华北电力大学硕士研究生课程考试试题(A卷)矩阵论答案

合集下载

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

1 4
1 3
0 0


Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0

1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH

A C H B H AC H 1 B H
六、(10
分)求矩阵
A



行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1


1
1
0
2 1 1
1 B 1
2
0 1 1

C


1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题

习题3-22设A,B均是正规矩阵,试证:A 习题3 22设A,B均是正规矩阵,试证:A 均是正规矩阵 相似的充要条件是A 与B相似的充要条件是A与B酉相似
因为A,B是正规矩阵,所以存在U,V∈ A,B是正规矩阵 存在U,V 证:因为A,B是正规矩阵,所以存在U,V∈Un×n 使得 A=Udiag(λ B=Vdiag(µ A=Udiag(λ1,…,λn)U*, B=Vdiag(µ1,…,µn)V*, , , 其中λ A,B的特征值集 其中λ1,…, λn,,µ1,…,µn分别是A,B的特征值集 , , 分别是A,B 合的任意排列. 合的任意排列. 必要性: 相似, ,i=1…,n, ,n,于是 必要性:若A与B相似,则λi=µi,i=1 ,n,于是 B=VU*AUV*=W*AW, W=UV*∈Un×n 即得证A 酉相似. 即得证A与B酉相似. 充分性:显然,因为,酉相似必然相似. 充分性:显然,因为,酉相似必然相似.
习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.

研究生期末试题矩阵论a及答案

研究生期末试题矩阵论a及答案
计算 ,
,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解

, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵

其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

研究生课程-《矩阵分析》试题及答案

研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。

由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。

故1x ,2x ,3x 是线性无关的。

(2)用反证法。

假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。

所以,1x +2x +3x 不是σ的特征向量。

二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。

四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。

研究生矩阵理论课后答案4,5章习题

研究生矩阵理论课后答案4,5章习题

2 1 − 2 3 1 0 4 1 1 0 −1 2 1 −1 0
0 5 0 1 1 0 4 1 1 0 −1 −2 0 −2 0

1 1 1 −2 −1 −1
0 5 0 1 1 0 4 1 1 0 1 2 0 2 0
同一向量的三种范数之间的大小关系 习题#5-4:对n维线性空间的任意向量x成 习题#5维线性空间的任意向量x #5
‖x‖∞ ≤‖x‖2 ≤‖x‖1 ≤ n‖x‖∞ ≤ n‖x‖2 ≤ n‖x‖1 ≤ n2‖x‖∞ ≤ …

证: |,…,|x ‖x‖∞= max{|x1|, ,|xn|} ≤(Σi=1n|xi|2)1/2 = ‖x‖2 |+…+|x ≤((|x1|+ +|xn|)2)1/2 = ‖x‖1 |,…,|x ≤ n max{|x1|, ,|xn|} = n‖x‖∞
习题#5是正定矩阵,x ,x∈ 习题#5-6A∈Cn×n是正定矩阵,x∈Cn #5
是向量范数. •证明:‖x‖=(x*Ax)1/2 是向量范数. 证明:‖x‖=(x
解1:因A是正定Hermite矩阵A,故存在可逆矩阵B 是正定Hermite矩阵A,故存在可逆矩阵B Hermite矩阵A,故存在可逆矩阵 使得A=B B.则 的上述表示式可写为: 使得A=B*B.则x的上述表示式可写为: (Bx)) ‖x‖=(x*Ax)1/2 =((Bx)*(Bx))1/2 =‖Bx‖2 其中‖‖ 是向量2 范数.再注意可逆矩阵B 其中‖‖2 是向量2-范数.再注意可逆矩阵B的性 Bx=0,即可直接推出非负性 即可直接推出非负性. 质:x=0 ⇔ Bx=0,即可直接推出非负性. ‖kx‖=‖B(kx)‖2=|k|‖Bx‖2=|k|‖x‖ 推出齐次性;三角不等式则由下式推出: 推出齐次性;三角不等式则由下式推出: ‖x+y‖=‖B(x+y)‖2≤‖Bx‖2+‖By‖2

2021北航矩阵理论论课后参考答案

2021北航矩阵理论论课后参考答案

−1 1 λ − 2
1 λ − λ(λ −1) − (λ −1) ≅ 0 − λ(λ −1) − (λ −1) c2↔c3→
0 λ −1
λ −1 0 λ −1
λ −1
1 0
0
1 0
0
0 0
− (λ −1)
λ −1

λ(λ
λ−
− 1
1)
r3+r 2→0 0
− (λ −1)
0
阵较为好求,故我们将式 5 转化一下变为 C-1 = C2−1C1 ,
1 3 2 1 0 0 r2+(2)r1 1 3 2 1 0 0
[C2 I ] = − 2 -1 1 0 1 0 r3+(−1)r1→0 5 5 2 1 0
1 2 2 0 0 1
0 -1 0 -1 0 1
1r2
5 (−1)r 3
− −
λ(λ(λ−−1)12)

1 0
0
00
− (λ −1)
0

0
(λ −
1)2
故其初等因子为 (λ −1),(λ −1)2 ,所以
1 0 0 J = 0 1 1
0 0 1
令 P = [X1, X 2, X3],则有 AP = PJ ,即
1 0 0 A( X1, X 2, X3) = ( X1, X 2, X3)0 1 1
根,则最小多项式为
mA(λ) =λk (λ − tr(A)), k ≥ 1
因为
P−1[ A( A − tr( A)I )]P = 0
故 n 阶矩阵 A 的最小多项式为 λ2 − tr(A)λ 。
18 证明:
不妨引入辅助矩阵,则有下式成立

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t

e 2t et
从而:
f A e At gA a0 E a1 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华北电力大学硕士研究生课程考试试题(A卷)(2013-2014)一、判断题(每小题2分,共10分)1. 方阵A的任意一个特征值的代数重数不大于它的几何重数。

(X)见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n,后者小于等于n2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L .正确,线性无关的向量张成一组基3.如果12,V V 是V 的线性子空间,则12V V ⋃也是V的线性子空间.错误,按照线性子空间的定义进行验证。

Aλ是可逆4. n阶λ-矩阵()Aλ的充分必要条件是()的秩是n .见书60页,需要要求矩阵的行列式是一个非零的数5. n阶实矩阵A是单纯矩阵的充分且必要条件是A的最小多项式没有重根. 见书90页。

二、填空题(每小题3分,共27分)(6)210021,003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭则A e 的Jordan标准型为223e100e 0,00e ⎛⎫ ⎪ ⎪ ⎪⎝⎭。

首先写出Ae然后对于若当标准型要求非对角元部分为1.(7)301002030λλλ-⎛⎫ ⎪+ ⎪ ⎪-⎝⎭的Smith标准型为10003000(3)(2)λλλ⎛⎫ ⎪- ⎪ ⎪-+⎝⎭见书61-63页,将矩阵做变换即得(8)设1000.10.30.200.40.5A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则100lim 000000n n A→+∞⎛⎫ ⎪= ⎪ ⎪⎝⎭。

见书109页,可将A 对角化再计算即得。

(9)2345⎛⎫ ⎪-⎝⎭ 在基11120000,,,00001321⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭下的坐标为(1,1,2,1)T。

见书12页,自然基下坐标为(2,3,4,-5)T ,再写出过渡矩阵A,坐标即A的逆乘以自然基下坐标。

对于本题来说。

由于第一行实际上只和前两个基有关,第二行只和后两个基有关。

因此不用那么麻烦,只需要计算(1,1)x+(1,2)y=(2,3)就可得解为1,1.再解(1,-3)x+(2,1)y=(4,-5)就可以得解为2,1.整理一下即得坐标。

(10)设423243537A -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,则A ∞= 15。

见书100页,计算每行的绝对值的和。

(11)20211123x x x x x e x x →-⎛⎫ ⎪+- ⎪ ⎪+⎝⎭sin cos ln()lim sin =2003⎛⎫ ⎪⎝⎭。

对矩阵中的每个元素求极限。

12设,,m n p q m qA RB RC R ⨯⨯⨯∈∈∈是已知矩阵,则矩阵方程AXB C =的极小范数最小二乘解是+()T X A B C =⊗u u r u r 见书113-115页,将矩阵方程拉直,再用广义逆的定义去算。

(12)若n 阶方阵A 满足30A =,则cos A =212E A - 。

见书121页,30A =,所以后面的项都为零。

(13)方阵A 的特征多项式是33(2)(3)(5)λλλ---,最小多项式是 2(2)(3)(5)λλλ---,则A 的Jordan 标准形是3((2,1),(2,2),3,5)diag J J E 特征多项式决定了A 的阶数以及各个特征值的重根数,即有3个2,3个3,1个5.最小多项式决定了若当块的大小,如2有1个1阶和1个2阶,3和5都只有1阶的若当块。

三(7分)、设1213200102171,012225018202140A B C -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,证明AX XB C +=有唯一解。

见书114页,本题需要验证A 和-B 没有相同的特征值,具体解法如下。

证明:33+T A E E B ⊗⊗非奇异。

显然,B -的特征值为2,1,2--,下证明:2,1,2--不是A 的特征值:(1) 方法1:用圆盘定理。

A 的三个行圆盘分别是(12,4),(7,2),(8,1)B B B -,2,1,2--都不在(12,4)(7,2)(8,1)B B B ⋃⋃-中,因此A 与B -没有相同的特征值,从而0不是33+TA E EB ⊗⊗的特征值,故33+TA E EB ⊗⊗可逆,从而AX XB C +=有唯一解。

(2) 方法2:求出A 的特征多项式,再证明2,1,2--不是A 的特征值。

方法3:直接写出33+T A E E B ⊗⊗,再证明它非奇异。

四(8分)、设3维内积空间在基123,,ααα下的矩阵211150103A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭。

求 123{++}span ααα 的正交补空间。

见书28页,内积空间在基下的矩阵是指度量矩阵。

按照内积定义给出正交补空间中元素应该满足的条件。

然后求解。

解:设112233123=++({++})x x x span βαααααα⊥∈,则123(,,)T x x x 满足方程123(,,)(1,1,1)0Tx x x A = 1232+6+2=0x x x它的基础解系为12=(-3,1,0),=(0,1,3)T Tξξ-,因此 1231223({++})={3+,3}span span ααααααα⊥--五(10分)、设5阶实对称矩阵A 满足23(3)(5)0A E A E -+=,(3)1rank A E -=,求A 的谱半径和Frobenius 范数F A 。

注意A 满足的方程说明那个式子是零化多项式,并不是最小多项式,也不是特征多项式。

只说明A的特征根为3和-5,再根据后面的条件才知道有4个3和1个-5.然后根据范数定义得到结果。

解:因为实对称矩阵A是5阶矩阵,且满足23A E A E-+=,(3)(5)0-=,因此(3)1rank A E存在正交矩阵P ,使得(3,3,3,3,5)T P AP diag =-由于正交变换不改变矩阵的Frobenius 范数,因此(3,3,3,3,5)F F A diag =-==六(10分)、求+502145513305127⎛⎫ ⎪- ⎪ ⎪--⎝⎭ 。

见书184页,首先对矩阵满秩分解,再按广义逆的计算公式计算得到结果。

七(14分)、3()P t 的线性变换2323012302132031()()()()()T a a t a t a t a a a a t a a t a a t +++=-+-+-+-(1)求()()R T N T ,的基。

(2)求T的一个三维不变子空间。

见书34-37页,要求相空间及零空间的基即对线性变换在自然基下的矩阵做初等行变换。

然后观察可得。

解:(1)求T在下的矩阵。

解:基23 1,,,t t t,因为232233 (1)1,(),()1,()1T t T t t t T t t T t t =-=-=-+=-+所以T 在基231,,,t t t 下的矩阵1010010110100101A -⎛⎫⎪- ⎪= ⎪- ⎪-⎝⎭。

1010101001010101~1010000001010000A --⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭因此231,t t t --是()R T 的基,231+,+t t t 是()N T的基。

(3) 取232{1,1+}U span t t t t =--, ,易见2321,1+t t t t --, 线性无关,因此232{1,1+}U span t t t t =--,是三维的,且()=()T U R T U ⊂ ,因此U 是T 的一个三维不变子空间。

八(14分)、已知321141123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,(1)求A 的Jordan 标准型。

(2)求ln A .本题为三阶矩阵,因此首先计算A的特征多项式,发现特征根为2和6,然后判断最小多项式,即可得到若当标准型。

见书72-75页。

求ln A的方法见书127页。

或者126页,或者123页。

解:622AJ⎛⎫⎪= ⎪⎪⎝⎭12()(6)(2) f A f A f A=+1211(2),(6)44A A E A A E =-=--ln6ln 2ln (2)(6)44A A E A E =---。

相关文档
最新文档