江苏数学高考考试
高考数学普通高等学校招生全国统一考试江苏卷0023

高考数学普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若复数12429i,69i z z =+=+其中i 是虚数单位,则复数12()i z z -的实部为.【测量目标】复数的运算.【考查方式】给出两个复数,根据复数的减法,乘法运算求目标复数的实部. 【难易程度】容易 【参考答案】20-【试题解析】12220i z z -=-+,12()i z z -=(220i)i=2i 20-+--,所以实部为20-. 2.已知向量a 和向量b 的夹角为°30,||2,||3==a b ,则向量a 和向量b 的数量积=a b .【测量目标】向量的运算.【考查方式】直接给出两个向量的模长和两向量的夹角,求向量的数量积. 【难易程度】容易 【参考答案】3 【试题解析】3233==a b . 3.函数32()15336f x x x x =--+的单调减区间为. 【测量目标】利用导数判断函数的单调性.【考查方式】直接给出函数解析式,利用导数求其单调区间. 【难易程度】容易 【参考答案】(1,11)- 【试题解析】2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-.4.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[π,0]-上的图象如图所示,则ω=.第4题图【测量目标】函数sin()y A x ωϕ=+的图象的性质. 【考查方式】观察函数图象,得到周期. 【难易程度】容易 【参考答案】33π2T =,2π3T =,所以3ω= . 5.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为s =.【测量目标】平均数,方差.【考查方式】将统计的案例放入实际生活中,根据表格中的数据计算平均数和方差. 【难易程度】中等 【参考答案】25【试题解析】甲班的方差较小,数据的平均值为7,故方差222222(67)00(87)0255s -+++-+== 6.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为.【测量目标】随机事件的概率.【考查方式】给出等可能事件,直接求概率. 【难易程度】中等 【参考答案】0.2【试题解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2.7.右图是一个算法的流程图,最后输出的W =.第7题图【测量目标】循环结构的程序框图.【考查方式】看懂程序框图,进行运算得到答案. 【难易程度】中等 【参考答案】22【试题解析】第一次循环:S=1, T=3第二次循环:S=8,T=5,第三次可以输出W=17+5=22 8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为. 【测量目标】归纳推理中的类比推理.【考查方式】给出一个例子,通过类比,求体积比. 【难易程度】中等 【参考答案】1:8【试题解析】平面上面积比和边长比成平方,空间中面积比和棱长比成立方,所以体积比为1:8.9.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为.【测量目标】导数的几何意义.【考查方式】给出解析式,利用导数的几何意义,根据该点的切线的斜率,求点坐标. 【难易程度】中等 【参考答案】(2,15)-【试题解析】231022y x x '=-=⇒=±,又点P 在第二象限内,2x ∴=-点P 的坐标为(2,15)-.10.已知512a =,函数()xf x a =,若实数,m n 满足()()f m f n >,则,m n 的大小关系为.【测量目标】指数函数的单调性.【考查方式】已知指数函数的底数,根据指数函数的单调性,判断自变量的大小.【难易程度】中等 【参考答案】m<n【试题解析】考查指数函数的单调性.51(0,1)2a -=∈,函数()x f x a =在R 上递减.由()()f m f n >得:m<n 11.已知集合{}2|log 2=A x x ,(,)=-∞B a 若A B ⊂则实数a 的取值范围是(,)+∞c ,其中c = .【测量目标】集合间的关系,对数不等式.【考查方式】描述法表示集合,求出对数不等式,根据集合间的关系,求参数的范围. 【难易程度】中等 【参考答案】4 【试题解析】由2log 2x得04<x ,(0,4]=A ;由A B ⊂知4>a ,所以=c 4.12.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号(写出所有真命题的序号).【测量目标】命题的基本关系,立体几何中的直线、平面的垂直与平行判定的相关定理. 【考查方式】通过两个不重合的平面,确定命题的真假. 【参考答案】①② 【难易程度】较难【试题解析】对于①,根据面面的平行定理,平面内两条相交直线,互相平行于另一平面的两条直线,则两条直线平行;对于②,根据线面平行的判断依据,显然成立.对于③,当一条直线垂直两平面的相交直线,显然不一定使得,两平面垂直,所以为假命题;.对于④,只满足充分条件,不满足必要条件,为假命题. 故真命题为①②.13.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)+=>>x y a b a b的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为.第13题图【测量目标】直线与椭圆的位置关系,椭圆的基本性质,直线方程.【考查方式】根据直线和椭圆的位置关系,利用椭圆的基本性质,求椭圆的离心率值. 【难易程度】中等 【参考答案】275-【试题解析】直线12A B 的方程为:1+=-x ya b; 直线1B F 的方程为:1+=-x y c b.(步骤1) 二者联立解得:2()(,)+=--ac b a c T a c a c,(步骤2) 则()(,)2()+=--ac b a c M a c a c 在椭圆22221(0)+=>>x y a b a b上, 2222222()1,1030,1030,()4()c a c c ac a e e a c a c ++=+-=+-=--(步骤3) 解得: 275=-e (步骤4)14.设{}n a 是公比为q 的等比数列,||1>q ,令1(1,2,)=+=n n b a n ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6=q .【测量目标】等比数列的通项【考查方式】给出构造的新数列,根据列举表示出的集合,利用通项求公比进而求值. 【难易程度】中等 【参考答案】9-【试题解析】{}n a 有连续四项在集合{}53,23,19,37,82--,四项24,36,54,81--成等比数列,公比为3,69.2=-=-q q 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值; (2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .【测量目标】向量的运算,同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式.【考查方式】给出以三角函数表示的坐标向量,根据向量的线性运算求正切值;求两向量和的模长最大值;在通过已经得到的关系和条件证明向量的平行. 【难易程度】中等【试题解析】(1)由a 与2b c -垂直,(2)20-=-=a b c a b a c ,(步骤1) 即4sin()8cos()0αβαβ+-+=,tan()2αβ+=;(步骤2) (2)(sin cos ,4cos 4sin )ββββ+=+-b c (步骤3)222||sin 2sin cos cos ββββ+=+++b c 2216cos 32cos sin 16sin ββββ-+1730sin cos ββ=-1715sin 2β=-,最大值为32,(步骤4)所以||+b c 的最大值为42.(步骤5)(3)由tan tan 16αβ=得sin sin 16cos cos αβαβ=,(步骤6) 即4cos 4cos sin sin 0αβαβ-=(步骤7) 所以a ∥b .(步骤8) 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,E,F 分别是11A B,A C 的中点,点D 在11B C 上,11A D B C ⊥求证:(1)EF ∥ABC 平面 (2)111A FD BB C C ⊥平面平面第16题图【测量目标】线面平行的判定,线面垂直,面面垂直的判定.【考查方式】直三棱柱中点,线位置关系,利用线线,线面,面面之间的位置关系和定理进行证明.【难易程度】容易【试题解析】(1)因为E,F 分别是11A B,A C 的中点,所以EF BC ,(步骤1)又EF ABC ⊄面,BC ABC ⊂面, 所以EFABC 平面;(步骤2)(2)因为直三棱柱111ABC A B C -,所以1111BB A B C ⊥面,11BB A D ⊥,(步骤3) 又11A D B C ⊥,所以111A D BB C C ⊥面,(步骤4)又11A D A FD ⊂面,所以111A FD BB C C ⊥平面平面(步骤5) 17.(本小题满分14分)设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足2222234577a a a a ,S +=+=(1)求数列{}n a 的通项公式及前n 项和n S ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项.【测量目标】等差数列的性质,通项,前n 项和.【考查方式】给出数列项数之间的关系,求出通项及前n 项和;求满足条件的等差数列的项.【难易程度】中等【试题解析】(1)以430a a +=,即1250a d +=,(步骤1) 又由77S =得176772a d ⨯+=,(步骤2) 解得15a =-,2d =(步骤3)所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-.(步骤4)(2)12272523m m m a a (m )(m )a (m )++--=-,令23m t -=, 1242m m m a a (t )(t )a t ++--=86t t=+-,(步骤6) 因为t 是奇数,所以t 可取的值为1±, 当1t =,2m =时,863t t+-=,2573⨯-=,是数列{}n a 中的项;(步骤7) 1t =-,1m =时,8615t t+-=-,数列{}n a 中的最小项是5-,不符合.(步骤8)所以满足条件的正整数2m =.(步骤9) 18.(本小题满分16分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线12l l 和,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.第18题图【测量目标】直线与圆的方程、点到直线的距离公式,直线与圆的位置关系.【考查方式】根据直线和圆的位置关系,以及圆的方程,求直线方程给出两垂直直线与两圆 的位置关系,求满足条件的点坐标. 【难易程度】较难【试题解析】(1)设直线l 的方程为:(4)y k x =-,即40kx y k --=,(步骤1) 由垂径定理,得:圆心1C 到直线l 的距离22234()12d =-=,(步骤2) 结合点到直线距离公式,得231411k kk ---=+(步骤3)化简得:272470,0,24k k k k +===-或(步骤4) 求直线l 的方程为:0y =或7(4)24y x =--.(步骤5) (2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k-=--=--即110,+0kx y n km x y n m k k-+-=--+=(步骤6) 因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等.由垂径定理,得:圆心1C 到直线1l 与2C 直线2l 的距离相等.故有: 2241531111n mk n km k kk k --++--+-=++,(步骤7)化简得:(2)3,m n k m n --=--(8)5m n k m n -+=+-或(步骤8) 关于k 的方程有无穷多解,有:2080,3050m n m n m n m n ⎧--=-+=⎧⎨⎨--=+-=⎩⎩或(步骤9) 解之得:点P 坐标为313(,)22-或51(,)22-.(步骤10) 19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为mm a+;如果他买进该产品的单价为n 元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的12h h现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙 (1)求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙; (2)设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h 甲和0h h 乙同时成立,但等号不同时成立?试说明理由.【测量目标】基本不等式的实际应用.【考查方式】给出实际例子,列出不等式,根据不等式性质,进行证明;利用基本不等式求恰当值.根据所有条件证明同时取到问题. 【难易程度】较难 【试题解析】(1)=,=,125320A B A BA B A B m m m m h h m m m m ++++甲乙([3,12],[5,20])A B m m ∈∈(步骤1)当35A B m m =时,512B Bh m =+甲203B B h m =+乙(步骤2)显然=h h 乙甲(步骤3) (2)当35AB m m =时, h ==甲(步骤4)由111[5,20][,]205B B m m ∈∈得,(步骤5)故当1120B m =即20,12B A m m ==时, (步骤6) (3)(方法一)由(2)知:0h =由0101255B B h h m =+甲得:12552AB A B m m m m ++,(步骤7) 令35,,A B x y m m ==则1,[,1]4x y ∈,即:5(14)(1)2x y ++.(步骤8) 同理,由10=h h 乙甲得:5(1)(14)2x y ++(步骤9) 另一方面,1,[,1]4x y ∈,51414[2,5],11[,2]2x y x y ++∈++∈、、(步骤10) 55(14)(1),(1)(14),22x y x y ++++(步骤11)当且仅当14x y ==,即A B m m =时,取等号.(步骤12)所以不能否适当选取,A B m m 的值,使得h h 甲0和h h 乙0同时成立,但等号不同时成立.(步骤13)方法二:由(2)知023h =,因为125+320h h y x y =++甲乙4,100915y =++(步骤7) 所以,当23h 甲,23h 乙时,有2==3h h 甲乙(步骤8) 因此,不能取到,A B m m 的值, 使得h h 甲0和h h 乙0同时成立,但等号不同时成立.(步骤9)20.(本小题满分16分)设a 为实数,函数2()2()||f x x x a x a =+--. (1) 若(0)1f ,求a 的取值范围;(2) 求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,直接写出(不需给出演算步骤)不等式()1h x 的解集.【测量目标】分段函数,解不等式,函数的值域,函数的最值.【考查方式】直接给出含参数的函数解析式,根据函数值的大小,求参数的取值范围;根据分段函数,分段讨论,得到函数的最值;定义新函数,解不等式. 【难易程度】较难 【试题解析】 (1)若(0)1f ,则||1a a -(步骤1)2011a aa <⎧⇒⇒-⎨⎩(步骤2)(2)当xa 时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ⎧⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩(步骤3) 当xa 时,22()2,f x x ax a =+-2min2(),02,0()(),02,0f a a a a f x f a a a a ⎧--⎧⎪==⎨⎨<<⎪⎩⎩(步骤4)综上22min2,0()2,03a af x aa⎧-⎪=⎨<⎪⎩(步骤5)(3) (,)x a∈+∞时,()1h x得223210x ax a-+-,(步骤6)222412(1)128a a a∆=--=-(步骤7)当66a a-或时,0,(,)x a∆∈+∞;(步骤8)当66a-<<时,0,∆>得223232()()033a a a ax xx a⎧--+-⎪--⎨⎪>⎩(步骤9)1)26(,)22a∈时,(,)x a∈+∞2)22[,]22a∈-时,232[,)3a ax+-∈+∞3)62(,]a∈--时,223232(,][,)a a a ax a--+-∈+∞(步骤10)数学Ⅱ(附加题)参考公式:2222(1)(21)1+2+3++.6n n nn++=…21.[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,在四边形ABCD中,ABC BAD△≌△.求证:AB CD.第21题【测量目标】四边形、全等三角形.【考查方式】观察平面图形,根据全等三角形的性质进行证明.【难易程度】容易【试题解析】证明:由ABC BAD △≌△得ACB BDA ∠=∠,故A B C D 、、、四点共圆,从而CBA CDB ∠=∠.再由ABC BAD △≌△得CAB DBA ∠=∠.因此DBA CDB ∠=∠,所以ABCD .B. 选修4-2:矩阵与变换 求矩阵3221⎡⎤=⎢⎥⎣⎦A 的逆矩阵. 【测量目标】矩阵初步. 【难易程度】容易【考查方式】给出二乘二矩阵,根据矩阵的的基础知识求逆矩阵. 【试题解析】设矩阵A 的逆矩阵为x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(步骤1) 即3232102201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321320,2021x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩(步骤2) 解得:1,2,2,x z w =-==-,(步骤3) 从而A 的逆矩阵为11223--⎡⎤=⎢⎥-⎣⎦A .(步骤4)C. 选修4-4:坐标系与参数方程已知曲线C的参数方程为13()x y t t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).求曲线C 的普通方程.【测量目标】坐标系和参数方程.【考查方式】给出曲线的参数方程,求出参数值,得到一般方程. 【难易程度】容易【试题解析】因为212x t t=+-所以212,3yx t t +=+=(步骤1) 故曲线C 的普通方程为:2360x y -+=.(步骤2) D. 选修4 5:不等式选讲0ab >,求证:23223232a b a b ab ++.【测量目标】不等式比较大小.【考查方式】给出不等式,利用不等式比较大小直接进行证明. 【难易程度】中等【试题解析】证明:2322222232(32)3()2()(32)()a b a b ab a a b b b a a b a b +-+=-+-=--.(步骤1)因为0ab >,所以220,320a ba b -->(步骤2) ,从而22(32)()0a b a b --.(步骤3)即23223232a ba b ab ++.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.第22题图(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME=2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.【测量目标】两点距离公式,抛物线方程,直线方程,直线和抛物线的位置关系. 【考查方式】已知一点过抛物线,求抛物线的标准方程;进而求出过抛物线焦点的直线方程;根据直线与抛物线的位置关系,利用两点间的距离公式,求表达式. 【难易程度】较难【试题解析】(1)由题意知,可设抛物线C 的标准方程22y px =。
2021年江苏省高考数学真题及参考答案

2021年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部答对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据n x x x 21,,由这组数据得到新样本数据n y y y 21,,其中()n i c x y i i ,2,1=+=,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点()ααsin ,cos 1P ,()ββsin ,cos 2-P ,()()()βαβα++sin ,cos 3P ,()0,1A ,则()==C.213OP OP OP OA ⋅=⋅ D.321OP OP OP OA ⋅=⋅11.已知点P 在圆()()165522=-+-y x 上,点()04,A ,()20,B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,23=PB D.当PBA ∠最大时,23=PB 12.在正三棱柱111C B A ABC -中,11==AA AB ,点P 满足1BB BC PB μλ+=,其中[]1,0∈λ,[]1,0∈μ,则()A.当1=λ时,P AB 1∆的周长为定值B.当1=μ时,三棱锥BC A P 1-的体积为定值C.当21=λ时,有且仅有一个点P ,使得BP P A ⊥1D.当21=μ时,有且仅有一个点P ,使得B A 1⊥平面PAB 1三、填空题:本题共4小题,每小题5分,共20分。
精品解析2023年江苏省高考数学试卷(原卷版)

2023年高考(江苏卷)2023年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.).1.已知集合A?{?1,0,1,2},B?{0,2,3},则AB?_____2.已知i是虚数单位,则复数z?(1?i)(2?i)的实部是_____.3.已知一组数据4,2a,3?a,5,6的平均数为4,则a的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y的值为?2,则输入x的值是_____..y2x256.在平面直角坐标系xOy中,若双曲线2﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心5a2率是____.7.已知y=f(x)是奇函数,当x≥0时, f?x??x3 ,则f(-8)的值是____. 8.已知sin(22?2??) =,则sin2?的值是____.349.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是____cm.ππ﹢)的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是10.将函数y=3sin(2x462023年高考(江苏卷)____.11.设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和Sn?n2?n?2n?1(n?N?),则d+q的值是_______.12.已知5x2y2?y4?1(x,y?R),则x2?y2最小值是_______.13.在△ABC中,AB?4,AC?3,∠BAC=90?,D在边BC上,延长AD到P,使得AP=9,若3PA?mPB?(?m)PC(m为常数),则CD的长度是________.14.在平面直角坐标系xOy中,已知P(13A,B是圆C:x2?(y?)2?36上的两个动点,满足PA?PB,0)22则△PAB面积的最大值是__________.二、解答题:(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字.......说明、证明过程或演算步骤.)15.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.的(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知a?3,c?2,B?45?.2023年高考(江苏卷)(1)求sinC的值;4(2)在边BC上取一点D,使得cos?ADC??,求tan?DAC的值.517.地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上、桥AB与MN平行,OO?为铅垂线(O?在AB上).经测量,左侧曲线AO上任一点D到MN的距离h1(米)与D到OO?的距离a(米)之间满足关系式h1?之间满足关系式h2??12a;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO?的距离b(米)4013b?6b.已知点B到OO?的距离为40米.800(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO?的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价最低?3k(万元)(k>0).问O?E为多少米时,桥墩CD与EF的总造价2x2y218.在平面直角坐标系xOy中,已知椭圆E:??1的左、右焦点分别为F1,F2,点A在椭圆E上且在43第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP?QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.。
2022年江苏省高考数学真题及参考答案

2022年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。
根据导数的定义,f'(x) = 6x^2 6x + 1。
将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。
因此,f'(1)的值为1,选项B正确。
2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。
直线的斜率为k,圆的斜率可以通过求导得到。
对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。
在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。
由于直线和圆在切点处斜率相同,所以k = 1/2。
因此,选项A正确。
3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。
将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。
将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。
因此,选项C正确。
4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。
江苏省南通市(新版)2024高考数学人教版考试(提分卷)完整试卷

江苏省南通市(新版)2024高考数学人教版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则()A.B.C.D.第(2)题将函数图象上的所有点向左平移个单位长度,得到函数的图象,则()A.B .在上单调递增C .在上的最小值为D .直线是图象的一条对称轴第(3)题已知数列的前n项和为,若,,且,都有,则()A.是等比数列B.C.D.第(4)题已知首项的等差数列中,,若该数列的前项和,则等于()A.10B.11C.12D.13第(5)题函数的图像如图所示,已知,则方程在上有()个非负实根.A.0B.1C.2D.3第(6)题九九重阳节期间,甲、乙两名同学计划去敬老院做志愿者,若甲同学在初八、初九、初十这三天中随机选一天,乙同学在初八、初九这两天中随机选一天,且两名同学的选择互不影响,则他们在同一天去的概率为()A.B.C.D.第(7)题已知向量,若向量满足,且,则的值是()A.B.12C.20D.第(8)题设F为抛物线的焦点,点M在C上,点N在准线l上,且平行于x轴,准线l与x轴的交点为E,若,则梯形的面积为()A.12B.6C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题固定电话用户指在电信企业营业网点办理开户登记手续并已接入固定电话网上的全部电话用户.固定电话在许多场合依然起到重要的作用,而且固定电话在许多方面有着手机没有的优势,这也使得固定电话至今仍在中国市场上有一定的保有量.某电信部门统计了所辖区域2021年和2022年固定电话用户数的同比增长率(),并绘制如图所示的折线图.则下列说法中正确的有()A.2022年固定电话用户数的同比增长率比2021年固定电话用户数的同比增长率稳定B.2021年和2022年固定电话用户数的同比增长率数据的中位数分别为,C.这两年中,固定电话用户数的同比增长率数据同期相差最大的是4月份D.2021年固定电话用户数的同比增长率数据的第80百分位数为第(2)题已知抛物线C:,圆.若C与交于M,N两点,圆与x轴的负半轴交于点P,则()A.若为直角三角形,则圆的面积为B.C.直线PM与抛物线C相切D.直线PN与抛物线C有两个交点第(3)题已知定义在上的函数满足,的导函数为,则()A.B.是单调函数C.D.为偶函数三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,角所对的边分别为.若,,则角的大小为____________________.第(2)题某休闲广场呈椭圆形,在该椭圆的两个焦点及中心处分别安装有三盏景观灯A,B,C,其中灯B位于灯A的正东400m处.小王沿着该休闲广场的边沿散步,在散步的过程中,他与灯B的最短距离为50m.当小王行走到点M处时,他与灯A,B的距离之比为,则此时他与灯C的距离为______m.第(3)题已知不共线的三个单位向量满足与的夹角为,则实数____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,.(1)若为真命题,求的取值范围;(2)若为真命题,求的取值范围.第(2)题已知函数,.(1)若不等式恒成立,求的取值范围;(2)若时,存在4个不同实数,,,,满足,证明:.第(3)题已知函数.(1)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底);(2)令,如果图象与轴交于,,中点为,求证:.第(4)题已知椭圆:的左、右焦点分别为,,左顶点为,满足,其中为坐标原点,为椭圆的离心率.(1)求椭圆的标准方程;(2)过的直线与椭圆交于,两点,求面积的最大值.第(5)题材料一:英国数学家贝叶斯在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设是一组两两互斥的事件,,且,,则对任意的事件,有,.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是,,那么时刻的状态的条件概率仅依赖前一状态,即.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有的车电池性能很好.公司出口的电动汽车,在德国汽车市场中占比,其中有的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是公司的,求该汽车电池性能很好的概率;(结果精确到0.001(2)为迅速抢占市场,公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为,有一个小球在格子中运动,每次小球有的概率向左移动一格;有的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记为以下事件发生的概率:小球开始位于第个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.。
2023年江苏高考数学真题及参考答案

2023年江苏高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏数学高考考试————————————————————————————————作者:————————————————————————————————日期:绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B I ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数2()6f x x x =+- 的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 9.等比数列{}n a 的各项均为实数,其前n 项的和为S n ,已知36763,44S S ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费之和最小,则x的值是11.已知函数()3xx12x+e-e-f x=x,其中e是自然数对数的底数,若()()2a-1+2a≤f f0,则实数a的取值范围是。
12.如图,在同一个平面内,向量OAu u r,OBu u r,OCu u r,的模分别为1,1,2,OAu u r与OCu u r的夹角为α,且tanα=7,OBu u r与OCu u r的夹角为45°。
若OCu u r=m OAu u r+n OBu u r(m,n∈R),则m+n= 13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若PAu u r·PBu u r≤20,则点P的横坐标的取值范围是14.设f(x)是定义在R 且周期为1的函数,在区间)0,1⎡⎣上,()2,,x x Df xx x D⎧∈=⎨∉⎩其中集合D=1,nx x n Nn+⎧⎫-=∈⎨⎬⎩⎭,则方程f(x)-lgx=0的解的个数是 .15.(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16. (本小题满分14分) 已知向量a =(cos x ,sin x ),,.(1)若a ∥b ,求x 的值; (2)记,求的最大值和最小值以及对应的x 的值17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.18. (本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.19.(本小题满分16分) 对于给定的正整数k ,若数列l a n l 满足a a a a a a a --+-++-++++++=1111......2n k n k n n n k n k n k=2ka n 对任意正整数n(n> k) 总成立,则称数列l a n l 是“P(k)数列”.学科@网 (1)证明:等差数列l a n l 是“P(3)数列”;(1) 若数列l a n l 既是“P(2)数列”,又是“P(3)数列”,证明:l a n l 是等差数列.20.(本小题满分16分) 已知函数()fx =x x +++>∈321(a 0,b R)a bx 有极值,且导函数()fx ,的极值点是()f x 的零点。
(极值点是指函数取极值时对应的自变量的值) (1) 求b 关于a 的函数关系式,并写出定义域; (2) 证明:b ²>3a; (3) 若()f x ,()fx ,这两个函数的所有极值之和不小于7-2,求a 的取值范围。
2017年普通高等学校招生全国统一考试(江苏卷)数学II (附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21题 ~ 第23题)。
本卷满分为40分,考试时间为30分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题........,并在相应的答题区域内..........作答..。
若多做,则按作答的前两小题评分。
解答时应写出文字说明、证明过程或演算步骤。
A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足。
求证:(1)∠PAC=∠CAB;(2)AC2 =AP·AB。
B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A=,B=.(1)求AB;若曲线C1;22y=182x+在矩阵AB对应的变换作用下得到另一曲线C2 ,求C2的方程.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy中,已知直线l的参考方程为x82tty⎧=-+⎪⎨=⎪⎩(t为参数),曲线C的参数方程为2x2s,22sy⎧=⎪⎨⎪=⎩(s为参数)。
设p为曲线C上的动点,求点P到直线l的距离的最小值学@科@网D.[选修4-5:不等式选讲](本小题满分10分)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.2x2s,22sy⎧=⎪⎨⎪=⎩22.(本小题满分10分)如图,在平行六面体ABCD-A1B1C1D 1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120º.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值。
23. (本小题满分10)已知一个口袋有m个白球,n个黑球(m,n∈2N ,n≥ 2),这些球除颜色外全部相同。
现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明。