电阻的测量--伏安法的实验报告
伏安法测电阻电阻实验报告

伏安法测电阻电阻实验报告伏安法测电阻电阻实验报告引言:电阻是电学基础中的重要概念之一,它在电路中起着限制电流流动的作用。
为了准确测量电阻值,科学家们发展出了伏安法这一实验方法。
本文将介绍伏安法测电阻的原理、实验步骤和结果分析。
一、实验原理伏安法是通过测量电阻两端的电压和电流,利用欧姆定律来计算电阻值的一种实验方法。
根据欧姆定律,电阻R等于电压U与电流I的比值,即R=U/I。
在实验中,我们可以通过改变电阻两端的电压或者电流来观察电阻的变化。
二、实验步骤1. 准备实验装置:将电阻器、电流表、电压表和电源连接好,确保电路连接正确无误。
2. 调节电流:将电流表的量程调至适当范围,根据实验要求设置所需电流值。
3. 测量电压:用电压表测量电阻两端的电压,并记录下来。
4. 计算电阻:根据欧姆定律,将测得的电压值除以电流值,即可得到电阻的数值。
三、实验结果分析在实验中,我们选择了几个不同的电阻值进行测量,并记录下了相应的电压和电流数据。
通过计算,我们得到了一系列的电阻数值。
在分析这些数据时,我们可以观察到以下几个现象:1. 直线关系:根据欧姆定律,电阻与电压和电流之间应该呈现线性关系。
通过绘制电压-电流图像,我们可以发现这种线性关系。
实验结果表明,电阻值与电压成正比,与电流成反比。
2. 非线性关系:在某些特殊情况下,电阻与电压和电流之间可能呈现非线性关系。
这可能是由于电阻器本身的特性或者电路中其他元件的影响所导致的。
在实验中,我们可以通过观察电压-电流图像的形状来判断是否存在非线性关系。
3. 温度影响:电阻值与温度也有一定的关系。
在实验过程中,我们可以通过改变电阻器的温度来观察电阻值的变化。
实验结果表明,电阻值随温度的升高而增加。
四、实验误差分析在实验中,由于各种因素的存在,可能会导致实际测量值与理论值之间存在一定的误差。
主要的误差来源包括仪器误差、电源波动、电路接触不良等。
为了减小误差,我们可以采取以下措施:1. 仪器校准:定期对实验仪器进行校准,确保其准确度和稳定性。
伏安法测电阻实验报告2页

伏安法测电阻实验报告2页实验报告实验名称:伏安法测电阻一、实验目的1.学习和掌握伏安法测电阻的基本原理和方法。
2.观察和分析电阻在不同电压和电流条件下的表现。
3.通过实验操作,提高动手能力和解决问题的能力。
二、实验原理伏安法测电阻的基本原理是欧姆定律,即电阻等于电压与电流的比值。
具体来说,已知流过电阻的电流和电阻两端的电压,可以通过以下公式计算电阻值:R = U / I其中,R为电阻值(单位:Ω),U为电阻两端的电压(单位:V),I为流过电阻的电流(单位:A)。
三、实验步骤1.准备实验器材:伏安法测电阻实验需要电源、电阻器、电压表、电流表和导线等。
在实验开始前,需要将这些器材准备齐全,并检查其性能。
2.连接电路:将电压表和电流表按照正确的方法连接在电路中。
注意电流表应串联在电路中,电压表应并联在电阻器两端。
同时,连接电路时应注意安全,避免短路或开路。
3.调节电阻器:将电阻器调节到适当的阻值,以便在实验中获得合适的电压和电流。
4.调节电压和电流:调节电源的电压,以便得到需要的电流和电压值。
在实验过程中,需要注意观察电流表和电压表的读数,并记录下来。
5.计算电阻值:根据实验记录下的电压和电流值,利用欧姆定律计算电阻值。
注意对于不同的电阻值,可能需要多次测量并取平均值以提高实验精度。
四、实验结果与数据分析实验数据如下表所示:根据上表数据,可以得出以下结论:1.随着电压的增大,电流也相应增大。
这说明电阻器的阻值是线性变化的。
2.通过计算不同电压和电流条件下的电阻值,可以发现电阻值随着电压的增大而增大,但变化幅度逐渐减小。
这可能是因为电阻器具有一定的温度系数,导致电阻值随温度升高而略有增加。
3.通过多次测量并取平均值,可以减小实验误差,提高实验精度。
根据实验数据,可以计算出平均电阻值为187.5Ω(平均电阻值=(50+100+150+200+250)/5)。
五、实验结论通过本实验,我们验证了伏安法测电阻的基本原理和方法,观察了电阻在不同电压和电流条件下的表现,并通过实验数据得出了一些有价值的结论。
伏安法测电阻实验报告

伏安法测电阻实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】科学探究的主要步骤※一、提出问题※二、猜想与假设※三、设计实验(一) 实验原理(二) 实验装置图(三)实验器材和规格(三)实验步骤(四)记录数据和现象的表格四、进行试验※五、分析与论证※六、评估七、交流与合作※最后:总结实验注意事项第一方面:电学主要实验滑动变阻器复习提纲1、原理——通过改变接入电路中电阻丝的长度,来改变电路中的电阻,从而改变电路中的电流。
2、构造和铭牌意义——200Ω:滑动变阻器的最大阻值:滑动变阻器允许通过的最大电流3、结构示意图和电路符号——4、变阻特点——能够连续改变接入电路中的电阻值。
5、接线方法——6、使用方法——与被调节电路(用电器)串联7、作用——1、保护电路2、改变所在电路中的电压分配或电流大小8、注意事项——电流不能超过允许通过的最大电流值9、在日常生活中的应用——可调亮度的电灯、可调热度的电锅、收音机的音量调节旋钮……实验题目:导体的电阻一定时,通过导体的电流和导体两端电压的关系(研究欧姆定律实验新教材方案)一、提出问题:通过前面的学习,同学们已经定性的知道:加在导体两端的电压越高,通过导体的电流就会越大;导体的电阻越大,通过导体的电流越小。
现在我们共同来探究:如果知道了一个导体的电阻值和它两端的电压值,能不能计算出通过它的电流呢即通过导体的电流与导体两端的电压和导体的电阻有什么定量关系二、猜想与假设:1、电阻不变,电压越大,电流越。
(填“大”或“小”)2、电压不变,电阻越大,电流越。
(填“大”或“小”)3、电流用I表示,电压用U表示,电阻用R表示,则三者之间可能会有什么关系三、设计实验:(一) 实验器材:干电池3节,10 Ω和5 Ω电阻各一个,电压表、电流表,滑动变阻器、开关各一只,导线若干。
(二)实验电路图:1、从研究电流与电压的关系时,能否能否保证电压成整数倍的变化,鉴别一下甲和乙的优劣2、乙图重点:研究的是定值电阻这部分电路,而非整个电路。
伏安法测电阻实验报告_2

伏安法测电阻实验报告
班级: 姓名: 组次:
一、实验目的:
①练习使用电压表和电流表
②学会用伏安法测小灯泡正常发光时的电阻
二、实验器材: 干电池3节、开关1个、电压表1只、电流表1只、小灯泡1只、小灯座1只、滑动变阻器1只、导线若干
1、三、探究过程:
2、检查器材是否完全、完好(观察小灯泡的额定电压、变阻器铭牌、各接
线柱情况以及给电压表、电流表校零)Array
3、画出实验电路图
4.按电路图摆放好仪器
5.将导线拧成一股
6.断开开关, 从电源一极开始顺次连接
(注意电表的量程和正、负接线柱, 绕线
顺时针)
7、连好电路检查一遍, 将滑动变阻器置于
阻值最大处, 再闭合开关试触
8、移动滑动变阻器, 同时观察电压表示数至额定电压, 停止华东, 断开开
关, 记下此时电压表电流表读数
9、实验完毕, 断开开关(先拆电源)拆除电路
10、利用R=U/I, 算出阻值
11.整理仪器。
伏安法测电阻实验报告

伏安法测电阻实验报告实验目的:1.熟悉伏安法的原理和电路连接方式;2.学习使用伏安表进行电阻测量;3.掌握如何选取适当的电源电压和伏安表量程。
实验仪器和材料:1.直流电源;2.变阻器;3.伏安表;4.电阻箱;5.电路连接线。
实验原理:伏安法是一种常用的测量电阻的方法。
当被测电阻连接在电源的输出端,通过电流表和电压表分别测量电路中的电流和电压,应用欧姆定律:U=IR,可以得到被测电阻的阻值。
实验步骤:1.将电源的正极和电阻箱的一头连接,将电源的负极和伏安表的COM 端连接;2.将伏安表的VΩmA档插入电路中的电流测量端,将其红色表笔连接到电路中的电阻上,黑色表笔连接到电阻的下方;3.将变阻器旋钮调节到最小电阻,将其一头连接到电阻的上方,另一头连接到伏安表的mA端;4.调节电源电压为适当的值,不宜过大,以避免烧毁被测电阻,同时保证电阻在额定电压下正常工作;5.打开电源,读取伏安表上的电压和电流数值,同时记录下电阻箱上标示的阻值;6.关闭电源后,调整变阻器使电流表示值在适合伏安表的档位上;7.按照上述步骤多次测量,并计算平均值。
实验结果:使用伏安法测得的电阻值如下:实验次数电阻值(Ω)1 1002 1023 994 1015 100根据上述结果,计算得到的电阻平均值为100.4Ω。
实验讨论:通过本实验的测量结果可以看出,伏安法测量电阻的结果具有一定的误差。
主要原因可能是在测量过程中存在的电流表和电压表的零点偏差,以及电源电压的波动等。
在实际应用中,我们应该尽量减小这些误差。
其中一种方法是校准电流表和电压表的零点偏差,以确保它们的准确性。
此外,可以通过在测量过程中多次采样并求取平均值的方式,来减小由于电源电压波动引起的误差。
同时,为了提高测量的精度,我们应该选择适当的电源电压和伏安表量程。
电源电压不宜过高,以避免烧毁电阻;伏安表量程应根据被测电阻的阻值范围来选择,以保证测量结果在量程范围内。
结论:通过本次实验,我们学习了伏安法测量电阻的原理和方法。
电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的利用方式。
二、实验原理及说明(1)元件的伏安特性。
若是把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式肯定:R=u/i=(mu/mi)tgα,期中mu 和mi别离是电压和电流在u-i平面坐标上的比例。
三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时必然要考虑正确利用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习利用大体电学仪器及线路连接方式。
2.掌握测量电学元件伏安特性曲线的大体方式及一种消除线路误差的方式。
3.学习按照仪表品级正确记录有效数字及计算仪表误差。
准确度品级见书66页。
100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。
伏安法测电阻实验报告

伏安法测电阻实验报告引言:电阻是电路的重要组成部分,对于电子电路的设计和分析来说至关重要。
为了准确地测量电路中的电阻值,学习并掌握伏安法测电阻的原理和方法是必不可少的。
本次实验旨在通过伏安法测量电阻,加深对该理论的理解,并通过实际操作提高实验技能。
实验目的:1. 理解伏安法测量电阻的原理和方法。
2. 掌握使用伏安表进行电阻测量。
3. 建立对电路中测量误差的分析和处理能力。
实验仪器和材料:1. 直流电源2. 电阻箱3. 伏安表4. 电压表5. 电流表6. 连接线实验步骤:1. 搭建实验电路:将直流电源的正极与电阻箱相连,再将电阻箱与伏安表和电流表相连,电流表与电阻箱的另一端通过连接线与电源的负极相连。
2. 调节电阻箱的阻值:根据实验需求,调节电阻箱的阻值为适当的范围。
3. 测量电阻:首先用电压表测量电源的电压,然后用伏安表测量电路中通过的电流。
4. 计算电阻:根据欧姆定律,通过测量的电流值和电压值可以计算出所测电阻的值。
实验结果与分析:在不同的电压和电流下,进行了多次实验测量。
得到的数据如下:电流值(A) 电压值(V) 电阻值(Ω)0.5 2.5 5.01.0 3.0 3.01.5 3.52.32.0 4.0 2.0根据实验数据可以得出结论,通过伏安法测量的电阻值较为准确。
测量值与理论值之间的误差在合理范围内,并且随着电流的增大,计算出的电阻值逐渐接近理论值。
这表明伏安法测量电阻的方法是可靠和有效的。
误差分析:在实验过程中,可能会产生一些误差,包括仪器本身的误差和操作时的误差。
其中,仪器本身的误差是由于仪器的精度和灵敏度限制所引起的。
操作时的误差可能来自于电压、电流的测量读数不准确,以及连接线的电阻等。
结论:通过本次实验,我们成功地利用伏安法测量了电阻,并得到了可靠的测量结果。
同时,我们也了解到了在实验中可能出现的误差来源,并对误差的分析和处理有了一定的了解。
这对我们今后在工程实践和科研中进行电阻测量和数据分析有着重要的实际意义。
伏安法测电阻实验报告

伏安法测电阻实验报告
学校班级实验日期年月日
同组人姓名
一、实验名称: 伏安法测电阻
二、实验目的: 1.巩固电流表、电压表、滑动变阻器等元件的使用。
2.通过实验初步掌握伏安法测导体电阻的方法。
3、学会处理数据的一般方法, 利用多次测量求平均值的方法求
电阻。
三、实验器材: 电源(6V 0.5A)不同规格电阻各1 开关*1 电流表*1 电压表*1 滑动变阻器*1 导线(若干)
五、四、实验电路图及实验原理
1.实验电路图: 如右。
六、 2、实验原理:根据欧姆定律I=U/R得R=U/I。
测出被测电阻两端的电
压和通过它的电流强度, 就可以算出电阻值。
七、实验步骤及要求
按实验电路图连接电路, 连接电路时, 注意开关要 , 滑动变阻
器滑片要滑到 , 检查电路连接无误后闭合开关, 测出
R两端的电压U和通过R的电流I记入表格;移动滑片的位置再测出几组对应
的值填入表格。
六、数据记录和处理:
所测电阻平均值: R=
七、反思与拓展
设R约为3Ω, 用笔画线代替导线把下图(b)的元件连接成电路(注意导线不交叉, 元件位置不移动)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电阻的测量--伏安法的测定实验报告
实验名称:_____电阻的测量--伏安法________ 姓名___ _ _ 学号_ _
班级_ _ 实验日期 _ 2013.11.7_ _ 温度______ 同组者 ___ 无_____
(一)实验目的:
1. 学习伏安法测电阻的方法。
2. 学会仪表的选择。
3. 学习伏安法中减少系统误差的方法。
(二)实验仪器:
直流稳压源、电阻箱、滑线变阻器、二极管、电流表、电压表、开关与导线
(三)实验原理:
如图11-1所示,测出通过电阻R 的电流I 及电阻R 两端的电压U ,则根据欧姆定律,可知
图11-1
I
U R =
以下讨论此种方法的系统误差问题。
1. 测量仪表的选择
在电学实验中,仪表的误差是重要的误差来源,所以要选取适用的仪表。
(1)参照电阻器R 的额定功率确定仪表的量限,设电阻R 的额定功率为P ,则最大电流I 为
R
P
I =
(11-1) 为使电流计的指针指向度盘的
3
2
处(最佳选择),电流计的量限为32I ,即
2
3
⨯R P 。
设100≈R Ω,W P 81=,则A I 035.0=,而A I 053.02
3
=⨯,所以电流计取量限为50mA 的毫安计较好。
电阻两端电压为V IR U 5.3==,而V U 3.52
3
=⨯
,所以电压计取量限5V 的伏特计较好。
(2)参照对电阻测量准确度的要求确定仪表的等级
假设要求测量R 的相对误差不大于某一R E ,则按误差传递公式,可有 2
122])()[(I
I
U U E R ∆+∆=
按误差等分配原则取
2
R
E I I U U =
∆=∆ (11-2) 对于准确度等级为a ,量限为max X 的电表,其最大绝对误差为max ∆,则 100
max max a
X ⨯
=∆ 参照此关系和式(11-2),可知电流计等级I a 应满足 1002max ⨯⨯
≤U U
E a R
I (11-3) 电压计的等级U a 应满足 1002max ⨯⨯
≤
U U
E a R
U (11-4)
对前述实例(I=0.035A ,V U A U A I 5,5.3,05.0max max ===),则当要求%2≤R E 时,必须 99.0,99.0≤≤U I a a
即取0.5级的毫安计、伏特计较好,取1.0级也勉强可以。
2. 两种联线方法引入的误差
如图(2)所示,伏安法有两种联线的方法。
内接法——电流计在电压计的里侧,外接法——电流计在电压计的外侧。
(图11-2) (1)内接法引入的误差
设电流计的内阻为A R ,回路电流为I ,则电压计测出的电压值
)(A A R R I IR IR U +=+= (11-5) 即电阻的测量值x R 是
A x R R R += (11-6) 可见测量值大于实际值,测量的绝对误差为A R ,相对误差为R
R A。
当A R <<R 时,可用内接法。
(2)外接法引入的误差
设电阻R 中的电流为R I ,又设伏特计中流过电流为V I ,伏特计内阻为V R ,则电流计中电流
)11(V
V R R R U I I I +=+= (11-7) 因此电阻R 的测量值x R 是
(11-8)
由于)(v v R R R +<,所以测量值x R ,测量的相对误差
式中负号是由于绝对误差是负值,只有当R R V >>时才可以用外接法。
(四)实验步骤:
1. 伏安法测电阻
(1)先用万用表粗测待测电阻的阻值;
(2)选取合适的电表测量,选择合适的控制电路(制流电路、分压电路); (3)调节电路,使I 由小到大,并记录对应的电压表和电流表示数; (4)用记录下的数据制作伏安特性(I-U )曲线,并求出待测电阻值。
2. 测量二极管的伏安特性曲线
按图11-3接线(其中将x R 改为二极管并反向连接),电流电压为0~8V ,每隔2V 测一
个电流值,求出二极管反向伏安特性。
按图11-2(2)接线(其中将电阻R 改用二极管正向接法,另注意电路中加一个几时欧姆的保护电阻)。
从0.2V 开始,每隔0.05V 测一次,至电流较大(10mA 左右)为止,画出二极管
图11-3 正向伏安特性曲线。
(五)数据处理:
1.用伏安法测电阻
用万用表粗测待测电阻得它的阻值大约为5.55K Ω。
设定电源电压4V ,选择1000uA 的微安表(因为从上述实验原理中得到选这个量程可以时指针偏转达到三分之二处),从表盘上已知该量程微安表的阻值约为300Ω,因为R A <<R ,所以选用安培表内接法。
I-U 的实验记录表
由于存在系统绝对误差R A ,所以上表中的R 实际为R X =R+R A
计算R X 的平均值得:R X ≈5.834K Ω,R A ≈300Ω=0.3K Ω,所以R ≈5.534K Ω,与万用表粗测值5.55K Ω十分接近。
由上述表格绘得的伏安特性曲线如下:
序号 I/uA U/V R/K Ω
① 645 3.75 5.814 ② 651 3.80 5.837 ③ 662 3.85 5.816 ④ 670 3.90 5.821 ⑤ 682 4.00 5.865 ⑥ 710 4.15 5.845 ⑦ 728 4.25 5.838
2.测量二极管的伏安特性曲线
由于反向连接时二极管电阻太大,我们的实验仪器无法测量,所以直接测量正向连接时的电阻。
考虑到正向连接时的电阻很小,采用安培表外接法(如图11-2(2)),且为了减少测量误差和保护电路,与二极管串联一个1.5Ω的电阻。
二极管的I-U 实验记录表
计算上表的平均值得R ≈R X ≈1.513K Ω,但是由于R 随电流电压变化较大,所以这个平均值并无较大意义。
由上述表格绘得的伏安特性曲线如下:
序号 I/uA U/V R X /K Ω ① 98 0.20 2.041 ② 125 0.25 2.000 ③ 156 0.30 1.923 ④ 180 0.35 1.944 ⑤ 210 0.40 1.905 ⑥ 265 0.45 1.698 ⑦ 365 0.55 1.507 ⑧ 1200 0.60 0.500 ⑨ 6800 0.70 0.103
(六)实验总结:
1.本实验包括了伏安法测量电阻的各个注意事项,如安培表内外接的选取、各个量表量程的选取等等,分析了实验时存在的系统误差和测量误差两方面;
2.本实验不仅测了随温度变化不大的电阻,也测了变化较大的二极管的正向电阻,但是由于仪器的限制,未能完成反向电阻的测量。