初一数学第二学期期末测试卷
2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
七年级第二学期期末考试数学试题及含答案

七年级第二学期期末考试数学试题一、选择题(请将唯一正确答案的代号填入括号内, 共12小题, 每小题3分, 共36分) 1. 如图, 给出了一周中每天的最高气温和最低气温, 则图中有( )天的温差是相等..的. A. 3 B. 4 C. 5 D. 62. 若21x y =⎧⎨=-⎩是方程mx +y =5的一组解, 则m 的值为( )A. -3B. 1C. 2D. 33. 如图是某机器零件的设计图纸, 在数轴上表 示该零件长度(L)合格尺寸, 正确的是( )A B C D4. 等腰三角形的一边长为3, 另一边长为7, 则它的周长为( ) A. 10 B. 13 C. 17 D. 13或175. 某校学生来自甲、乙、丙三个地区, 其人数比为2:7:3, 则在绘制扇形统计图时, 表示丙地区的扇形的圆心角的度数是( ) A. 60° B. 45° C. 90° D. 120°6. 如图在直角三角形△ADB 中, ∠D =90°, C 为AD 上一点, 则x 可能是( )A. 40°B. 20°C. 15°D. 10° 7. 下列几个问题中, 适合作全面调查的是( )A. 调查市场上某种食品的色素含量是否符合国家标准B. 鞋厂检测生产的鞋底能承受的弯折次数C. 了解武汉市某中学某班对“四城同创”有关知识的知晓情况D. 调查一批日光灯管的使用寿命8. 课间操时, 小华、小军、小刚的位置如图, 小华对小军说, 如果你的位置用(0, 0)表示, 小刚的位置用(2, 2)表示, 那么 我的位置可以表示成( )A. (2, -1)B. (-1, 2)C. (-2, -1)D. (-1, -2)L =10±0.10 9.9 0 9.9 10.1 0 9.9 10.1 6x DB9. 如图, AB ∥CD, ∠D =∠E, ∠B =110º, 则∠D 为( )A. 70ºB. 60ºC.55ºD. 45º10. 篮球比赛中, 每场比赛都要分出胜负, 胜一场得2分, 负一场 得1分, 下表是某队全部比赛结束后的统计结果:表中x 、y 满足的二元一次方程组是( ) A. 40222x y x y +=⎧⎨+=⎩B.22240x yx y =+⎧⎨+=⎩C. 22240x y x y +=⎧⎨+=⎩D. 22240x y x y +=⎧⎨+=⎩11. 平面直角坐标系中, P(-2a -6, a -5)在第三象限, 则a 的取值范围是( )A. a >5B. a <-3C. -3≤a ≤5D. -3<a <512. 小静准备到甲或乙商场购买一些商品, 两商场同种商品的标价相同, 而各自推出不同的优惠方案:在甲商场累计购买满一定数额a 元后, 再购买的商品按原价的90%收费; 在乙商场累计购买50元商品后, 再购买的商品按原价的95%收费. 若累计购物x 元, 当x >a 时, 在甲商场需付钱数y A =0.9x +10, 当x >50时, 在乙商场需付钱数为y B .下列说法:①y B =0.95x +2.5;②a =100;③当累计购物大于50元时, 选择乙商场一定优惠些;④当累计购物超过150元时, 选择甲商场一定优惠些. 其中正确的说法是( ) A. ①②③④ B. ①③④ C. ①②④ D. ①②③ 二、填空题(共4小题, 每小题3分, 共12分) 13. 如图, 是我国体育健儿在最近六届奥运会上获得奖牌的情况, 则其中奖牌数超过..50 枚的有__________次.14. △ABC 中, ∠B =40°, D 在BA 的延长线上, AE 平分∠CAD, 且AE ∥BC, 则∠BAC =__________.15. 如图所示, 第1个图中有1个三角形, 第2个图中共有5个三角形, 第3个图中共有9个三角形, 依次类推, 则第6个图中共有三角形 个.……16. 平面直角坐标系中, 点A(-1, 0), B(3, 0), C(0, m)是y 轴负半轴上一点, 若S △ABC >4, 则m 的取值范围是__________.三、解答题(本大题共9小题, 共72分) 17. (本题6分)解方程组:355215x y x y -=⎧⎨+=⎩胜 负 合计场数 x 22积分 y 40A BC DEFA A CB BC A BC A A C B BC A B C 图1 图2 图318. (本题6分)解不等式组:2311 25123x xxx +≤+⎧⎪+⎨->-⎪⎩19. (本题6分) 如图, AD、BC交于D点, 且∠A=∠B, ∠C=∠D. 求证:AB∥CD.C D20. (本题7分)△ABC 在如图所示的平面直角中, 将其平移后得△A’B’C’, 若B 的对应点B’的坐标是(4, 1).(1) 在图中画出△A’B’C’; (2分) (2) 此次平移可看作将△ABC 向_____平移了_____个单位长度, 再向_____平移了_____个单位长度得△A’B’C’; (2分)(3) △A’B’C’的面积为___________. (3分)21. (本题7分) 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况, 从中抽取了一部分同学进行了一次抽样调查, 利用所得数据绘制成下面的统计图:(1) 求出右图中a 、b 的值, 并补全条形图; (4分)(2) 若此次调查中喜欢体育节目的女同学有10人, 请估算该校喜欢体育节目的女同学有多少人? (3分)22. (本题8分) 一本英语书共98页, 张力读了一周(7天)还没读完, 而李永不到一周就已读完. 李永平均每天比张力多读3页, 求张力平均每天读多少页(答案取整数)?节目类别1020304050 新闻 体育 0 人数 30 动画 45 娱乐 戏曲 9 戏曲 6% 新闻8% 动画 30%娱乐 a % 体育 b %23. (本题10分) 下表是某店两天销售两种商品的帐目记录, 由于字迹潦草, 无法准确辨认第.(1)请求出A、B两种商品的销售价;(5分)(2)若一件A产品的进价为7元, 一件B产品的进价为6元, 某天共卖出两种产品40件, 且两者总利润不低于100元, 则至多...多少件? (5分)..销售乙商品24. (本题10分)如图, B 、D 、E 、F 是直线l 上四点, 在直线l 的同侧作△ABE 和△CDF, 且AB ∥CD, ∠A =40°. 作BG ⊥AE 于G , FH ⊥CD 于H, BG 与FH 交于P 点. (1) 如图1, B 、E 、D 、F 从左至右顺次排列, ∠ABD =90°, 求∠GPH ; (4分) (2) 如图2, B 、E 、D 、F 从左至右顺次排列, △ABE 与△CDF 均为锐角三角形, ∠ABD =α°(0<α<90), 求∠GPH ; (4分) (3) 如图3, F 、B 、E 、D 从左至右顺次排列, △ABE 为锐角三角形, △CDF 为钝角三角形, 则∠GPH 的度数为多少?请画出图形并直接写出结果, 不需证明. (2分)lA B C D E FG (H) (P)图1ABC D lEFGHP图2A B CDlF E 图325. (本题12分)如图, 平面直角坐标系中, 直线BD 分别交x 轴、y 轴于B 、D 两点, A 、C 是过D 点的直线上两点, 连结OA 、OC 、BD, ∠CBO =∠COB, 且OD 平分∠AOC. (1) 请判断AO 与CB 的位置关系, 并予以证明; (4分)(2) 沿OA 、AC 、BC 放置三面镜子, 从O 点发出的一条光线沿x 轴负方向射出, 经AC 、CB 、OA 反射后, 恰好由O 点沿y 轴负方向射出, 若AC ⊥BD, 求∠ODB ; (4分)(3) 在(2)的条件下, 沿垂直于DB 的方向放置一面镜子l , 从射线..OA ..上任意一点P 放出的光线经B 点反射, 反射光线与射线..OC ..交于Q 点, OQ 交BP 于M 点, 给出两个结论:①∠OMB 的度数不变;②∠OPB +∠OQB 的度数不变. 可以证明, 其中有且只有一个是正确的, 请你作出正确的判断并求值. (4分)参考答案一、选择题(请将唯一正确答案的代号填入括号内, 共12小题, 每小题3分, 共36分)x x二、填空题(共4小题, 每小题3分, 共12分)13. 3 14. 100° 15. 21 16. m <-2 三、解答题(本大题共9小题, 共72分) 17. (本题9分) 21x y =⎧⎨=⎩18. (本题9分)解集为485x <≤ 19. (本题10分) 证明略. 20. (本题10分) (1) (4分)图略(2) (3分) 向左平移2个单位长度, 向下平移1个单位长度. (平移的顺序可颠倒) (3) (3分)10 21. (本题10分)(1) (5分) a =36, b =20 ------------对一个1分, 对两个3分 图形2分 (2) (5分) 200人 22. (本题10分)解:设张力平均每天读x 页依题意7987(3)98x x <⎧⎨+>⎩--------------5分解得11<x <14 --------------8分 又x 为整数 故x =12或13答略. ---------------10分 23. (本题14分) (1) (5分)40° (2) (7分)提示:∠P =360°-∠M =360°-∠A=140°(3) (2分)∠GPH =40°, 图略附加题(共2小题, 共30分, 不计入总分) 1. (本题15分)(1) (7分)解:设A 、B 两种产品的单价分别为x 元、y 元 设第二天的总金额个位数字为a依题意20102801515270x y x y a +=⎧⎨+=+⎩当m =0时, 解得108x y =⎧⎨=⎩ 当m =6时, 解得485445x y ⎧=⎪⎪⎨⎪=⎪⎩由于两种单价均为整数, 故A 单价为10元, B 单价为8元.(2) (8分)设销售B 商品m 件, 则销售A 商品(40A B CD lE FG H P图2 M依题意(107)(40)(86)100x x-⨯-+-≥解得x≤20 故至多销售B商品20件.2. (本题15分)(1) (5分)平行, 下证之设∠AOD=∠COD=x∠BOC=∠OBC=y则∠BOD=x+y=90°故2x+2y=180°即∠AOB+∠OBC=180°得AO∥CB(2) (5分)依题意∠1=∠2设∠AOE=∠BPF=x, 则∠BOE=180°-2x由AO∥CB得∠BEO=∠AOE=x=∠CED则∠OED=180°-2x=∠BOE故DE∥OB得∠ODE=90°故∠1=∠2=45°(3) (5分) 选②, ∠OPB+∠OQB=90°, 下证之设∠AOD=∠DOQ=x∠PBD=∠QBD=y在△PGO和△QGB中∠OPB+x=45°+y 在△QHB和△DHO中∠OQB+y=45°+x 两式相加得∠OPB+∠OQB=90°.xx。
2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限 C.第三象限 D.第四象限8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5.因式分解:34a a -=_____________.6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、A6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、ab3、70.4、(3)m m -5、(2)(2)a a a +-6、十二.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=-32、(1)13x =-;(2)6m =或4m =,7m =或3m =3、(1)略;(2) 略.4、略.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DCB A初一数学第二学期期末测试卷一、选择题:(共10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题目要求的............,请在答题纸上将所选项涂黑........... 1.据报道,现在很多家庭使用光纤,真正实现高速上网.很多地区使用了某公司设计的 系列单模传输光纤.系列波长2m μ光束传输光纤具有出色的一致性和抗疲劳特性. 波长2m μ约等于0.000002米.将0.000002用科学记数法表示应为 A .50.210-⨯ B .6210-⨯ C .5210-⨯D .60.210-⨯2.下列计算正确的是A .22a a a ⋅=B .235()a a =C .2363515a a a ⋅= D .523a a a ÷= 3.如图,为估计池塘岸边A ,B 的距离,小明在池塘的一侧选取 一点O ,测得OA =15米,OB =10米,A ,B 间的距离可能是 A .30米 B .25米 C .20米 D .5米4.如果关于x 的一元一次不等式组的解集在数轴上的表示如图所示, 那么该不等式组的解集为A .1x ≥-B .2x <C .12x -≤≤D .12x -≤< 5.已知12x y =⎧⎨=-⎩ 是方程1ax y -=的一个解,那么a 的值是A .1-B .1C .3-D .3 6.如图,在△ABC 中,∠ACB =90°,CD ∥AB ,∠ACD =35°那么∠B 的度数为A .35︒B .45︒C .55︒D .145︒ 7.如果2(2)(1)x x x mx n -+=++,那么m n +的值为A .1-B .1C .3-D .3 8.下列调查中,调查方式选择合理的是 A .了解妫水河的水质情况,选择抽样调查 B .了解某种型号节能灯的使用寿命,选择全面调查C .了解一架Y-8GX7新型战斗机各零部件的质量,选择抽样调查D .了解一批药品是否合格,选择全面调查9.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如下表:..A .该班一共有38名同学B .该班学生这次考试成绩的众数是35分C .该班学生这次考试成绩的中位数是35分D .该班学生这次考试成绩的平均数是35分10.如图,△ABC 面积为1,第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连接A 1,B 1,C 1,得 到△A 1B 1C 1.第二次操作: 分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1, 顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,那么△A 2B 2C 2的面积是 A .7 B .14 C .49D .50二、填空题 (共6个小题,每题3分,共18分) 11.计算:01(21)(2)x ---= .12.分解因式:325105x x x -+=_________. 13.如果分式3x x-的值为0,那么x 的值等于 . 14.已知,如右图,要使得AB ∥CD ,你认为应该添加的一个条件是 .15.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙 子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说 明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了E DCBC 11A 1CBA解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺 五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对 折再量长木,长木还剩余1尺,问长木长多少尺?” 设绳长x 尺,长木为y 尺,可列方程组为__________.16.在右表中,我们把第i 行第j 列的数记为,i j a (其中i ,j 都是不大于4的正整数),对于表中的每个数,i j a ,规定如下:当i >j 时,,0i j a =;当i ≤j 时,,1i j a =. 例如:当i =4,j =1时,,4,10i j a a ==. (1)按此规定,1,3a =______; (2)请从下面两个问题中任选一个作答.温馨提示:答对问题1得3分,答对问题2得2分,两题均答不重复计分.三、解答题(本题共72分,第17-21题每小题5分,第22题10分,第23题3分,第24,25,26题每小题各5分,第27题6分,第28题7分,第29题6分)17.解不等式组: 43421x xx x ->⎧⎨+≥+⎩,并写出它的所有正整数解.18.解方程组:3325x yx y =+⎧⎨-=⎩19.解方程组:321456x y x y +=⎧⎨-=⎩20.先化简,再求值:()()23242x y y x y xy xy -+--÷,其中 2x =-,1y =. 21.已知:如右图,AB ∥CD ,CE ∥BF .问题1问题22,1,2,2,2,3,2,4,i j i j i j i j a a a a a a a a ⋅+⋅+⋅+⋅=___; 表中的16个数中,共有 个1.1,1a1,2a 1,3a 1,4a 2,1a 2,2a 2,3a 2,4a 3,1a 3,2a 3,3a 3,4a 4,1a4,2a4,3a4,4aFE求证:∠C +∠B =180°. 22.计算:(1)22x y x y y x xy +--(2)211(1)22a a a --÷++ 23.已知:∠ABC ,按下列要求画出图形. (1)画∠ABC 的平分线BM ;(2)在射线BM 上取一点D ,过点D 作DE ∥AB 交BC 于点E ; (3)线段BE 和DE 的大小关系是_______.24.甲乙二人分别从相距20千米的A ,B 两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还 相距11千米,求甲乙二人每小时各走多少千米?25.延庆区由于生态质量良好、自然资源丰富,成为北京的生态涵养区,是其生态屏障和水源保护地.为降低空气污染,919公交公司决定全部更换节能环保的燃气公交 车.计划购买A 型和B 型两种公交车共10辆,其中每台的价格,年载客量如表:2辆,B 型公交车1辆,共需350万元. (1)求a ,b 的值;(2)如果该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这 10辆公交车在该线路的年均载客总和不少于680万人次.请你设计一个方案,使得 购车总费用最少. 26.阅读下列材料:CB A2016年6月24日,以“共赴百合之约·梦圆世园延庆”为主题的第二届北京百合文化节在延庆区世界葡萄博览园拉开帷幕,本届百合文化节突出了2019年世界园艺博览会元素,打造“一轴、四片区、五主景”的百合主题公园,为市民呈现百合的饕餮盛宴.据介绍,四片区的花海景观是由“丽花秀”、“画卷”、“妫河谣”和“水云天”组成.设置在科普馆的“丽花秀”,借鉴西班牙的镶嵌艺术,利用小丽花打造大型立体景观.这里种植的小丽花的株数比2015年增加了10%;设置在葡萄盆栽区的“画卷”,由9个模块组成一幅壮观的“画卷”,这里种植了40万株的葡萄,有1014个世界名优新品.设置在主题餐厅东侧的“妫河谣”,利用流淌的线条,营造令人震撼的百合花溪;这里的百合有240个品种,种植达到220万株,比2015年多了70万株.设置在科普馆东侧的“水云天”,设计体现了“水天交融”的流畅曲线美,种植的50万株向日葵花与100亩紫色的薰衣草交相辉映,仿佛美丽的画廊.据主办方介绍,2015年第一届百合文化节,种植的百合有230多个品种,种植小丽花18万株;葡萄品种总数达600多种,种植了30万株;向日葵花也达到了25万株.根据以上材料解答下列问题:(1)2016年第二届北京百合文化节,种植的小丽花的株数为万株;(2)选择统计表或统计图,将2015、2016年百合文化节期间在世葡园种植的百合、小丽花、葡萄的株数表示出来.27.在乘法公式的学习中,我们常常利用几何图形对运算律加以说明.例如:乘法对加法的分配律:m(a+b+c)= ma + mb +mc,可用图①所示的几何图形的面积关系加以说明.28.△ABC中,∠C=60°,点D,E分别是边AC,BC上的点,点P是直线..AB上一动点,连接PD ,PE ,设∠DPE =α.(1)如图①所示,如果点P 在线段BA 上,且α=30°,那么∠PEB +∠PDA = ; (2)如图②所示,如果点P 在线段..BA 上运动,①依据题意补全图形;②写出∠PEB +∠PDA 的大小(用含α的式子表示);并说明理由.(3)如果点P 在线段..BA 的延长线上运动,直接写出∠PEB 与∠PDA 之间的数量关系(用含α的式子表示).那么∠PEB 与∠PDA 之间的数量关系是 .29.阅读理解:对于二次三项式222x axa ++,能直接用公式法进行因式分解,得到222x ax a ++2()x a =+,但对于二次三项式2228x ax a +-,就不能直接用公式法了.我们可以采用这样的方法:在二次三项式2228x ax a +-中先加上一项2a ,使其成为完全平方式,再减去2a 这项,使整个式子的值不变,于是:2222222222222222282828(2)(8)()9(3)(3)(4)(2)x ax a x ax a a a x ax a a a x ax a a a x a a x a a x a a x a x a +-=+-+-=++--=++-+=+-=+++-=+- 像这样把二次三项式分解因式的方法叫做添(拆)项法. 问题解决:DEAB C P图①图②备用图请用上述方法将二次三项式 2223x ax a +- 分解因式. 拓展应用:二次三项式245x x -+有最小值或是最大值吗? 如果有,请你求出来并说明理由.初一数学参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分)17.解:由①得,1x > ……………………3分 由②得,3x ≤ ……………………4分∴13x <≤∴它的所有正整数解有:2,318.解:3325x yx y =+⎧⎨-=⎩ 将①代入②,得3(3)25y y +-=……………………1分解得:4y =- ……………………3分 把4y =-代入①,得1x =- ……………………4分 ∴原方程组的解为:14x y =-⎧⎨=-⎩……………………5分① ②19.解:321456x y x y +=⎧⎨-=⎩②×2,得 10212x y -= ③……………………1分 ① + ③,得 1326x =x =2 ……………………3分把x =2代入②,y=4 ……………………4分∴原方程组的解为:24x y =⎧⎨=⎩……………………5分 20.先化简,再求值:()()23242x y y x y xy xy -+--÷,其中 2x =-,1y =. 解:()()232222222422222x y y x y xy xyx xy y xy y y x y -+--÷=-++--=- ………………3分当2x =-,1y =时,原式= 22(2)21--⨯=2…………………5分21. 证明:∵AB ∥CD ,CE ∥BF . ∴∠CDB +∠B =180°∠C=∠CDB . ………………4分∴∠C +∠B =180° ………………5分22. (1)22x y x y y x xy +--2222x y x y xy---= ………………3分 222y xyy x-==-③ ④FE DC BA………………5分(2)211(1)22a a a --÷++ 212()2(1)(1)a a a a a +-+=++-g………………3分 12()2(1)(1)a a a a a ++=++-g11a =- 23.(3)线段BE 和DE 的大小关系是_BE =DE ______. ………………3分24.解:设甲每小时各走x 千米,乙每小时各走y 千米……………………1分由题意得:524021120x y x y ⎧+=⎪⎨⎪++=⎩ …………………3分解这个方程组得:45x y =⎧⎨=⎩ ……………………4分答:甲每小时各走4千米,乙每小时各走5千米.……………………5分25.解:(1)由题意得:24002350a b a b +=⎧⎨+=⎩……………………1分 解这个方程组得:100150a b =⎧⎨=⎩答:100150a b =⎧⎨=⎩……………………2分 ………………5分MEDC BA ………………2分(2)设购买A 型公交车x 辆,购买B 型公交车y 辆,由题意得:60100(10)680100150(10)1200x x x x +-≥⎧⎨+-≤⎩……………………3分 解得:68x ≤≤ ……………………4分有三种购车方案:①购买A 型公交车6辆,购买B 型公交车4辆 ②购买A 型公交车7辆,购买B 型公交车3辆 ③购买A 型公交车8辆,购买B 型公交车2辆 ∴购买A 型公交车越多越省钱,所以购车总费用最少得是购买A 型公交车8辆,购买B 型公交车2辆……………………5分26.(1)2016年第二届北京百合文化节,种植的小丽花的株数为 19.8 万株;…………2分(2)选择统计图表均可。