高考数学试题广东卷(文科)

合集下载

2014年高考真题——文科数学(广东B卷)精校版 有答案 Word版含答案(2014高考)

2014年高考真题——文科数学(广东B卷)精校版 有答案 Word版含答案(2014高考)

绝密★启用前试卷类型:A2014年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式13V sh =,其中s 为锥体的底面积,h 为锥体的高. 一组数据12,,,n x x x L 的方差2222121[()()()],n s x x x x x x n=-+-++-L其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =I{}A.0,2 {}B.2,3 {}C.3,4 {}D.3,52. 已知复数z 满足(34)25i z -=,则z =A.34i --B.34i -+ .34C i - D.34i +3. 已知向量(1,2)a =r ,(3,1)b =r ,则b a -=r rA.(2,1)-B.(2,1)-C.(2,0)D.(4,3)4. 若变量x ,y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8C.10D.115. 下列函数为奇函数的是1A.22x x -2B.sin x x C.2cos 1x + 2D.2xx + 6. 为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A.50B.40C.25D.207. 在ABC ∆中,角,,A B C 所对应的变分别为,,a b c ,则a b ≤“”是sin sin A B ≤“”的 A.充分必要条件 B.充分非必要条件C.必要非充分条件D.非充分非必要条件8. 若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x k y --=的 A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9. 若空间中四条两两不相同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.1l 与4l 既不平行也不垂直D.14l l 与位置关系不确定10. 对任意复数1w ,2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数,对任意复数123,,z z z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*②()()()1231213z z z z z z z *+=*+* ③()()123123z z z z z z **=**④1221z z z z *=*则真命题的个数是A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 曲线53x y e =-+在点(0,2)-处的切线方程为 .12. 从字母,,,,a b c d e 中任取两个不同的字母,则取到字母a 的概率为 . 13. 等比数列{}n a 的各项均为正数且154a a =,则2122232425log log log log log a a a a a ++++= .(二)选做题(14~15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 .15. (几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12 分) 已知函数 532()sin(),,()3122f x A x x R f ππ=+∈= (1)求A 的值;(2)若()()3,(0,),2f f πθθθ--=∈,求()6f πθ-.17.(本小题满分13 分) 某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1合计 20 (1)求这20名工人年龄的众数与极差;(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. E F D CBA18. (本小题满分13 分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1,2AB BC PC ===,作如图3折叠,折痕EF ∥DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.19. (本小题满分14分)设各项为正数的数列{}n a 的前n 和为n S ,且n S 满足.222*(3)3()0,n n S n n S n n n N -+--+=∈(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++L20. (本小题满分14分)已知椭圆2222:1(0,0)x y C a b a b+=>>的一个焦点为)5,0,离心率为53(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆的两条切线相互垂直,求点P 的轨迹方程.21. (本小题满分14分)已知函数321()1()3f x x x ax a R =+++∈. (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U ,使得01()()2f x f =.C E FP B A D P A D C B F E M2014年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案:一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. B2. D3. B4. C5. A6. C7. A8. D9. D 10. B二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. 11. 520x y ++= 12.2513. 5 14. (1,2) 15. 3 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos 33sin 33sin (0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈∴Q 解由得26cos 1sin 36()3sin()3sin()3cos 366632f θθππππθθθθ=-=∴-=-+=-===17.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为 18.00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴I I Q Q 解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即19.1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 02211111111122222221:(1)1:(1)320,60,(3)(2)0, 0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n nn n n nn n nn S S S S S SS S aS n n S n n S S n na n N S S S n nn a S S n n n n*-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣QQ解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(nk knna a n n Nk kk N k k k ka a k k k k k kk kk ka a a a a a**⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++L又当时1)1111111()()11111141223(1)444444111111().11434331(1)44nn nnn+⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-L20.222220022002255:(1)5,3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±Q 依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为 21.'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11,()0,(),(1111),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=--∈-∞--->∴∈---+-<∈--+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,1111,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,142214872148721480,7+2148,01,72148x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<-<U U Q Q 若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,12127+2148155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭U U U U U 即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014·广东卷(文科数学)1.[2014·广东卷] 已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( ) A .{0,2} B .{2,3} C .{3,4} D .{3,5}1.B [解析] ∵M ={2,3,4},N ={0,2,3,5},∴M ∩N ={2,3}. 2.[2014·广东卷] 已知复数z 满足(3-4i)z =25,则z =( ) A .-3-4i B .-3+4i C .3-4i D .3+4i2.D [解析] ∵(3-4i)z =25,∴z =253-4i =25(3+4i )(3-4i )(3+4i )=3+4i. 3.[2014·广东卷] 已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)3.B [解析] b -a =(3,1)-(1,2)=(2,-1).4.[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =2x +y 的最大值等于( )A .7B .8C .10D .114.D [解析] 作出不等式组所表示的平面区域,如图中阴影部分所示.作出直线l :2x +y =0,平移该直线,当直线经过点A (4,3)时,直线l 的截距最大,此时z =zx +y 取得最大值,最大值是11 .5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.6.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .206.C [解析] 由题意得,分段间隔是100040=25.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等8.D [解析] ∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k =1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等.9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.10.、[2014·广东卷] 对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z 1,z 2,z 3有如下四个命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3); ②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3); ③(z 1*z 2)*z 3=z 1*(z 2*z 3); ④z 1*z 2=z 2*z 1.则真命题的个数是( ) A .1 B .2 C .3 D .410.B [解析] 根据新定义知,(z 1+z 2)*z 3=(z 1+z 2)z 3=(z 1*z 3)+(z 2*z 3),所以①正确;对于②,z 1*(z 2+z 3)=z 1z 2+z 3=z 1z 2+z 1z 3=(z 1*z 2)+(z 1*z 3),所以正确;对于③,左边=(z 1z 2)*z 3=z 1z 2 z 3;右边=z 1*(z 23)=z 1z 2 z 3=z 1z 2z 3=z 1z 2z 3→,不正确;对于④,可以通过举特殊例子进行判断,z 1=1+i ,z 2=2+i ,左边=z 1*z 2=z 1z 2=(1+i)(2+i)=3+i ,右边=z 2*z 1=z 2z 1=(2+i)(1-i)=3-i ,所以④不正确.11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.12.[2014·广东卷] 从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.12.25 [解析] 所有事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,其中含有字母a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个,所以所求事件的概率是P =410=25.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2) [解析] 本题考查极坐标方程与直角坐标方程的转化以及曲线交点坐标的求解.曲线C 1的直角坐标方程是2x 2=y ,曲线C 2的直角坐标是x =1.联立方程C 1与C 2得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧y =2,x =1,所以交点的直角坐标是(1,2). 15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 [解析] 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE =3.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.17.[2014·广东卷] 某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 18.、[2014·广东卷] 如图1-2所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图1-3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M - CDE 的体积.图1-2 图1-319.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.[2014·广东卷] 已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12.。

2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(5分)(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.(5分)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.(5分)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A .B.2+C .﹣2D.2﹣6.(5分)记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(5分)执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A .B .C .D .9.(5分)设O为坐标原点,直线x=a与双曲线C :﹣=1(a>0,b>0)的两条渐近线分别交于D,E 两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.(5分)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.(5分)已知△ABC 是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A .B .C.1D .12.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。

2012年高考文科数学广东卷(含详细答案)

2012年高考文科数学广东卷(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的体积公式34π3V R =,其中R 为球的半径.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据12,,,n x x x的标准差s = 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数3+4ii= ( )A .43i --B .43i -+C .43i +D .43i - 2. 设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð( )A .{2,4,6}B . {1,3,5}C . {1,2,4}D .U3. 若向量(1,2)AB =,(3,4)BC =,则AC = ( )A .(4,6)B .(4,6)--C .(2,2)--D .(2,2) 4. 下列函数为偶函数的是( )A .sin y x =B .3y x =C .e x y =D.y =5. 已知变量x ,y 满足约束条件1110 x y x y x +⎧⎪-⎨⎪+⎩≤≤≥,则2z x y =+的最小值为( )A .3B .1C .5-D .6-6. 在△ABC 中,若60A ∠=,45B ∠=,BC =,则AC = ( )A. B. CD7. 某几何体的三视图如图1所示,它的体积为 ( )A .72πB .48πC .30πD .24π8. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )A. B. CD .19. 执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为( )A .105B .16C .15D .110. 对任意两个非零的平面向量α和β,定义=αβαβββ. 若两个非零的平面向量a ,b 满足a 与b 的夹角ππ()42θ∈,,且a b 和b a 都在集合{|}2n n ∈Z 中,则=a b( ) A .52B .32C .1D .12二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.函数y =_______. 12.若等比数列{}n a 满足2412a a =,则2135a a a =________.13.由正整数组成的一组数据1x ,2x ,3x ,4x ,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)(二)选做题(14—15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,π02θ≤≤)和1x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3所示,直线PB 与圆O相切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠.若AD m =,AC n =,则AB =_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()cos()46x f x A =+,x ∈R ,且π()3f =. (Ⅰ)求A 的值;(Ⅱ)设π[0,]2αβ,∈,430(4π)317f α+=-,28(4π)35f β-=,求cos()αβ+的值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页) 数学试卷 第5页(共33页) 数学试卷 第6页(共33页)17.(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中a 的值;(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;(Ⅲ)若这100名学生语文成绩某些分数段的人数()x 与数学成绩相应分数段的人数()y 之比如下表所示,求数学成绩在[50,90)之外的人数.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,AB CD ∥,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为PAD △中AD 边上的高. (Ⅰ)证明:PH ⊥平面ABCD ;(Ⅱ)若1PH =,AD 1FC =,求三棱锥E BCF -的体积; (Ⅲ)证明:EF ⊥平面PAB .19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n n T S n =-,*n ∈N . (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.21.(本小题满分14分)设1a <<,集合{|0}A x x =∈>R ,2{|23(1)60}B x x a x a =∈-++>R ,D A B =.(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.3 / 11【答案】A【解析】(1,2)AC AB BC =+=【提示】给出两向量坐标,根据向量加法公式进行计算。

2008高考数学广东卷·文科

2008高考数学广东卷·文科

2008年普通高等学校统一考试(广东卷)数学(文科)一、选择题1、第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A 、AB ⊆ B 、BC ⊆ C 、B C A ⋃=D 、A B C ⋂=2、已知02a <<,复数z a i =+(i 是虚数单位),则||z 的取值范围是( )A 、(1,5)B 、(1,3)C 、(1D 、(13、已知平面向量(1,2)a = ,(2,)b m =-,且a //b ,则23a b + =( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--4、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ) A 、2 B 、3 C 、6 D 、75、已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( ) A 、10x y ++= B 、10x y +-= C 、10x y -+= D 、10x y --=7、将正三棱柱截去三个角(如图1所示A 、B 、C 分别是G H I ∆三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为8、命题“若函数()lo g (0,1)a f x x a a =>≠在其定义域内是减函数,则lo g 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()lo g (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()lo g (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()lo g (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()lo g (0,1)a f x x a a =>≠在其定义域内是减函数 9、设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( ) A 、1a <- B 、1a >- C 、1a e<-D 、1a e>-10、设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A 、0b a -> B 、330a b +> C 、220a b -< D 、0b a +> 二、填空题 (一)必做题11、为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是 。

2014年高考文科数学试题(广东卷)及参考答案

2014年高考文科数学试题(广东卷)及参考答案
A. B. ∥
C. 与 既不垂直也不平行D. 与 的位置关系不确定
10.对任意复数 ,定义 ,其中 是 的共轭复数,对任意复数 ,有如下四个命题:
① ;② ;
③ ;④
则真命题的个数是
A.1 B.2 C.3 D.4
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11~13题)
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,全国统一考试(广东卷)
数学(文科)试题及参考答案
本试卷共4页,21小题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
年龄(岁)工人数(人)
19 1
28 3
29 3
30 5
31 4
32 3
40 1
(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
18.(本小题满分13分)
如图2,四边形 为矩形, 平面 , , .作如图3折叠:折痕 ∥ ,其中点 分别为线段 上,沿 折叠后点 叠在线段 上的点记为 ,并且 .
15.(几何证明选讲选做题)如图1,在平行四边形

广东高考文科数学试卷附答案解析(word)

广东高考文科数学试卷附答案解析(word)

2014年普通高等学校招生全国统一考试(广东卷)(广东教育厅) 数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数地是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题地个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 地各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 地值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f x xf f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄地众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄地茎叶图; (3)求这20名工人年龄地方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2009年广东省高考数学试卷(文科)答案与解析

2009年广东省高考数学试卷(文科)答案与解析

2009年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•广东)已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】先化简集合N,得N={﹣1,0},再看集合M,可发现集合N是M的真子集,对照韦恩(Venn)图即可选出答案.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选B.【点评】本小题主要考查V enn图表达集合的关系及运算、一元二次方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.2.(5分)(2009•广东)下列n的取值中,使i n=1(i是虚数单位)的是()A.n=2 B.n=3 C.n=4 D.n=5【考点】虚数单位i及其性质.【专题】数系的扩充和复数.【分析】要使的虚数单位的n次方等于1,则n只能是4的整数倍,在本题所给的选项中,只有数字4符合题意,得到结果.【解答】解:∵要使i n;=1,则n必须是4的整数倍,在下列的选项中只有C符合题意,故选C【点评】本题考查虚数单位及性质,是一个基础题,题目若出现一定是一个必得分题目,不要忽视对这种简单问题的解答.3.(5分)(2009•广东)已知平面向量=(x,1),=(﹣x,x2),则向量+()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线【考点】平面向量的坐标运算.【专题】平面向量及应用.【分析】先做出两个向量的和,横标和纵标都用含x的代数式表示,结果和的横标为零,得到和向量与纵轴平行,要熟悉几种特殊的向量坐标特点,比如:与横轴平行的向量、与纵轴平行的向量.【解答】解:+=(0,1+x2),1+x2≠0,故+平行于y轴.故选C【点评】本题要求从坐标判断向量的特点,即用到向量的方向又用到向量的大小,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.4.(5分)(2009•广东)若函数y=f(x)是函数y=a x﹣a(a>0,且a≠1)的反函数,且f()=1,则函数y=()A.log2x B.C.D.2x﹣2【考点】反函数.【专题】函数的性质及应用.【分析】由f()=1可得f﹣1(1)=,即a1﹣a =,解出a的值,即得函数y的解析式.【解答】解:∵f()=1,∴f﹣1(1)=,由题意知a1﹣a =,∴a=2,y=a x﹣a(a>0,且a≠1)y=2x﹣2,故选D.【点评】本题考查反函数的定义和反函数的求法,函数与反函数的关系.5.(5分)(2009•广东)已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=() A.B.C.D.2【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】设等比数列的公比为q,根据等比数列的通项公式把a3•a9=2a25化简得到关于q的方程,由此数列的公比为正数求出q的值,然后根据等比数列的性质,由等比q的值和a2=1即可求出a1的值.【解答】解:设公比为q,由已知得a1q2•a1q8=2(a1q4)2,即q2=2,又因为等比数列{a n}的公比为正数,所以q=,故a1=.故选B.【点评】此题考查学生灵活运用等比数列的性质及等比数列的通项公式化简求值,是一道中档题.6.(5分)(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【考点】平面与平面垂直的判定;平面与平面平行的判定.【专题】空间位置关系与距离;简易逻辑.【分析】从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.【解答】解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.【点评】本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.7.(5分)(2009•广东)已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c.若a=c=+,且∠A=75°,则b=()A.2 B.4+2C.4﹣2D.﹣【考点】正弦定理.【专题】解三角形.【分析】先根据三角形内角和求得B的值,进而利用正弦定理和a的值以及sin75°的值,求得b.【解答】解:如图所示.在△ABC中,由正弦定理得:=4,∴b=2.故选A【点评】本题主要考查了正弦定理的应用.正弦定理常用与已知三角形的两角与一边,解三角形;已知三角形的两边和其中一边所对的角,解三角形;运用a:b:c=sinA:sinB:sinC解决角之间的转换关系.8.(5分)(2009•广东)函数f(x)=(x﹣3)e x的单调递增区间是()A.(﹣∞,2) B.(0,3)C.(1,4)D.(2,+∞)【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】若求解函数f(x)的单调递增区间,利用导数研究函数的单调性的性质,对f(x)求导,令f′(x)>0,解出x的取值区间,要考虑f(x)的定义域.【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,求f(x)的单调递增区间,令f′(x)>0,解得x>2,故选D.【点评】本题主要考查利用导数研究函数的单调性的这一性质,值得注意的是,要在定义域内求解单调区间.9.(5分)(2009•广东)函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【考点】三角函数的周期性及其求法;函数奇偶性的判断.【专题】三角函数的图像与性质.【分析】利用二倍角公式化简为一个角的一个三角函数的形式,求出周期,判定奇偶性.【解答】解:由y=2cos2(x﹣)﹣1=cos(2x﹣)=sin2x,∴T=π,且y=sin2x奇函数,即函数y=2cos2(x﹣)﹣1是奇函数.故选A.【点评】本题考查三角函数的周期性及其求法,函数奇偶性的判断,是基础题.10.(5分)(2009•广东)广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A B C D EA 0 5 4 5 6B 5 0 7 6 2C 4 7 0 9 8.6D 5 6 9 0 5E 6 2 8.6 5 0A.20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年广东省高考数学(文科)试题及详细解答一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N I =A .{x|-1≤x <1}B .{x |x>1}C .{x|-1<x <1}D .{x |x ≥-1} 【解析】(1,),(,1)M N =-+∞=-∞,故M N I (1,1)=-,选(C). 2.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b= A .-2 B .12-C. 12D .2 【解析】(1)(2)(2)(21)bi i b b i ++=-++,依题意202b b -=⇒=, 选(D). 3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D .单涮递增的奇函数【解析】函数3()y f x x =-=-单调递减且为奇函数,选(B).4.若向量,a b r r 满足||||1a b ==r r,a r 与b r 的夹角为60︒,则a a a b ⋅+⋅=r r r rA .12 B .32C.312+ D .2【解析】23||||||cos602a a ab a a b ⋅+⋅=+⋅︒=r r r r r r r ,选(B).5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。

下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s 与时间t 之间关系的图象中,正确的是【解析】依题意的关键字眼“以80km /h 的速度匀速行驶l 小时到达丙地”选得答案(C).6.若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是【解析】逐一判除,易得答案(D).7.图l 是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A :、…、A ,。

(如A :表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm ,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A.i<9B.i<8C.i<7D.i<6【解析】身高在160~180cm(含160cm ,不含180cm)的学生人数为4567A A A A +++,算法流程图实质上是求和,不难得到答案(B).8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是【解析】随机取出2个小球得到的结果数有154102⨯⨯=种(提倡列举).取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,故所求答案为(A). 9.已知简谐运动()2sin()(||)32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为【解析】依题意2sin 1ϕ=,结合||2πϕ<可得6πϕ=,易得6T =,故选(A).10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给 A 、 B 、C 、D 四个维修点某种配件各50件.在使用前发现需将 A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件, 但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n)为 A .18 B .17 C .16 D .15 【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,C D →的件数为3x ,D A →的件数为4x ,依题意可得415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-, 画出图像(或绝对值的几何意义)可得最小值为16,故选(C).二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .【解析】设所求抛物线方程为2y ax =,依题意2428a a =⇒=,故所求为28y x =.12.函数f(x)=xlnx(x>0)的单调递增区间是 . 【解析】由()ln 10f x x '=+>可得1x e >,答案:1(,)e+∞. 13.已知数列{an}的前n 项和S n =n 2-9n ,则其通项an= ;若它的第k 项满足5<a k <8,则k= 【解析】{an}等差,易得210n a n =-,解不等式52108k <-<,可得8k =14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 . 【解析】法1:画出极坐标系易得答案2; 法2:化成直角方程3y =及直角坐标3,1)可得答案2.15.(几何证明选讲选做题)如图4所示,圆O 的直径AB=6,C 为圆周上一点,BC=3过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D , 则∠DAC= .【解析】由某定理可知60DCA B ∠=∠=︒,又AD l ⊥, 故30DAC ∠=︒.三、解答题:本大题共6小题,满分80分. 16.(本小题满分14分)已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0).(1)若0AB AC ⋅=u u u r u u u r,求c 的值; (2)若C=5,求sin ∠A 的值.【解析】(1)(3,4),(3,4)AB AC c =--=--u u u r u u u r …………………………………………………………4分 由0AB AC ⋅=u u u r u u u r 可得3(3)160c --+=………………6分, 解得253c =………………8分(2)当5c =时,可得5,5,5AB AC BC ===, ΔABC 为等腰三角形………………………10分过B 作BD AC ⊥交AC 于D ,可求得25BD =12分 故5sin 5BD A AB ==……14分 (其它方法如①利用数量积AB AC ⋅u u u r u u u r求出cos A 进而求sin A ;②余弦定理正弦定理等!)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形. (1)求该儿何体的体积V ; (2)求该几何体的侧面积S【解析】画出直观图并就该图作必要的说明. …………………3分 (2)64V =……………7分 (3)40242S =+12分18(本小题满分12分)F 表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生 产能耗Y(吨标准煤3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,崩最小二乘法求出Y 关于x 的线性回归方程Y=bx+a ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:32.5+43+54+64.5=66.5)【解析】(1)画出散点图. …………………………………………………………………………3分 (2)4166.5i ii x y==∑, 463x y ⋅=, 42186i i x ==∑, 2481x = …………………………………7分由所提供的公式可得0.7b=$$0.35a =,故所求线性回归方程为0.70.35y x =+………10分 (3)100(0.71000.35)29.65-⨯+=吨. ………………………………………………………12分 19(本小题满分14分)在平面直角坐标系xOy 巾,已知圆心在第二象限、半径为22C 与直线y x =相切于坐标原点0.椭圆22219x y a +=与圆c 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 【解析】(1)设圆的方程为2()()8x s y t -+-=………………………2分依题意228s t +=222=0,0s t <>…………5分 解得2,2s t =-=,故所求圆的方程为2(2)(2)8x y ++-=……………………7分(注:此问若结合图形加以分析会大大降低运算量!)(2)由椭圆的第一定义可得2105a a =⇒=,故椭圆方程为221259x y +=,焦点(4,0)F ……9分 设00(,)Q x y ,依题意2200(4)16x y -+=, 2200(2)(2)8x y ++-=…………………11分解得00412,55x y ==或000,0x y ==(舍去) ……………………13分 存在412(,)55Q ……14分已知函数2()1f x x x =+-,,αβ是力程以()0f x =的两个根(α>β),()f x '是()f x 的导数,设11()1,()n n n n f a a a a f a +==-'(1,2,3,)n =L (1)求,αβ的值;(2)已知对任意的正整数n 有n a α>,记lnn n n a b a βα-=-(1,2,3,)n =L ,求数列{}n b 的前n 项和n S .【解析】(1)求根公式得α=β=…………3分 (2)()21f x x '=+………4分 21121n n n a a a ++=+………5分 221,1ααββ=-=-……7分2222112221212ln ln ln ln()2212n n n n n n n n n n n n n n a a a a a a b b a a a a a a ββββββαααααα+++--+--+-=====--+--+-……10分 ∴数列{}n b是首项111lna b a βα-==-,公比为q =2的等比数列………11分∴1(1)14(21)ln12n n n b q S q -==⋅--………………………………………………………14分 21.(本小题满分l4分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围.【解析】若0a =,则()23f x x =-,令3()0[1,1]2f x x =⇒=∉-,不符题意, 故0a ≠………2分 当()f x 在 [-1,1]上有一个零点时,此时48(3)01112a a a ∆=++=⎧⎪⎨-≤-≤⎪⎩或(1)(1)0f f -⋅≤………6分解得32a --=或15a ≤≤ …………………………………………………………………8分 当()f x 在[-1,1]上有两个零点时,则48(3)01112(1)(1)0a a a f f ∆=++>⎧⎪⎪-≤-≤⎨⎪-⋅>⎪⎩………………………………10分解得112215a a a a a a ⎧<<⎪⎪⎪≤-≥⎨⎪<>⎪⎪⎩或或即311522a a a -<≤<>或………………12分 综上,实数a的取值范围为31(,[,)22--∞+∞U . ……………………………………14分 (别解:222230(21)32ax x a x a x +--=⇔-=-,题意转化为知[1,1]x ∈-求23221x a x -=-的值域,令32[1,5]t x =-∈得276a t t=+-转化为勾函数问题.)。

相关文档
最新文档