绝对值2
初一数学(北京版)相反数和绝对值(2)

引入新知
求+7的绝对值距离是7个单位长度,
所以+7的绝对值仍是+7,记作 7 7.
引入新知
求-5的绝对值:
5个单位长度
数轴上表示-5的点到原点的距离是5个单位长度,
所以-5的绝对值是+5,记作 5 5. 特殊地,我们规定0的绝对值是0,记作 0 0.
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: -0.16 = -( - 0.16) =0.16;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: 0 = 0;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
探究新知
例1 (1)依次用数轴上的点A,B,C,D,E,F,O分 别表示下列各数:-2,+3, -4, -2.5,1,5,0
-2.5
(2)分别求出这几个数的绝对值.
探究新知
(2)分别求出这几个数的绝对值.
-2的绝对值 2个单位长度
在数轴上表示-2的点A,到原点的距离是2个单位长度,所以-2
的绝对值是+2,记作 2 2.
探究新知
(2)分别求出这几个数的绝对值.
-2.5的绝对值 2.5个单位长度
-2.5
在数轴上表示-2.5的点D,到原点的距离是2.5个单位长度,
所以-2.5的绝对值是 +2.5,记作 2.5 2.5.
探究新知
(2)分别求出这几个数的绝对值.
1的绝对值
1个单位长度
在数轴上表示1的点E,到原点的距离是1个单位长度,所以1的
最新版初中数学教案《绝对值2》精品教案(2022年创作)

1.2.4 绝对值第1课时 绝对值【教学目标】 〔一〕知识技能1. 使学生掌握有理数的绝对值概念及表示方法。
2. 使学生熟练掌握有理数绝对值的求法和有关计算问题。
〔二〕过程方法1. 在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2. 能根据一个数的绝对值表示“距离〞,初步理解绝对值的概念。
3. 给出一个数,能求它的绝对值。
〔三〕情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
教学重点给出一个数会求它的绝对值。
教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。
【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值. 【教学过程】 1.绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值)。
记作|a |。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。
同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ;(3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数〔正数〕的绝对值有什么特点?在原点左边的点表示的数〔负数〕的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律: 〔1〕一个正数的绝对值是它本身; 〔2〕 0的绝对值是0;〔3〕 一个负数的绝对值是它的相反数。
初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。
2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。
3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。
知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。
相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。
(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。
一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。
2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。
(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。
(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。
用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。
绝对值(2)

-5 -4 -3 -2 -1 0
1
2
3
小结
拓展
2、直接比较法。 (1)正数都大于零,负数都小于零,正数 大于一切负数。 (2)两个正数比较大小,绝对值大的数大; (3)两个负数比较大小,绝对值大的反而小。
小结
拓展
2、你觉得什么情况下运用直接比较法简
单,什么情况下利用数轴比较法简单? 说说你的想法?
☞
下图表示某一天我国5个城市的最低气温。
武汉5 ℃
北京-10℃
上海0℃
广州10℃
哈尔滨-20℃
问:你能将上述五个城市的最低气温按从低到高的 顺序依次排列吗?
哈尔滨 -20℃
北京
上海
武汉
广州
< -10℃ < 0℃ < 5℃ < 10℃
请大家思考这五个数的大小与它们在数 轴上的位置有什么关系?
越 来 越 大
解: 这些增幅中2006年的-9.6%最小,增幅是 负数说明我国人均水资源比上年减少了。
2010年春季,西南5省面临世纪大旱,5000多万同 胞受灾。这场少见的世纪大旱使农作物受灾面积近 500万公顷,其中40万公顷良田颗粒无收,2000万 同胞面临无水可饮的绝境。
小结
拓展
一、有理数的大小比较有两种方法: 1、 数轴比较法: 在数轴上表示的两个数,右边的数总比 左边的数大。
● ● ● ● ●
-20
-10
0
5
10
有理数大小的比较方法:
一、数轴比较法:
在数轴上表示的两个数,右边的数总比左 边的数大。 小 大
-5 -4 -3 -2 -1 0 1 2 3 4 5
有没有最大的有理数?有没有最小的有 理数?为什么?
绝对值2

1.2.4 绝对值(2)总课时7 三维目标一、知识与技能掌握有理数的大小比较的两种方法──利用数轴和绝对值.二、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.三、情感态度与价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值.教学重、难点与关键1.重点:会利用绝对值比较有理数的大小.2.难点:两个负数的大小比较.3.关键:正确理解绝对值的概念.一、教学过程1、复习提问,引入新课用“>”、“<”号填空.1.5.7______6.3; 2.27_____38; 3.0.03_______0;4.│-3│_______│2│; 5.│-23│_______│-32│.二、新授引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.1.课本图1.2-6中共有14个温度,其中最低的是多少?最高的是多少?2.请你将这14个温度按从低到高的顺序排列.课本图1.2-6中的14个温度按从低到高排列为:-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.同样-5<-4,-312<-3,-2<0,-1<1,…从数轴上可知:表示正数的点都在原点的右边;表示负数的点都在原点左边.因此有正数大小0,0大于负数,正数大于负数.两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?探索:我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.即两个负数,绝对值大的反而小.例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.同样│-1│<│-3│,所以-1>-3.例1:比较下列各对数的大小:(1)-(-1)和-(+2);(2)-821和-37;(3)-(-0.3)和│-13│.解:(1)先化简,-(-1)=1,-(+2)=-2,正数大于负数,1>-2.即 -(-1)>-(+2).(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.│-821│=821,│-37│=37=921.因为821<921,即│-821│<│-37│,所以-821>-37.(3)先化简,-(-0.3)=0.3,│-13│=13=.0.3, 0.3<0.3,即-(-0.3)<│-13│.初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b•的大致位置,再比较.由a>0,b<0可知表示a 的点在原点的右边,表示b 的点在原点的左边;由│b │>•│a │,可知表示b 的点离开原点的距离更远,即它应在表示a 的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图. -b -a a 0b根据数轴上,较左边的点所表示的数较小,可得:b<-a<a<-b .三、课堂练习1.课本第14页练习.2.补充练习: (1)比较大小,并用“<”连结.①-34,-712,-56;②-(-10),-│-10│,9,-│+18│,0. (2)有理数a ,b 在数轴上的表示如下图,用“>”或“<”号填空. 1-10b①a_____b ; ②│a │_____│b │; ③-a_____-b ; ④1a_____1b . 四、全课小结(提问式)比较有理数的大小有哪几种方法? 有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较.方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.五、作业布置1.课本第15页习题1.2第5、6、8题.教后反思。
绝对值(2)

3、分析问题2中的结果,你 发现了什么规律? 归纳: 两个负数比较大小,绝对值 大的 反而小 。
自学指导2
请同学们认真阅读课本第13页 的“例”,注意解题的步骤,然后 归纳方法: 异号两数比较大小,要考虑 正负 它们的 ; 同号两数比较大小,要考虑 它们的 绝对值。
自学检测2
课本第13页的“练习”
小结:
大家这节课学到哪些 知识,你能说一说吗?
作业:
1教材P14的6
当堂训练
1. 课本第14页的7,8,9
2、比较下列数的大小 (1)-9.1与-9.099 1 4 (2)-2 3与- 2
5
当堂训练:
3,用“ <”或“ > ”填空。 因为|-10| |-100|, 所以-10 -100 因为|-5/3| |-3/5|, 所以-5/3 -3/5>来自0 ;0>
负数;
> 负数(填>或<)
自学检测1 1、画数轴比较大小:(填>或<) (1)-1 < 2;
(2)0 (3)-4
>
<
-0.5; -2
2、观察数轴,并填空:(填>或<)
-4 -3 -2 -1 0 1 2 3 4
1)-4到原点的距离 > -3到原点的距离, < -3 即|-4| > |-3|; -4
1.2.4 绝对值(2)
学习目标:
会利用数轴、绝对值 比较数的大小
绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。
一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。
【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。
例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。
(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。
(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。
(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。
方便,同学们不妨试一试。
例3 已知a>b>0,试比较-a 与-b 的大小。
解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。
初中数学人教版 绝对值2 人教版

情境引入:
指出下列各点与原点的距离是多少?
A
BF
CD
E
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
A
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值:
数轴上表示这个数的点与原点之间的距离。
一个数的绝对值应该怎么样去记呢?
一个数a的绝对值用 |a| 表示。
课后思考 已知|x–2|+|y–3|+|z–4|=0,求x+y–z的值。
本节课你掌握了以下知识吗?
绝对值的定义是什么? 绝对值的性质是什么?
作业:
课本P13 3题
11.下列语句正确的个数有(B )
①若a=b,则|a|=|b|; √ ②若a= –b,则|a|=|b|; ③若|a|=|b|,则a=b;
3.判断(对的打“√”,错的打“×”):
(1)一个有理数的绝对值一定是正数 ×( ) (2)-1.4<0,则│-1.4│<0。 ( ×) (3) │-32︱的相反数是32 ( ×)
练习:
1 、 符 号 是 “ +” 号 , 绝 对 值 是 6 的 数
是 6 ;符号是“-”号,绝对值是6的 数是 -6 ;绝对值等于6的数有几个? 2、绝对值是0的数是 0 。
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课后巩固】
1、下列不等式中,解集为R的是().
A.|x+2|>1 B.|x+2|+1>1
C.(x-78)2>-1 D.(x+78)2-1>0
2、不等式>的解集是().
A.{x|0<x<2} B.{x|x<0或x>2} C.{x|x<0} D.{x|x>2}
3、不等式|x+3|<4的解集是().
(3) 的解集为;(4) 的解集为。
【课堂合作探究】
探究一1.|ax+b|≤c(c>0),|ax+b|≥c(c>0)型不等式的解法。
|ax+b|≤ ,|ax+b|≥ 型不等式的解法类似于|ax+b|≤c(c>0),|ax+b|≥c(c>0)的解法。
(1)|ax+b|≤c(c>0)型不等式的解法:先化为不等式组____________,再利用不等式的性质求出原不等式的解集,也可以利用绝对值的几何意义求解.
2015届高二数学必修五导学案NO编写祝文静审核审批
课题:绝对值不等式的解法(1)
第周
第课时
班组
组评
姓名
师评
【学习目标】1.掌握绝对值的几何意义;
2.掌握|ax+b|≤c,|ax+b|≥c,|ax+b|≤ ,|ax+b|≥ 的求解。
【教学重点】|ax+b|≤c,|ax+b|≥c的解法
【教学难点】绝对值的几何意义
(2)|ax+b|≥c(c>0)的解法:先化为______和______,再进一步利用不等式的性质求出原不等式的解集,也可以利用绝对值的几何意义求解.
2、试一试:(1)求不等式|x+4|>9的解集。
(2)求不等式|2x+1|>x+1的解集。
(3)
探究二:。解不等式(1)
(2)
【当堂测试】
解不等式:
(1) (3)
【学习方法】学案导学法
【自主学习·梳理基础】
1、绝对值不等式的定理:。
2、(1)对值不等式的主要依据
解含绝对值的不等式的主要依据为________、________及不等式的性质.
(2)绝对值不等式的解法(同解性)
①|x|<a⇔
②|x|>a⇔
3、(1)|x|<3的解集为;(2)|x|>4的解集为;
A.(-7,1) B.(1,7) C.(-4,1) D.(-3,1)
4、解不等式
(1) (2)
(3) (4)
【学后反思】
本节课我学会了
掌握了那些?
还有哪些疑问?