函数

合集下载

所有函数的公式大全

所有函数的公式大全

所有函数的公式大全1.一次函数(线性函数):y = mx + b,其中m是直线的斜率,b是直线的截距。

2.二次函数:y = ax^2 + bx + c,其中a、b、c是常数,a ≠ 0。

3.三次函数:y = ax^3 + bx^2 + cx + d,其中a、b、c、d是常数,a ≠ 0。

4.对数函数(自然对数函数):y = ln(x),其中ln表示以e为底的对数函数。

5.指数函数:y=a^x,其中a是正实数,且a≠16.正弦函数:y = sin(x),其中x是弧度,sin表示正弦函数。

7.余弦函数:y = cos(x),其中x是弧度,cos表示余弦函数。

8.正切函数:y = tan(x),其中x是弧度,tan表示正切函数。

9.线性绝对值函数:y = ,ax + b,其中a、b是常数,a ≠ 0。

10. 单位阶跃函数(Heaviside函数):H(x)={0,x<0{1,x≥011.分段定义函数:f(x)={x,x<a{x^2,a≤x<b{x^3,x≥b12.幂函数:y=x^a,其中a是实数,且a≠0。

13.双曲正弦函数:y = sinh(x),其中x是弧度,sinh表示双曲正弦函数。

14.双曲余弦函数:y = cosh(x),其中x是弧度,cosh表示双曲余弦函数。

15.阶乘函数:n!=n(n-1)(n-2)...3×2×1,其中n是正整数。

16.伽玛函数:Γ(x) = ∫[0,∞] (t^(x-1))(e^(-t))dt,其中x是实数,Γ表示伽玛函数。

17.斯特林公式:n!≈√(2πn)(n/e)^n,当n趋近于正无穷时。

18.贝塞尔函数:Jₙ(x)=Σ[((-1)^k)(x^(n+2k))/(2^(2k+n)(k!)((k+n)!))],其中n是整数,Jₙ(x)表示贝塞尔函数。

19.超几何函数:F(a,b;c;z)=∑[((a)_n*(b)_n)/(c)_n*(n!)]*(z^n)/n!,其中F表示超几何函数。

函数知识点总结

函数知识点总结

函数知识点总结函数是数学中一个非常重要的概念,它在数学的各个领域以及实际生活中都有着广泛的应用。

为了更好地理解和掌握函数,下面对函数的相关知识点进行总结。

一、函数的定义函数是一种特殊的对应关系,给定一个非空数集 A,对 A 中的任意一个数 x,按照某种确定的对应关系 f,在另一个非空数集 B 中都有唯一确定的数 y 与之对应,就称 f 是集合 A 到集合 B 的一个函数。

记作y = f(x),x ∈ A。

其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;y 叫做函数值,与 x 相对应的 y 的值叫做函数值,函数值的集合{f(x) | x ∈A}叫做函数的值域。

二、函数的表示方法1、解析法用数学表达式表示两个变量之间的对应关系,如 y = 2x + 1。

2、列表法列出表格来表示两个变量之间的对应关系,例如,某公司员工的工资表。

3、图象法用图象表示两个变量之间的对应关系,如一次函数 y = x + 1 的图象是一条直线。

三、函数的性质1、单调性函数的单调性是指函数在定义域内的某个区间上,当自变量增大(或减小)时,函数值随之增大(或减小)的性质。

如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

2、奇偶性设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做偶函数。

3、周期性对于函数 y = f(x),如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。

excel必备50个常用函数

excel必备50个常用函数

excel必备50个常用函数1.ABS函数:返回一个数字的绝对值。

2.AVERAGE函数:返回一组数据的平均值。

3.COUNT函数:计算一组非空单元格中的数量。

4.MAX函数:返回一组数据中最大值。

5.MIN函数:返回一组数据中最小值。

6.ROUND函数:将一个数字舍入到指定的位数。

7.SUM函数:返回一组数字的总和。

8.IF函数:如果指定的条件为真,则返回一个值;如果不为真,则返回另一个值。

9.AND函数:检查多个条件是否都为真。

10.OR函数:检查多个条件中是否至少有一个为真。

11.NOT函数:将结果反转为相反的逻辑值。

12.VLOOKUP函数:在表格或数据库中搜索数据,并返回该数据所在行的其他数据。

13.HLOOKUP函数:在表格或数据库中搜索数据,并返回该数据所在列的其他数据。

14.INDEX函数:在一组数据中搜索特定的数据。

15.MATCH 函数:在一组数据中搜索特定的数据,并返回所在位置的索引值。

16.OFFSET函数:从指定的位置开始,返回指定范围内的单元格或数据。

17.CHOOSE函数:根据索引值,从一组值中返回一个值。

18.NOW函数:返回当前日期和时间。

19.TODAY函数:返回当前日期。

20.DATEVALUE函数:将文本字符串转换为Excel内部日期值。

21.TIMEVALUE函数:将文本字符串转换为Excel内部时间值。

22.YEAR函数:返回日期字符串中的年份。

23.MONTH 函数:返回日期字符串中的月份。

24.DAY函数:返回日期字符串中的日期。

25.HOUR函数:返回时间字符串中的小时数。

26.MINUTE函数:返回时间字符串中的分钟数。

27.SECOND函数:返回时间字符串中的秒数。

28.EDATE函数:使用给定的起始日期,计算指定月数之后的日期。

29.EOMONTH函数:使用给定的起始日期,计算指定月数之后的月末日期。

WORKDAYS函数:计算两个日期之间的工作日数。

高中函数定义

高中函数定义

高中函数定义函数是数学中的基本概念,也是高中数学中的重要内容之一。

在高中数学中,函数被广泛应用于各个领域,如代数、几何、概率等。

高中函数定义是指高中数学课程中教授的函数的概念及其相关性质和应用的内容。

一、函数的基本概念函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素上。

函数通常用字母表示,比如f(x)。

其中,x称为自变量,f(x)称为因变量。

函数的定义域是自变量的取值范围,值域是函数的所有可能取值。

函数可以用多种形式表示,如函数表达式、图像、数据集等。

二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的基本性质。

定义域的确定需要考虑函数的合理性和可行性,值域的确定要依据函数的定义和性质。

2. 单调性:函数的单调性是指函数在定义域内的增减关系。

可以分为单调递增和单调递减两种情况。

3. 奇偶性:函数的奇偶性是指函数在定义域内的对称性。

奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

4. 周期性:周期函数是指函数在一定范围内具有重复的性质。

周期函数可以通过周期和函数值的关系来确定。

5. 对称轴:对称轴是指函数图像的对称轴线。

对称轴可以通过函数表达式的形式来确定。

三、函数的应用函数在高中数学中有广泛的应用。

以下是一些常见的应用情况:1. 函数的图像:通过函数的图像可以对函数的性质进行分析和判断。

函数的图像可以通过手绘、数学软件或图形计算器等工具得到。

2. 函数的最值:函数的最值是函数在定义域内的最大值和最小值。

最值可以通过函数的图像或数学方法进行求解。

3. 函数的方程:函数的方程是指由函数的定义和性质推导出的方程。

函数的方程可以用于解决实际问题,如求解方程组、求解最值等。

4. 函数的导数:函数的导数是函数变化率的一种表示。

导数可以用于求解函数的极值、判断函数的单调性等问题。

5. 函数的积分:函数的积分是函数的反导数。

积分可以用于计算函数的面积、求解曲线长度等问题。

函数通俗解释

函数通俗解释

函数是数学中的一个基本概念,它描述了一种特定的关系,通常用来表示输入和输出之间的对应关系。

以通俗的方式解释,函数就像一个魔法盒子,它接受一些输入(或者叫做自变量)并根据一些规则或指令进行处理,然后产生一个输出(或者叫做因变量)。

以下是一个更详细的通俗解释:
1. 输入:函数接受一个或多个输入值,这些值可以是任何东西,比如数字、字母、符号等等。

这些输入值通常被称为函数的自变量。

2. 处理规则:函数内部包含一组规则或操作,它们定义了如何将输入值转换或处理成输出值。

这些规则可以是数学公式、算法、条件语句等等,它们告诉函数如何执行计算。

3. 输出:根据输入值和处理规则,函数生成一个输出值,这个值通常是函数的结果。

这个输出值也可以是数字、字母、符号等等,取决于函数的性质和目的。

举例来说,考虑一个简单的函数:加倍函数。

这个函数的规则是将输入的数字乘以2。

如果你将数字5输入这个函数,它会按照规则执行计算,然后输出10。

所以,加倍函数就是一个简单的数学函数,它将输入映射到输出。

函数在数学和科学中有广泛的应用,它们可以用来描述各种现象和关系,从简单的数学运算到复杂的物理定律和工程问题都可以用函数来表示。

函数是解决问题和理解世界的重要工具之一。

函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

大一高数之函数

大一高数之函数

……
……
t 年后人口为p=9.6259×(1+12‰) t

p 9.6259 1.012t
到2005年底,即27年后, 我国人口为 p 9.6259 1.012 .
27
两边取常用对数, lg p lg 9.6259 27 lg1.012 4.9835 27 0.0051 5.1212, 查反对数表, p 13.22(亿).
即根据1978年的数据,可推算出2005年底 我国人口为13.22亿.
人口模型 : 设某地某年人口为p0,人口自然 增长率为r,那么t 年后的人口p为 p p0 (1 r ) .
t
马尔萨斯(malthus,英,1776 — 1834) 根据上述模型提出了他的人口理论,这一模 型只适用于生物种群的生存环境较为优雅宽 松的情况.当生物种群数量增长到一定值时, 恶化的生态环境将抑制种群数量的增长,进 而出现负增长,此时马尔萨斯人口模型就不 适用了.
A1 A(1 r )t ;
r 若每期结算m次,则每次利率为 , m t期内共结算mt次,t期后的本利和为
r mt Am A(1 ) . m 如果,即按照每个瞬间“即存即算” 来计算本利和,则归结为求极限
r mt lim A(1 ) m m
这个求极限问题将在第二章的应用中 介绍.
y cos x
正切函数
y tan x
π π 定义域 : ( kπ , kπ ), k Z; 值域( , ), 2 2 π π 以π 为周期, 在每个开区间( kπ , kπ )上 2 2 递增.
余切函数
y cot x
定义域 : kπ ,( k 1)π ), k Z;值域( , ), ( 以π 为周期, 在每个开区间( π ,( k 1)π ) k 上 递减.

函数的知识点归纳总结

函数的知识点归纳总结

函数的知识点归纳总结1. 函数的定义和调用- 函数是一段完成特定任务的代码块,可以重复使用。

- 函数的定义一般包括函数名、参数列表和函数体。

- 调用函数时,需要使用函数名和传入参数的值。

2. 函数的参数- 函数可以接收输入参数,用于在函数内部进行操作。

- 参数可以分为位置参数和关键字参数。

- 可以定义默认参数值,使得参数在调用时变得可选。

3. 函数的返回值- 函数可以返回一个值,用于向调用者传递结果。

- 可以返回多个值,以元组的形式返回。

4. 函数的作用域- 函数内部的变量和函数外部的变量是独立的。

- 函数可以访问外部变量,但是不能修改其值,除非使用`global`关键字。

5. 匿名函数- 匿名函数是一种简单的函数,不需要使用`def`关键字来定义。

- 使用`lambda`关键字来创建匿名函数。

6. 递归函数- 递归函数是一种调用自身的函数。

- 递归函数可以解决一些数学和计算问题。

7. 高阶函数- 高阶函数可以接收函数作为参数或者返回一个函数。

- 可以用于实现函数式编程的一些特性,比如map、filter和reduce。

8. 内置函数- 编程语言提供了一些内置函数,用于完成一些常见的操作。

- 例如,Python中的`print`、`len`、`range`等函数。

9. 函数的重载- 有些编程语言支持函数的重载,允许定义多个同名函数。

- 函数的重载可以根据参数的类型和个数来决定调用哪个函数。

10. 闭包- 闭包是一个函数和其环境变量的组合。

- 闭包可以保存函数的状态,使得函数可以记住之前的操作。

11. 装饰器- 装饰器是一种特殊的函数,用于修改其他函数的行为。

- 可以用于添加日志、认证、性能测试等功能。

12. 函数式编程- 函数式编程是一种编程范式,将计算视为数学函数的求值。

- 函数式编程强调函数的纯度和不可变性。

13. 函数的异常处理- 函数中可能会发生异常,需要使用异常处理机制来应对。

- 可以使用`try`、`except`、`finally`关键字来处理异常。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学与三角函数》SUMXMY2贡献者:zuazua日期:2010-11-18 阅读:3196相关标签:et2010> 公式> 函数> SUMXMY2计算两数组中对应数值之差的平方和。

语法SUMXMY2 (array_x, array_y)Array_x 第一个数组或数值区域。

Array_y 第二个数组或数值区域。

说明参数可以是数值、数组、名称、或者是数组的引用。

若数组或引用参数包含文本、逻辑值以及空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。

若 array_x 和 array_y 的元素数目不同,则 SUMXMY2 将返回错误值 #N/A。

平方和之和的计算公式如下:示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1第一个数组第二个数组25936041 25公式说明(结果)6=SUMXMY2({5,6,1},{9,0,2})上面两数组常量的平方差之和 (53)7 =SUMXMY2(A2:A4,B2:B4)上面两数组的平方差之和 (53)SUMX2MY2贡献者:zuazua日期:2010-11-18 阅读:1530计算两数组中对应数值的平方差之和。

语法SUMX2MY2 (array_x, array_y)Array_x 第一个数组或数值区域。

Array_y 第二个数组或数值区域。

说明参数可以是数值、数组、名称、或者是数组的引用。

若数组或引用参数包含文本、逻辑值以及空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。

若 array_x 和 array_y 的元素数目不同,则 SUMX2MY2 将返回错误值 #N/A。

平方差之和的计算公式如下:示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1第一个数组第二个数组2593604125公式说明(结果)6=SUMX2MY2({5,6,1},{9,0,2})上面两数组常量的平方差之和 (-23)7 =SUMX2MY2(A2:A4,B2:B4)上面两数组的平方差之和 (-23)SERIESSUM贡献者:zuazua日期:2010-11-18 阅读:1711相关标签:et2010> 公式> 函数> SERIESSUM许多函数可由幂级数展开式近似地得到。

SERIESSUM返回基于以下公式的幂级数之和:语法SERIESSUM (x, n, m, coefficients)X 幂级数的输入值。

N x 的首项乘幂。

果 coefficients 中有三个值,则幂级数中将有三项。

说明如果任一参数为非数值型,函数 SERIESSUM 返回错误值 #VALUE!。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A1coefficients2=PI()/4314=-1/FACT(2)5=1/FACT(4)6=-1/FACT(6)7公式说明(结果)8=SERIESSUM(A2,0,2,A3:A6)pi/4 弧度或 45 度的余弦值的近似值 (0.707103)SIN贡献者:zuazua日期:2010-11-18 阅读:7124相关标签:et2010> 公式> 函数> SIN返回给定角度的正弦值。

语法SIN(number)Number 为需要求正弦的角度,以弧度表示。

说明如果参数的单位是度,则可以乘以PI()/180 或使用RADIANS 函数将其转换为弧度。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1公式说明(结果)2 =SIN(PI()) pi 弧度的正弦值(0,近似)3 =SIN(PI()/2) pi/2 弧度的正弦值(1)4 =SIN(30*PI()/180) 30 度的正弦值(0.5)5 =SIN(RADIANS(30)) 30 度的正弦值(0.5)SUMX2PY2贡献者:zuazua日期:2010-11-18 阅读:1390相关标签:et2010> 公式> 函数> SUMX2PY2SUMX2PY2计算两数组中对应数值的平方和之和。

语法SUMX2PY2 (array_x, array_y)Array_x 第一个数组或数值区域。

Array_y 第二个数组或数值区域。

说明参数可以是数值、数组、名称、或者是数组的引用。

若数组或引用参数包含文本、逻辑值以及空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。

若 array_x 和 array_y 的元素数目不同,则 SUMX2PY2 将返回错误值 #N/A。

平方和之和的计算公式如下:示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1第一个数组第二个数组25936041 25公式说明(结果)6=SUMX2PY2({5,6,1},{9,0,2})上面两数组常量的平方和之和 (147)7 =SUMX2PY2(A2:A4,B2:B4)上面两数组的平方和之和 (147)MROUND贡献者:zuazua日期:2010-11-18 阅读:1781相关标签:et2010> 公式> 函数> MROUND返回参数按指定基数舍入后的数值。

语法MROUND (number, multiple)Number 要进行四舍五入的值。

Multiple 要将数值number 进行四舍五入的基数。

说明如果数值 number 除以基数的余数大于或等于基数的一半,则函数 MROUND 向远离零的方向舍入。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1公式说明(结果)2=MROUND(8,5)将 8 四舍五入到最接近基数 5 的倍数 (10)3=MROUND(-8,-2)将 -8 四舍五入到最接近基数 -2 的倍数 (-8)5=MROUND(4.7,0.5)将 4.7 四舍五入到最接近基数 0.5 的倍数 (4.5)6=MROUND(8,-4)返回错误值,因为 8 和 -4 的符号不同 (#NUM!)MMULT贡献者:zuazua日期:2010-11-18 阅读:4125相关标签:et2010> 公式> 函数> MMULT返回两个数组的矩阵乘积。

结果矩阵的行数与 array1 的行数相同,矩阵的列数与 array2 的列数相同。

语法MMULT (array1, array2)array1, array2 要进行矩阵乘法运算的两个数组。

array1 的列数必须与 array2 的行数相同,而且两个数组中都只能包含数值。

对于返回结果为数组的公式,必须以数组公式的形式输入。

在以下情况下,MMULT 返回错误值 #VALUE!:1、任意单元格为空或包含文字。

2、array1 的列数与 array2 的行数不相等。

3、结果数组的容量等于或大于总计5,461 个单元格。

两个数组 b 和 c 的矩阵乘积 a 为:其中 i 为行数,j 为列数。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1array1array12323604array2array25966047公式8=MMULT(A2:B3,A5:B6)注意:示例中的公式必须以数组公式输入。

将示例复制到空白工作表后,请选择以公式单元格开始的数据区域 A8:B9。

按 F2,再按 Ctrl+Shift+Enter。

结果为:A B8272695436如果公式不以数组公式的形式输入,则结果为单个结果值 27。

MDETERM函数贡献者:beckhamhehe日期:2008-12-03 阅读:7351相关标签:et2007> 公式> 函数> 函数类型> 数学与三角函数> MDETERM返回一个数组的矩阵行列式的值。

语法MDETERM(array)Array 行数和列数相等的数值数组。

说明•Array 可以是单元格区域,例如A2:C4;或是一个数组常量,如{1,2,3;4,5,6;7,8,9};或是区域或数组常量的名称。

•如果Array 中单元格是非数值类型,则函数MDETERM 返回错误值#VALUE!。

•如果Array 的行和列的数目不相等,则函数MDETERM 也返回错误值#VALUE!。

示例如果您将示例复制到空白工作表中,可能会更易于理解该示例。

A B C D1数据数据数据数据2 2 5 5 63 3 3 5 74 4 0 6 05 5 2 2 9公式说明(结果)=MDETERM(A2: D5) 上面矩阵的行列式值(336)=MDETERM({9,12,2;2,2,0;6,2数组常量的矩阵行列式值(32)0,4})=MDETERM({9,18;3,3}) 数组常量的矩阵行列式值(-27)=MDETERM({1,3,5,7;9,11,13,因为数组中行和列的数目不相等,所以返回错误值(#VALUE!) 15})ATANH贡献者:zuazua日期:2010-11-18 阅读:1437返回参数的反双曲正切值,参数必须介于 -1 到 1 之间(除去 -1 和 1)。

反双曲正切值的双曲正切即为该函数的 number 参数值,因此 ATANH(TANH(number)) 等于 number。

语法ATANH(number)Number -1 到 1 之间的任意实数。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1公式说明(结果)2=ATANH(0.6492801)0.6492801的反双曲正切值(0.774053135)3=ATANH(-0.9)-0.9的反双曲正切值 (-1.47221949)ASINH贡献者:zuazua日期:2010-11-18 阅读:1218相关标签:et2010> 公式> 函数> ASINH返回参数的反双曲正弦值。

反双曲正弦值的双曲正弦即等于此函数的number 参数值,因此ASINH(SINH(number)) 等于 number 参数值。

语法ASINH(number)Number任意实数。

示例如果将示例复制到空白工作表中,可能会更易于理解该示例。

A B1公式说明(结果)2=ASINH(3) 3 的反双曲正弦值 (1.818446459)3=ASINH(-1.7)-1.7 的反双曲正弦值 (-1.300820427)贡献者:zuazua日期:2010-11-18 阅读:1673相关标签:et2010> 公式> 函数> ACOSH返回 number 参数的反双曲余弦值。

参数必须大于或等于 1。

反双曲余弦值的双曲余弦即为 number,因此ACOSH(COSH(number)) 等于 number。

语法ACOSH(number)Number大于等于 1 的任意实数。

相关文档
最新文档