高中数学人教B版必修3:课时跟踪检测(一) 算法的概念 Word版含解析
高中数学人教B版必修三课时作业第一章 1.1.1算法的概念 Word版含解析

第一章算法的概念级基础巩固一、选择题.下列语句中是算法的是)( ).解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为.吃饭.做饭.写作业[解析]选项是解一元一次方程的具体步骤,故它是算法,而、、是说的三个事实,不是算法..计算下列各式中的值,能设计算法求解的是)( )①=+++…+;②=+++…++…;③=+++…+(≥,且∈)..①③.①②.②③.②[解析]由算法的确定性、有限性知选..早上从起床到出门需要洗脸、刷牙( ),刷水壶( ),烧水( ),泡面( ),吃饭( ),听广播( )几个过程,下列选项中最好的一种算法是)( ).第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播.第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析]因为选项共用时,选项共有时,选项共用时,选项的算法步骤不符合常理,所以最好的一种算法为选项..对于一般的二元一次方程组(\\(+=+=)),在写求此方程组解的算法时,需要我们注意的是)( ).≠.≠.-≠.-≠[解析]由二元一次方程组的公式算法即知正确..下面是对高斯消去法的理解:①它是解方程的一种方法;②它只能用来解二元一次方程组;③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确.其中正确的是)( ).②④.①②.①③.②③[解析]高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确..一个算法步骤如下:取值,取值;如果≤,则执行,否则执行;计算+并将结果代替;用+的值代替;转去执行;输出.运行以上步骤输出的结果为)( )....[解析]按算法步骤一步一步地循环计算替换,该算法作用为求和=++++=.二、填空题.已知直角三角形两条直角边长分别为、,求斜边长的算法如下:)输入两直角边长、的值.计算=的值;.将算法补充完整,横线处应填.输出斜边长的值[解析]算法要有输出,故应为输出的值..一个算法步骤如下:)取值,取值;如果≤,则执行,否则执行;计算+并将结果代替;用+的值代替;。
人教B版2019年高中数学必修3:课时跟踪检测(一) 算法的概念_含解析

课时跟踪检测(一) 算法的概念1.下列对算法的理解不正确的是( )A .算法只能用自然语言来描述B .算法可以用图形方式来描述C .算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问题D .设计算法要本着简单、方便、可操作的原则解析:选A 由算法的概念和描述方式知,A 不正确.2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写解此方程组的算法时需要我们注意的是( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0解析:选C 应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y 的系数化为相同即b 1b 2,此时x 的系数分别为a 1b 2和a 2b 1两式相减得(a 1b 2-a 2b 1)x =c 1b 2-c 2b 1,要得出x 的值,则需注意a 1b 2-a 2b 1≠0.3.阅读下面的算法:S1 输入两个实数a ,b .S2 若a <b ,则交换a ,b 的值,否则执行第三步.S3 输出a .这个算法输出的是( )A .a ,b 中的较大数B .a ,b 中的较小数C .原来的a 的值D .原来的b 的值解析:选A 第二步中,若a <b ,则交换a ,b 的值,那么a 是a ,b 中的较大数;若a <b 不成立,即a ≥b ,那么a 也是a ,b 中的较大数.4.对于算法:S1 输入n .S2 判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行S3.S3 依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行S4;若能整除n ,则执行S1.S4 输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数解析:选A 从题目的条件可以看出,输出的n 没有约数,因此是质数.5.给出算法步骤如下:S1 输入x 的值;S2 当x <0时,计算y =x +1,否则执行S3;S3 计算y =-x 2;S4 输出y .当输入x 的值为-2,3时,输出y 的结果分别是______.解析:由算法步骤可知,其算法功能是已知函数y =⎩⎪⎨⎪⎧x +1,x <0,-x 2,x ≥0,当输入x 的值时,求对应的y 值.因为-2<0,所以对应函数解析式为y =x +1,因此y =-2+1=-1;当x =3时,则对应函数解析式为y =-x 2,因此y =-32=-9.答案:-1,-96.使用配方法解方程x 2-4x +3=0的算法的步骤是________(填序号).①配方得(x -2)2=1;②移项得x 2-4x =-3;③解得x =1或x =3;④开方得x -2=±1.解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行.答案:②①④③7.已知直角三角形两条直角边长分别为a ,b (a >b ),写出求两直角边所对的最大角θ的余弦值的算法如下:S1 输入两直角边长a ,b 的值;S2 计算c =a 2+b 2的值;S3 ________________________;S4 输出cos θ.将算法补充完整,横线处应填________________.解析:根据题意知,直角三角形两直角边a ,b (a >b )所对最大角θ的余弦值为b c,所以应填“计算cos θ=b c 的值”.答案:计算cos θ=b c 的值8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费.解:设某户有x 人,根据题意,应收取的卫生费y 是x 的分段函数,即y =⎩⎪⎨⎪⎧5, x ≤3,1.2x +1.4,x >3. 算法如下:S1 输入人数x .S2 如果x ≤3,则y =5;如果x >3,则y =1.2x +1.4.S3 输出应收卫生费y .9.已知直线l 1:3x -y +12=0和直线l 2:3x +2y -6=0,求直线l 1与l 2及y 轴所围成的三角形面积,写出解决本题的一个算法.解:S1 解方程组⎩⎪⎨⎪⎧3x -y +12=0,3x +2y -6=0,得直线l 1,l 2的交点P (-2,6). S2 在方程3x -y +12=0中令x =0,得y =12,从而得到A (0,12).S3 在方程3x +2y -6=0中令x =0,得y =3,得到B (0,3);S4 求出△ABP 的底边长|AB |=12-3=9;S5 求出△ABP 的底边AB 上的高h =2;S6 根据三角形的面积公式计算S =12|AB |·h =12×9×2=9.。
2019-2020学年人教B版数学必修3课时跟踪检测:必修3 综合测评 Word版含解析

姓名,年级:时间:必修3 综合测评(时间:120分钟满分:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的450名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.Ⅰ.简单随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是( )A.①配Ⅰ,②配ⅡB.①配Ⅱ,②配ⅠC.①配Ⅰ,②配ⅠD.①配Ⅱ,②配Ⅱ答案:B2.在区间[-2,3]上随机选取一个数x,则x≤1的概率为( )A.错误!B.错误!C.错误!D.错误!解析:P=错误!=错误!,故选B.答案:B3.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数解析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.答案:B4.(2017·天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为( )A.0 B.1C.2 D.3解析:第一次循环:N=19-1=18;第二次循环:N=6;第三次循环:N=2,此时2〈3,跳出循环,故输出的值N=2.答案:C5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形面积和的错误!,且样本容量为140,则中间一组的频数为( )A.28 B.40C.56 D.60解析:设中间一个长方形的面积为x,则其他8个小长方形面积之和为错误!x,则x+错误!x =1,所以x=错误!,所以中间一组的频数为错误!×140=40,故选B.答案:B6.下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.错误!B.错误!C.错误!D.错误!解析:∵x甲=错误!=90,错误!乙=错误!=错误!,欲使甲的平均成绩超过乙的平均成绩,x的值为0,1,2,3,4,5,6,7,其概率P=错误!=错误!。
新高中人教B版数学必修三同步练习:1.1.1 算法的概念(含答案解析)

1.1.1 算法的概念1.算法可以理解为由基本运算及规定的________所构成的完整的解题步骤,或者看成按照要求设计好的________________计算序列,并且这样的步骤或序列能够解决________问题.2.求解某个问题的算法不一定是惟一的.3.算法的要求(1)写出的算法,必须能解决________问题,并且____重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须________,不能含混不清,而且经过________步后能得出结果.一、选择题1.下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米2.下列对算法的理解不正确的是( )A .算法有一个共同特点就是对一类问题都有效(而不是个别问题)B .算法要求是一步步执行,每一步都能得到唯一的结果C .算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法D .任何问题都可以用算法来解决3.下列关于算法的描述正确的是( )A .算法与求解一个问题的方法相同B .算法只能解决一个问题,不能重复使用C .算法过程要一步一步执行,每步执行的操作必须确切D .有的算法执行完后,可能无结果4.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+…③S =12+14+18+…+12n (n≥1且n ∈N +) A .①② B .①③ C .②③ D .①②③5.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法6.对于算法:第一步,输入n.第二步,判断n 是否等于2,若n =2,则n 满足条件;若n>2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n.满足条件的n 是( )A .质数B .奇数C .偶数D .约数二、填空题7.已知直角三角形两条直角边长分别为a ,b.写出求斜边长c 的算法如下: 第一步,输入两直角边长a ,b 的值.第二步,计算c =a 2+b 2的值.第三步,________________.将算法补充完整,横线处应填____________.8.下面给出了解决问题的算法:第一步:输入x.第二步:若x≤1,则y =2x -1,否则y =x 2+3.第三步:输出y.(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.9.求1×3×5×7×9×11的值的一个算法是:第一步,求1×3得到结果3;第二步,将第一步所得结果3乘5,得到结果15;第三步,____________________;第四步,再将105乘9得到945;第五步,再将945乘11,得到10 395,即为最后结果.三、解答题10.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.11.函数y =⎩⎪⎨⎪⎧ -x +1 x>0 0 x=0 x +1 x<0,写出给定自变量x ,求函数值的算法.能力提升12.某铁路部门规定甲、乙两地之间旅客托运行李的费用为:c =⎩⎪⎨⎪⎧0.53×ω, ω≤50,50×0.53+ ω-50 ×0.85, ω>50. 其中ω(单位:kg)为行李的质量,如何设计计算托运费用c(单位:元)的算法.13.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:(1)有三根杆子A ,B ,C ,A 杆上有三个碟子(大小不等,自上到下,由小到大),如图.(2)每次移动一个碟子,小的只能叠在大的上面.(3)把所有碟子从A 杆移到C 杆上.试设计一个算法,完成上述游戏.1.算法的特点(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且能得到确定的结果,而不应当是模棱两可的.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.2.算法与数学问题解法的区别与联系(1)联系算法与解法是一般与特殊的关系,也是抽象与具体的关系.(2)区别算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.答案知识梳理1.运算顺序 有限的确切的 一类 3.(1)一类 能 (2)确切 有限作业设计1.B [算法是解决一类问题的程序或步骤,A 、C 、D 均不符合.]2.D3.C [算法与求解一个问题的方法既有区别又有联系,故A 不对;算法能重复使用,故B 不对;每个算法执行后必须有结果,故D 不对;由算法的要求可知C 正确.]4.B [因为算法的步骤是有限的,所以②不能设计算法求解.]5.B [算法具有不唯一性,对于一个问题,我们可以设计不同的算法.]6.A [此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.]7.输出斜边长c 的值8.(1)求分段函数y =⎩⎪⎨⎪⎧2x -1 x≤1 ,x 2+3 x>1 的函数值 (2)1 9.将第二步所得的结果15乘7,得结果10510.解 第一步,输入梯形的底边长a 和b ,以及高h.第二步,计算a +b 的值.第三步,计算(a +b)×h 的值.第四步,计算S = a +b ×h 2的值. 第五步,输出结果S.11.解 算法如下:第一步,输入x.第二步,若x>0,则令y =-x +1后执行第五步,否则执行第三步.第三步,若x =0,则令y =0后执行第五步,否则执行第四步.第四步,令y =x +1;第五步,输出y 的值.12.解 第一步,输入行李的质量ω.第二步,如果ω≤50,则令c =0.53×ω,否则执行第三步.第三步,c =50×0.53+(ω-50)×0.85.第四步,输出托运费c.13.解 第一步,将A 杆最上面碟子移到C 杆.第二步,将A 杆最上面碟子移到B 杆.第三步,将C杆上的碟子移到B杆.第四步,将A杆上的碟子移到C杆.第五步,将B杆最上面碟子移到A杆.第六步,将B杆上的碟子移到C杆.第七步,将A杆上的碟子移到C杆.。
高中数学人教B版必修3学案1.1.1 算法的概念 Word版含解析

算法与程序框图
算法的概念
.通过回顾解二元一次方程组的方法,了解算法的思想.(重点)
.了解算法的含义和特征.(难点)
.会用自然语言表述简单的算法.(易错易混点
)
[基础·初探]
教材整理 算法的概念
阅读教材~,完成下列问题.
判断(正确的打“√”,错误的打“×”)
()一个算法可解决某一类问题.( )
()算法的步骤是有限的,有些步骤可有可无.( )
()同一个问题可以有不同的算法.( )
【解析】()√ 根据算法的概念可知.
()× 算法的步骤是有限的,也是明确的,不能可有可无.
()√例如二元一次方程组的算法,可用“加减消元法”,也可用“代入消元法”.
【答案】()√()×()√
教材整理算法的要求
阅读教材“例”以上部分,完成下列问题.
.写出的算法,必须能解决一类问题并且能重复使用.
.算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.
下列可以看成算法的是( )
.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题
.今天餐厅的饭真好吃
.这道数学题很难做
.方程-+=无实数根
【解析】是学习数学的一个步骤,所以是算法.
【答案】
[质疑·手记]
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问:
解惑:
疑问:
解惑:
疑问:
解惑:
[小组合作型]。
2019-2020学年人教B版数学必修3课时跟踪检测:第3章 3.4概率的应用 Word版含解析

第一章 算法初步 3.4 概率的应用课时跟踪检测[A 组 基础过关]1.从4名选手甲、乙、丙、丁中选取2人组队参加奥林匹克竞赛,其中甲被选中的概率为( )A .13B .12C .23D .35解析:这个试验的基本事件空间Ω={(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)},其中甲被选中包含3个基本事件,故甲被选中的概率为12.故选B .答案:B2.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( ) A .34B .23C .13D .14解析:由-1≤log 12⎝⎛⎭⎫x +12≤1,得12≤x +12≤2,∴0≤x ≤32,∴所求事件的概率P =322=34. 答案:A3.孟德尔豌豆试验中,用纯黄色圆粒和纯绿色皱粒作杂交,(已知黄色对绿色为显性,圆粒对皱粒为显性)则子二代结果的性状为黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒的比例约为( )A .1∶1∶1∶1B .1∶3∶3∶1C .9∶3∶3∶1D .1∶3∶3∶9解析:纯黄色圆粒为XXYY ,纯绿色皱粒为xxyy ,则豌豆杂交试验的子二代结果为XY Xy xY xy XY XXYY XXYy XxYY XxYy Xy XXYy XXyy XxYy Xxyy xYXxYYXxYyxxYYxxYy答案:C4.调查运动员服用兴奋剂的时候,应用Warner 随机化方法调查400名运动员,得到106个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的( )A .3.33%B .53%C .3%D .26%解析:应用Warner 随机化方法调查400名运动员,我们期望有200人回答了第一个问题,而在这200人中又有大约一半的人即100人回答了“是”.其余6个回答“是”的人服用过兴奋剂,由此估计这群人中服用过兴奋剂的大约占6200≈3%,故选C .答案:C5.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,…,6},若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为( )A .19B .29C .718D .49解析:甲、乙两人各猜一个数字,共有36种不同的情形,其中他们“心有灵犀”的情形有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6)共16种,∴所求事件的概率P =1636=49.答案:D6.一只转盘,均匀地标有1~12共12个数,转动指针,指针指向偶数的概率是________. 解析:12个数排列均匀,每次转动停止时指的数是等可能的,又12个数中有6个偶数,故概率为612=12.答案:127.有一批小包装食品,其中重量在90~95克之间的有40袋,重量在95~100克之间的有30袋,重量在100~105克之间的有10袋.从中任意抽取1袋,则此袋食品的重量在95~105克之间的概率为________.解析:随机事件A 的概率P (A )=U A U Ω=4080=12.答案:128.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.解析:甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输. 若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6; 若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18. 答案:0.18[B 组 技能提升]1.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说“每个选择项正确的概率是14,若每题都选择第一选择项,则一定有3题选择结果正确”,这句话( )A .正确B .错误C .不一定D .无法解释答案:B2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪14<2x <16,B ={x |y =ln(x 2-3x )},从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是( )A .16B .13C .12D .23解析:由题意得A ={x |-2<x <4},B ={x |x <0或x >3},A ∩ B ={x |-2<x <0或3<x <4},所以从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是P =2+16=12.答案:C3.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于________.解析:从正六边形的6个顶点中任取4个顶点共有15种不同的情形,其中以它们作为顶点的四边形为矩形的有3种,∴P =315=15.答案:154.先后抛掷两枚质地均匀的骰子,若骰子朝上一面的点数依次是x ,y (x ,y ∈{1,2,3,4,5,6}),则log x (2y -1)>1的概率是________.解析:先后抛掷两枚骰子,包含的基本事件共有36个,由log x (2y -1)>1,即2y -1>x ,x >1,满足条件的有19个,∴P =1936. 答案:19365.种子公司在春耕前为了支持农业建设,采购了一批稻谷种子,进行种子发芽试验,在统计的2 000粒种子中有1 962粒发芽,他们要求种子的发芽率在95%以上,你认为这批种子合格吗?解:合格.“种子发芽”这个事件发生的频率为1 9622 000=0.981,约为0.98.由于试验的种子总数很大,因此我们可以用它近似地估计其发生的概率,所以“种子发芽”这个事件发生的概率约为0.98=98%>95%,所以这批种子合格.6.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图三个汉字可以看成是轴对称图形.(1)请再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”“口”“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回,洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析并写出构成的汉字进行说明.解:(1)如:田、日(答案不唯一). (2)这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土 口 木 土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土)(木,口)(木,木)或树状图总共有9种结果,每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.∴P(小敏获胜)=49,P(小慧获胜)=59.∴P(小敏获胜)<P(小慧获胜).∴游戏对小慧有利.。
高中数学人教版必修三课时达标检测(一) 算法的概念 Word版含答案

课时达标检测(一)算法的概念一、选择题.下列叙述中,能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:+=+=+=,…,+=;③从青岛乘火车到济南,再从济南乘飞机到广州观看广州恒大的亚冠比赛;④>+;⑤求所有能被整除的正数,即,….....答案:.关于一元二次方程-+=的求根问题,下列说法正确的是( ).只能设计一种算法.可以设计多种算法.不能设计算法.不能根据解题过程设计算法答案:.一个厂家生产商品的数量按照每年比前一年都增加的比率递增,若第一年的产量为,“计算第年的产量”的算法中用到的一个函数解析式是( ).=.=(+).=(+)-.=(+)答案:.对于解方程--=的下列步骤:①设()=--;②计算判别式Δ=(-)-××(-)=>;③作()的图象;④将=,=-,=-代入求根公式=,得=,=-.其中可作为解方程的算法的有效步骤为( ).②③.①②.③④.②④答案:.如下算法:第一步,输入的值.第二步,若≥,则=;否则,=.第三步,输出的值.若输出的值为,则的值是( )..-.-或.或-答案:二、填空题.以下是解二元一次方程组(\\(-+=,①++=②))的一个算法,请将该算法补充完整.第一步,①②两式相加得+=.③第二步,由③式可得.④第三步,将④式代入①式得=.第四步,输出方程组的解.解析:由+=,得=-,即④处应填=-;把=-代入-+=,得=,即方程组的解为(\\(=-,=.))答案:=-(\\(=-,=)).已知一个学生的语文成绩为,数学成绩为,外语成绩为,求他的总分和平均成绩的一个算法为:第一步,取=,=,=.第二步,.第三步,.第四步,输出计算的结果.解析:应先计算总分=++,然后再计算平均成绩=.答案:计算总分=++计算平均成绩=.已知(-),(),下面是求直线的方程的一个算法,请将其补充完整:第一步,.第二步,用点斜式写出直线的方程-=[-(-)].第三步,将第二步的方程化简,得到方程-+=.解析:该算法功能为用点斜式方程求直线方程,第一步应为求直线的斜率,应补充为“计算直线的斜率=”.答案:计算直线的斜率=三、解答题。
高中数学人教B版必修3练习1.1.1 算法的概念 课堂强化 Word版含解析

.下面的结论正确的是( ).一个程序的算法步骤是可逆的.一个算法可以无止境地运算下去.完成一件事情的算法有且只有一种.设计算法要本着简单方便的原则答案:.下列四种叙述能称为算法的是( ).在家里一般是妈妈做饭.利用公式=π计算半径为的圆的面积时,计算π×.在野外做饭叫野炊.做饭必须要有米答案:.早上从起床到出门需要:洗脸刷牙( )、刷水壶( )、烧水( )、泡面( )、吃饭( )、听广播( )几个步骤,从下列选项中选出较好的一种算法.( ).洗脸刷牙;刷水壶;烧水;泡面;吃饭;听广播.刷水壶;烧水同时洗脸刷牙;泡面;吃饭;听广播.刷水壶;烧水同时洗脸刷牙;泡面;吃饭同时听广播.吃饭同时听广播;泡面;烧水同时洗脸刷牙;刷水壶解析:完成这个过程用时最少的是最好的算法,因此我们可以从四个答案所给出的步骤是否合理,需要花费多少时间入手.答案:.求×××××的值的一个算法是:求×得到结果;将所得结果乘,得到结果;;将乘得到;将乘,得到,即为最后结果.解析:本算法的步骤就是将算式从左向右依次乘下去.答案:将所得的结果乘,得到结果.求方程组(\\(+=①-=②))的解的算法.①+②计算得=;;输出,的值.解析:本算法可以用代入法,也可以用加减消元法,∴可以用把=代入求解,也可以用①-②求解.答案:把=代入①并解得=(也可以填:①-②计算得=).已知点(,)和直线:++=,求点到直线距离的一个算法.解:算法如下:输入点的坐标,;输入直线方程的系数和常数、、;计算=++;计算=+;计算=;输出的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(一) 算法的概念
1.下列对算法的理解不正确的是( )
A .算法只能用自然语言来描述
B .算法可以用图形方式来描述
C .算法一般是“机械的”,有时要进行大量重复的计算,它的优点是可以解决一类问题
D .设计算法要本着简单、方便、可操作的原则
解析:选A 由算法的概念和描述方式知,A 不正确.
2.对于一般的二元一次方程组⎩⎪⎨⎪⎧
a 1x +
b 1y =
c 1,a 2x +b 2y =c 2,在写解此方程组的算法时需要我们注意的是( )
A .a 1≠0
B .a 2≠0
C .a 1b 2-a 2b 1≠0
D .a 1b 1-a 2b 2≠0
解析:选C 应用高斯消去法解方程组其实质是利用加减消元法.首先要将两方程y 的系数化为相同即b 1b 2,此时x 的系数分别为a 1b 2和a 2b 1两式相减得(a 1b 2-a 2b 1)x =c 1b 2-c 2b 1,要得出x 的值,则需注意a 1b 2-a 2b 1≠0.
3.阅读下面的算法:
S1 输入两个实数a ,b .
S2 若a <b ,则交换a ,b 的值,否则执行第三步.
S3 输出a .
这个算法输出的是( )
A .a ,b 中的较大数
B .a ,b 中的较小数
C .原来的a 的值
D .原来的b 的值
解析:选A 第二步中,若a <b ,则交换a ,b 的值,那么a 是
a ,
b 中的较大数;若a <b 不成立,即a ≥b ,那么a 也是a ,b 中的较大数.
4.对于算法:
S1 输入n .
S2 判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行S3.
S3 依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行S4;若能整除n ,则执行S1.
S4 输出n .
满足条件的n 是( )
A .质数
B .奇数
C .偶数
D .约数
解析:选A 从题目的条件可以看出,输出的n 没有约数,因此是质数.
5.给出算法步骤如下:
S1 输入x 的值;
S2 当x <0时,计算y =x +1,否则执行S3;
S3 计算y =-x 2;
S4 输出y .
当输入x 的值为-2,3时,输出y 的结果分别是______.
解析:由算法步骤可知,其算法功能是已知函数y =⎩⎪⎨⎪⎧
x +1,x <0,-x 2,x ≥0,当输入x 的值时,求对应的y 值.因为-2<0,所以对应函数解析式为y =x +1,因此y =-2+1=-1;当x =3时,则对应函数解析式为y =-x 2,因此y =-32=-9.
答案:-1,-9
6.使用配方法解方程x2-4x+3=0的算法的步骤是________(填序号).
①配方得(x-2)2=1;
②移项得x2-4x=-3;
③解得x=1或x=3;
④开方得x-2=±1.
解析:使用配方法的步骤应按移项、配方、开方、得解的顺序进行.
答案:②①④③
7.已知直角三角形两条直角边长分别为a,b(a>b),写出求两直角边所对的最大角θ的余弦值的算法如下:
S1输入两直角边长a,b的值;
S2计算c=a2+b2的值;
S3________________________;
S4输出cos θ.
将算法补充完整,横线处应填________________.
解析:根据题意知,直角三角形两直角边a,b(a>b)所对最大角
θ的余弦值为b
c,所以应填“计算cos θ=
b
c的值”.
答案:计算cos θ=b
c的值
8.某居民区的物业部门每月向居民收取卫生费,计费方法是:3人或3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费.
解:设某户有x 人,根据题意,应收取的卫生费y 是x 的分段函
数,即y =⎩⎪⎨⎪⎧
5, x ≤3,1.2x +1.4,x >3. 算法如下:
S1 输入人数x .
S2 如果x ≤3,则y =5;如果x >3,则y =1.2x +1.4.
S3 输出应收卫生费y .
9.已知直线l 1:3x -y +12=0和直线l 2:3x +2y -6=0,求直线l 1与l 2及y 轴所围成的三角形面积,写出解决本题的一个算法.
解:S1 解方程组⎩⎪⎨⎪⎧
3x -y +12=0,3x +2y -6=0,得直线l 1,l 2的交点P (-2,6).
S2 在方程3x -y +12=0中令x =0,得y =12,从而得到A (0,12).
S3 在方程3x +2y -6=0中令x =0,得y =3,得到B (0,3); S4 求出△ABP 的底边长|AB |=12-3=9;
S5 求出△ABP 的底边AB 上的高h =2;
S6 根据三角形的面积公式计算
S =12|AB |·h =12
×9×2=9.。