2017年迎春杯小中年级组决赛试卷A
2017“迎春杯”各年级赛事安排

由“数学花园探秘”科普活动全国组委会主办,坚持活动题⽬普及性、趣味性、新颖性相结合的命题原则,继续举办2017年“数学花园探秘”科普活动。
⼀、参赛办法(⼀)参赛原则:组队注册,⾃愿参加。
(⼆)参赛选⼿的组别设置按照参赛选⼿所在年级设⽴以下五个组别:1、⼩学低年级组:2017年9⽉前不⾼于⼩学⼆年级的学⽣;2、⼩学中年级组:2017年9⽉前不⾼于⼩学四年级的学⽣;3、⼩学⾼年级组:2017年9⽉前不⾼于⼩学六年级的学⽣;4、初中⼀年级组:2017年9⽉前不⾼于初中⼀年级的学⽣;5、初中年级组:2017年9⽉前不⾼于初中三年级的学⽣。
⼆、赛事安排(⼀)报名时间:2016年8⽉4⽇起(⼆)初赛初赛分上初赛和笔试初赛, 形式与时间:1、上初赛参加上初赛的选⼿凭姓名、参赛号按时登录参加上初赛。
上初赛时间为:⼩学3年级:2016年11⽉28⽇(周⼀)晚上19:30-20:30。
⼩学4年级:2016年11⽉29⽇(周⼆)晚上19:30-20:30。
⼩学5年级:2016年11⽉30⽇(周三)晚上19:30-20:30。
⼩学6年级:2016年12⽉1⽇(周四)晚上19:30-20:30。
初⼀、初中年级组:2016年12⽉2⽇(周五)晚上19:30-20:30。
赛成绩优秀者将可以在线打印赛获奖证书。
(发布⽇期同公布进⼊笔试决赛的⼈员名单的⽇期)2、笔试初赛:2016年12⽉3⽇(周六)8:30-- 9:30 ⼩学⾼年级组10:30--11:30 ⼩学中年级组、初⼀、初中年级组笔试初赛成绩优秀者按⽐例进⼊笔试决赛。
(不得超过参加笔试初赛⼈数的30% )(三)决赛1、⼩学低年级组:时间:2017年1⽉1⽇(周⽇)10:30—11:30具体时间分配:视听题20分钟+笔试题40分钟每间活动室均配有ICS智能教学管理系统,题⽬会以flash的动态展⽰形式出现,学⽣在答题纸上作答。
⼀、⼆年级采⽤同⼀份题⽬(分开评奖),成绩将由组委会根据这个赛事参赛⼈员的总数,按照⽐例划分⼀、⼆、三等奖,并下发证书。
2017年迎春杯6年级初赛A卷

2017年“数学花园探秘”科普活动六年级组初试试卷A(测评时间:2016年12月3日8:30—9:30)一.填空题I (每小题8分,共32分)1.算式11112016123365472108⎛⎫-+-⨯-+ ⎪⎝⎭的计算结果是____________.2.相邻两个自然数,如果它们的数字和都是8的倍数,我们就称它们为“8和数组”,那么最小的一组“8和数组”中两数之和是___________.3.侠客岛的人,原来有13是卧底,后来卧底中有30%的人被驱离出岛,而不是卧底的人有13转变成了卧底.如果侠客岛上现在还有810人,那么现在侠客岛上有__________人是卧底.(没有其他人入岛)4.如图,一道除法竖式中已经填出了“2017”,那么被除数是____________.二.填空题II (每小题10分,共40分)5.今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关,如果某一天的温度是n 摄氏度,那么该植物在当天增重2n 克.5天过去,这株植物共增重88克.已知这5天太空舱里的温度的数值都是互不相同的非0自然数,且前3天的总增重量和后3天的总增重量都不是3的倍数,则第3天的温度是____________摄氏度.6.如图,在一直角三角形中,剪掉一个最大的半圆,使得半圆的直径在斜边AB 上;已知AC 长210厘米,BC 长280厘米,那么图中阴影部分的面积是_____________平方厘米.(π取3.14)177.甲、乙、丙三人同时从A 出发匀速向B 行走;甲到B 后立即调头,与乙相遇在距离B 地100米的地方;甲再行120米与丙相遇时,乙恰好到B ,那么此时甲共行了_____________米.8.如图,由54根直线型管道搭成的大正方体框架,一只蚂蚁要从A 点处在管道内部爬过6根管道首次达到B 点处,已知这只蚂蚁在爬行过程中没有走过回头路,且相连的管道都是想通的.那么这只蚂蚁共有_________种可能的爬行路线.(翻转或旋转后相同的路线视为不同的路线)三.填空题III (每小题12分,共48分)9.如图,正方形ABCD 的面积为64平方厘米.图中AE =AF =BG =BH .如果三角形AEF 和三角形BGH 的面积都是27.5平方厘米.那么,梯形GF AB 的面积是__________平方厘米.10.从1至9这9个数字中选出4个不同的数字,组成一个四位数,使得这个四位数能被未选出的5个数字整除,而不能被选出的4个数字整除.那么,这个四位数是____________.11.在空格里填入数字1至6中的某个数字,使得每行、每列和每个23的宫内数字不重复.图中两格之AB C A D CB H G F E间的分数表示两个数中较小数除以较大数得到的商.那么,最后一行从左到右前五个数组成的五位数是__________.。
2017年迎春杯五年级竞赛决赛数学试卷二试(答案解析)

解析 A、A+1、B、B+1均不为质数;也不能是质数的n次方.所以,B只能是14.(B为6、10
时,B+1都是质数),此时B+1为15,B(B+1)含有质因数2、3、5、7;最小符合条件的A
为20,所以,A+ B最小值为34 .
在空格里填入数字1~6,使得每行、每列和每宫数字都不重复,每个灰格里的数,在它周
解答
如图,0为三角形ABC内一点.三角形OAC、三角形OAB、三角形OBC的面积分别为30、
60、120 .如果AD= 1.5DB,AE=2EC,求∶
(1) OM: MB.
(2)三角形OMN的面积 .
学而思培优
(1) 1:2.
(2) 16.
(1)方法一∶延长BO交AC于K,
由左图得,BO∶OK=60∶10=6∶1,BO=号BK;
学而思培优
2017年迎春杯五年级竞赛决赛数学试卷二试
填空 将一个正四面体的6条棱中的3条染成黑色,另外3条染成白色,有_种不同的染色方
法.(旋转后相同的染色方法视为同一种染色方法)
如果两个正整数A和ຫໍສະໝຸດ 满足以下条件 ∶①A(A+ 1)是B(B+ 1)的倍数; ②A和(A+ 1)都不是B或者(B+ 1)的倍数; 那么,A+ B的最小值是_
店的编号居然还是a2,此时,甲刚好走到一个编号为三位完全平方数的加油站.
那么,AB两地相距多少千米 ?
840.
从出发到甲、丙相遇为第一阶段,从甲丙相遇到乙、丙相遇为第二阶段,乙第一阶段走了52
,第二阶段走了72,所以∶
t:ta=5:2,
8,8,=1∶(号×台
{(P-1)=b-1,可得P=97,B2= 121; (S-5P+5d): s=5:2
号加油站开始,依次是1号、2号、3号……;每隔7千米,有一个便利店,从A地的1号便利
迎春杯历年试题全集(上)

迎春杯历年试题全集学而思在线http://目录北京市第1届迎春杯小学数学竞赛决赛试题 (3)北京市第2届迎春杯小学数学竞赛决赛试题 (7)北京市第3届迎春杯小学数学竞赛决赛试题 (15)北京市第4届迎春杯小学数学竞赛决赛试题 (16)北京市第5届迎春杯小学数学竞赛决赛试题 (18)北京市第6届迎春杯小学数学竞赛决赛试题 (20)北京市第7届迎春杯小学数学竞赛决赛试题 (23)北京市第8届迎春杯小学数学竞赛决赛试题 (25)北京市第9届迎春杯小学数学竞赛决赛试题 (28)北京市第10届迎春杯小学数学竞赛决赛试题 (31)北京市第1届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2.计算:3.计算:4.一个五位数与9的和是最小的六位数,这个五位数是____。
5.某数的小数点向右移动一位,比原来的数大18,原来的数是____。
6.甲、乙两数的和是305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。
7.最大的四位数比最大的两位数多____倍。
8.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于____。
9.在8个不同约数的自然数中,最小的一个是____。
10.甲数是36,甲乙两数的最小公倍数是288,最大公约数是4,乙数应该是____。
11.一个三位数,个位与百位上的数字的和与积都是4,三个数字相乘的积还是4,这个三位数是____。
12.一个三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。
13.一个分母是最小质数的真分数,如果这个分数的分子增加了4倍,分母加上8得到一个新的分数,那么这两个分数的和是____。
14.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的____倍。
15.水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原库存量多六分之一,原来库存水果____万斤。
2017迎春杯小高A卷解答

a ≥ 12
.综上所述,如果有连续的四个数,这四个数两边都要大于12 .
如果这一列有6 个数a ,b ,c ,d ,e ,f :观察前4 个,那么a ≥ 12 ,d ≥ 12 ;观察中间4 个,那么b ≥ 12 ,
e ≥ 12
;观察后4 个,那么c ≥ 12 ,f ≥ 12 .所以a + b + c ≥ 12 ,与三个数之和小于30 矛盾.所以这列数的个
94
设第一局中国队得a 分,第四局中国队得b 分,根据题意有:
b − a = 12% × (b + 25) = 8% × (b + 50)
,解得b = 25 ,a = 19 .
所以,四局得分总和19 + 25 + 25 + 25 = 94 分.
4. 右面两个算式中,相同汉字代表相同数字,不同汉字代表不同数字, 那么四位数“李白杜甫”
9 M DC
7
量大,那么三角形 为42 ×
7 2 = 147
的面积应尽量大,三角形
M DC
面积最大为44 − 2 = 42 ,这时四边形ABCD 的面积
.
11. 有一列正整数,其中第1 个数是1 ,第2 个数是1 、2 的最小公倍数,第3 个数是1 、2 、3 的最小公倍数,……,第n 个数是1 、2 、……、n 的最小公倍数,那么这列数前100 个数中共有 答案 解析 个不同的值.
n
因为6N = 2 因为
N ቤተ መጻሕፍቲ ባይዱ = 2
a+1
×3
b+1
×p
n 1
1
×. . .
是完全立方数,所以3 |a + 1 ,且3 |b + 1 . 是完全平方数,所以3 |a − 1 ,且3 |b − 1 .
2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。
第1-29届历届小学“迎春杯”真题word版

目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2017年全国迎春杯小学中年级决赛A卷竞赛数学试卷(解析)

价格减少90x + 2(a − 90) 元,两次变化都是两只山羊的价钱,应该相等,那么
,解得 . 60x + 2(a + 60) = 90x + 2(a − 90)
x = 10
9. 现有A、B、C 、D、E 五名诚实的安保在2016年12月1日~5日各值班3天,每天恰有3位安保值班,每位安保值班安排5天
E :圣诞节(12月25日)那天我和A都值班了.
那么,安保A在1 2 月份中第2 次、第6 次、第1 0 次值班日期顺次排列组成的五位数是
.
(如A第2次、第6次、第10次值班分别在12月3、12、17日,则答案为31217 )
答案
41016
解 析 12月份值班表如下:
由E 说的话可知,2 日 5 A 和E 都值班,又由D的话可知D和E 永远在一起,那么可以判断5日这一竖列值班人为 A ,D和E . 由C 的话可知,3日他不值班,由于每天必须有3人值班,所以D和E 中必须有一个,又因 为D和E 一起,所以3日这一竖列,D和E 都值班. 通过A 的话判断,A 和B 在周末值班的日子比C ,D和E 多,统计出每一列中的周末数量,为2,1,2,2,2 .每人都要在三列中值班,若要A 和B 比其他人多,那么1那一列必须是C ,D和E 值班. 每天都要有3人值班,D和E 现在已经排满,因此第1列,第4列为A ,B 和C 值班. 还剩第3列没有排完,B 要跟每个人都搭配过,因此此处为B . A 在12月份中第2 次、第6 次、第10次值班日期日期依次为4 ,10,16,五位数为41016.
得每个格子中都恰好放了一枚棋子,那么共有
名同学.
答案 7
解 析 由题意可知,若相邻两枚棋子之间有偶数个空格子,刖无法再往其中放棋子,那么若想要在每个格子中都放 上棋子,每次放完相邻两棋子间空格教应为奇教.第一轮只能在最中间放1 枚棋子,此时将格子分为了前半