一起看成一个元素, 此时一共有6个元素,因为丙不能站在排头和排尾,所以 可以从其余的四个位置选择共有A41种方法,
(解三含:甲)7人全全排排列列,有有AA7676,,甲共有在A首61 A位66的=43有20A。66,所以 共有 A77- A66=7 A66- A66=4320。
二、新课:例: 7位同学站成一排.
⑴甲、乙只能站在两端的排法共有多少种?
解:根据分步计数原理:第一步 甲、乙站在两端有A22种;第二步 余下的5名同学进行全排列有A55种 则共有A22 A55 =240种排列方法
小 结一:对于“在”与“不在”等有特殊元素
或特殊位置的排列问题,通常是先排特殊元素或特殊
位置,称为优先处理特殊元素(位置)法(优限法)。
优限法
⑶甲、乙两同学必须相邻的排法共有多少种?
解:先将甲、乙两位同学“捆绑”在一起看成一个元素 与其余的5个元素(同学)一起进行全排列有A66种方法; 再将甲、乙两个同学“松绑”进行排列有A22种方法.所 以这样的排法一共有A66 A22 =1440种.
⑴ 有特殊元素或特殊位置的排列问题,通常是先排特殊
元素或特殊位置,称为优先处理特殊元素(位置)法“优 限法”; ⑵ 某些元素要求必须相邻时,可以先将这些元素看作一
个元素,与其他元素排列后,再考虑相邻元素的内部排列 ,这种方法称为“捆绑法”;
⑶ 某些元素不相邻排列时,可以先排其他元素,再将这 些不相邻元素插入空挡,这种方法称为“插空法”。
大家好!
排列的简单应用
制作:薛本祥 (安徽凤阳中学)
时间:2004年4月26日
排列的简单应用
• 目的:理解掌握含有特殊限制条 件的排队问题的解决方法,进一 步培养分析问题、解决问题的能 力.
• 重点:优限法、捆绑法、插空法 的运用
一、【概念复习】:
1.排列的定义,理解排列定义需要注意的
几点问题;
再将其余的5个元素进行全排列共有A55种方法,最后将
甲、乙两同学“松绑”,所以这样的排法一问题,常
捆绑法
用“捆绑法”(先捆后
松).
⑷甲、乙两同学不能相邻的排法共有多少种?
解法一:(排除法) A77-A66 A22 =3600 解法二:(插空法)先将其余五个同学排好有A55种方法,
从n个不同元素中,任取m(m<n)个元素(这
里的被取元素各不相同)按照一定的顺序排
成一列,叫做从n个不同元素中取出m个元素
的一个排列.
2.排列数的定义,排列数的计算公式
A n m n ( n 1 )n (2 ) ( n m 1 )
An m
n!
(n m)!
3.练习:⑴ 7位同学站成一排,共有多少种不同
A52A66+2A31A51A66
⑷如果两端不能都排女生, =36000
有多少种不同排法?
或A88- A32 A66=36000
四、小结:
1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置; ⑵某些元素要求连排(即必须相邻); ⑶某些元素要求分离(即不能相邻);
2.基本的解题方法:
此时他们留下六个位置(就称为“空” ),再将甲、乙同学 分别插入这六个位置(空)有A62种方法,
a
b甲 c
d
所以一共有A55 A62=3600种方法.
乙e
插空法
拓展:③甲、乙和丙三个同学都 不能相邻的排法共有多少种?
解:先将其余四个同学排好有A44 种方法,此时他们留下五个“空”, 再将甲、乙和丙三个同学分别插入这 五个“空”有A53种方法,所以一共有 A44 A53 =1440种.
小结三:对于不相邻问题,常用
“插空法”(特殊元素后考
虑).
三、练习:三名女生和五名 男生排成一排,
⑴如果女生全排在一起,有 多少种不同排法?
A66 A33 =4320
⑵如果女生全分开,有多少 种不同排法?
A55A63=14400
⑶如果两端 都不能 排女生, A52A66=14400
有多少种不同排法?