高等数学(上册)期末考试及答案 (2)
高数期末考试题及答案

高数期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=\( e^x - x^2 \)在点x=0处的导数为:A. 1B. -1C. 0D. 22. 若函数f(x)在区间[a,b]上连续,则下列说法正确的是:A. f(x)在[a,b]上单调递增B. f(x)在[a,b]上存在极值点C. f(x)在[a,b]上一定有最大值和最小值D. f(x)在[a,b]上无界3. 曲线y=\( x^3 + 2x^2 - 5x + 7 \)在点(1, 9)处的切线斜率为:A. 12B. 10C. 8D. 64. 定积分∫[0,1] x^2 dx的值为:A. 1/3B. 1/4C. 1/2D. 15. 若f(x)=\( \ln(x) \),则f'(1)的值为:A. 0B. 1C. -1D. 26. 微分方程dy/dx + 2y = 4x的通解为:A. y = 2x^2 + CB. y = x^2 + CC. y = 2x - CD. y = x + C7. 级数∑[1,∞] \( (1/n^2) \)是:A. 收敛B. 发散C. 条件收敛D. 绝对收敛8. 若函数f(x)在点x=a处可导,则f(x)在该点处的泰勒展开式至少包含:A. 常数项B. 一次项C. 二次项D. 高次项9. 函数f(x)=\( x^2 \sin(1/x) \)在x=0处的极限为:A. 0B. 1C. ∞D. 不存在10. 函数f(x)=\( x^3 - 3x^2 + 2 \)的拐点为:A. x=1B. x=2C. x=0D. x=3二、填空题(每题2分,共10分)11. 若f(x)=\( x^3 \),则f''(1)=________。
12. 函数f(x)=\( \sin(x) \)的原函数为________。
13. 定积分∫[1,e] \( e^x \)dx的值为________。
14. 微分方程\( y'' - 4y' + 4y = 0 \)的特征方程为________。
高数期末考试题及答案解析

高数期末考试题及答案解析一、选择题(每题2分,共10分)1. 函数 \( f(x) = \sin x + 2x^2 \) 在区间 \( [0,\frac{\pi}{2}] \) 上是:A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案解析:首先求导数 \( f'(x) = \cos x + 4x \)。
在区间\( [0, \frac{\pi}{2}] \) 上,\( \cos x \) 始终大于等于0,而\( 4x \) 也是非负的,因此 \( f'(x) \geq 0 \),说明函数 \( f(x) \) 在该区间上单调递增。
所以答案是 A。
2. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \),则下列哪个选项是正确的?A. \( \lim_{x \to 0} f(x) = 0 \)B. \( \lim_{x \to 0} g(x) = 0 \)C. \( \lim_{x \to 0} f(x) = 1 \)D. \( \lim_{x \to 0} g(x) = 1 \)答案解析:根据极限的性质,如果 \( \lim_{x \to 0}\frac{f(x)}{g(x)} = 0 \),则 \( g(x) \) 不能趋向于0,否则分母为0,极限不存在。
同时,\( f(x) \) 趋向于0。
因此,选项 A 是正确的。
3. 曲线 \( y = x^3 - 3x \) 在点 \( (1, -2) \) 处的切线斜率是:A. 0B. 2C. -2D. 4答案解析:求导数 \( y' = 3x^2 - 3 \),将 \( x = 1 \) 代入得到 \( y' = 0 \)。
因此,曲线在点 \( (1, -2) \) 处的切线斜率为 0,答案是 A。
4. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)答案解析:根据积分的基本公式,\( \int x^n dx =\frac{x^{n+1}}{n+1} + C \),所以 \( \int_{0}^{1} x^3 dx =\left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} \)。
高数上册期末考试试题及答案

《高等数学2-1》模拟试题二一.填空题(本题共4小题,每小题5分,满分20)1 当x x →0时,)(x f 是比)(x g 高阶的无穷小,则当x x →0时, 无穷小)()(x g x f +f(x)+g(x) 与无穷小)(x g 的关系是___________________.2. 若)(x f 为可导的奇函数,且()f x '05=,则()=-0 'x f __________.3. ().1,0._______________41lim 20≠>=-→a a x a x x4. ()⎰=-dx x x x tan sec sec ____________________.二.选择题(本题共4小题,每小题5分,满分20分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) 1. 极限.cos 22limx xx -→的结果是(A)1, (B)2, (C)2, (D)极限不存在. 答: () 2. 已知a 是大于零的常数()f x a x()ln =+-12,,则f (')0的值应是:()ln ()ln ()ln ()A aB aC aD -1212答: ()3. 设)(''u f 连续,已知n xf x dx tf t dt''()''()2012⎰⎰=则n 应是(A)2, (B)1, (C)4, (D)41答: ()4. 曲线x y sin =在[,]-ππ上与x 轴所围成的图形的面积为(A)2, (B)0, (C)4, (D)6.三.计算题(本题共7小题,每小题7分,满分49分。
)1. 设(),2ln 1)(22x x x x x f -+-=求)(x f 的定义域2.设函数)(x f 具有二阶导数,且2)0( '' ,1)0(' ,0)0(===f f f 求.)(lim20x xx f x -→3.求()⎰+dx x x 2cot 3tan 24.求⎰. arctan xdx5.求.sin1cossin24dxxxx⎰+π6. 设()⎩⎨⎧==2)( t f y t f x 其中)(t f 三阶可导且,0)( ≠t f 求.22dx y d7.设)(x y y =由方程3=+x y y x 所确定求)1( 'y四、证明题:(本题11分)证明当0≥x 时有不等式().1ln x xex+≤-《高等数学》一、1.等价无穷小. 2.f x '()-=05. 3.12ln .a 4. tanx-secx+c .二、1。
2019最新高等数学(上册)期末考试试题(含答案)VE

2019最新高等数学期末考试试题(含答案)一、解答题1.利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x →; ⑵ 3π2ln sin lim (2)x x x π→-; ⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin lim x a x a x a→--; ⑸ lim m mn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x→+∞+; ⑺ 0ln lim cot x x x +→; ⑻ 0lim sin ln x x x +→; ⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )x x x+→; ⑾ 2lim (arctan )πx x x →+∞⋅; ⑿ 10lim(1sin )x x x →+; ⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]e x x x x →+.解:⑴ 原式=2π3cos33lim 5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1lim lim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++. ⑷ 原式=cos lim cos 1x a x a →=. ⑸ 原式=11lim m m n n x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+.⑺ 原式=22001sin lim lim 0csc x x x x x x++→→=-=-. ⑻ 原式=001ln lim lim 0csc csc cot x x x x x x x++→→==-⋅. ⑼ 原式22200e e e e lim =lim (e 1)x x x x x x x x x x x →→----=-202e e 1=lim 2x x x x→-- 204e e 3=lim 22x x x →-=. ⑽ 原式=0lim(1ln )xx x +→- 令(1ln )xy x =- 00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++→→→→→⋅---==-===-- ∴原式=00lim e 1x y +→==. ⑾ 令2(arctan )πx y x =⋅,则 2222211lnln arctan πarctan 1lim ln lim lim 1112 lim arctan 1πx x x x x x x y x xx x x →+∞→+∞→+∞→+∞+⋅+==-=-⋅=-+ ∴原式=2πe -.⑿ 令1(1sin )x y x =+,则000cos ln(1sin )1sin limln lim lim 11x x x xx x y x →→→++=== ∴原式=e =e '.⒀ 原式00ln lim(ln )lim 1x x x x x x ++→→=⋅=0021=lim =lim()01x x x x x++→→-=-⒁原式lim x x→+∞= 2234232311111=lim (1)(23)=33x x x x x x x x ----→+∞+++⋅++⋅ ⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -→-=-sin 00e (sin )=lim =e =1sin x x x x x x→⋅-- ⒃ 令12sin ()x x y x =,则 200023002220011cos ln sin ln sin lim ln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x xx y x xx x x x x x x x x x x x x x x x →→→→→→→--==--==---===- ∴原式=16e -.⒄ 令111[(1)]e x x y x =+,则11ln [ln(1)1]x y x x=+- 2000011ln(1)1lim ln lim lim 2111 lim .212x x x x x x xy x x x →→→→-+-+===-=-+2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)3.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑; (2) 1cos 2n n nx ∞=∑; (3) 1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()2341111112311111231111112112311n n n n p n n n n p n n n n p n p n p n n pn n n +++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+ 当P 为奇数时, ()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n p n n n n p n p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+ 因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()12121cos cos cos 12222111222111221121112212n n n p n n n p n p n p n xn p x x n n ++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭< 于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则 ()()()()()121111113113123133213223231131132161112n n n p U U U n n n n nn n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.4.写出下列级数的一般项:(1)1111357++++;2242468x x ++⋅⋅⋅⋅;(3)35793579a a a a -+-+; 解:(1)121n U n =-;(2)()2!!2nn x U n =;(3)()211121n n n a U n ++=-+; 5.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力. 解:如图20,建立坐标系,直线AB 的方程为 y =-x 10+5. 压力元素为 d F =x ·2y d x =2x ⎝⎛⎭⎫-x 10+5d x所求压力为F =⎠⎛0202x ⎝⎛⎭⎫-x 10+5d x =⎣⎡⎦⎤5x 2-115x 3200 =1467(吨) =14388(KN)6. 求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2;解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛021+1y 2d x =2⎠⎛021y 1+y 2d y 22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪20=25+ln(2+5) b) y =ln x ,3≤x ≤8;解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32. c) y =⎠⎜⎛−π2x cos t d t , −π2≤t ≤π2; (20)解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x =⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2 =42sin x 2⎪⎪⎪π20=4.7.求下列旋转体的体积: (1) 由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转; 解: 求两曲线交点⎩⎨⎧y =x 2y 2=x 3得(0,0),(1,1) V =π⎠⎛01()x 3-x 4d x =π⎣⎡⎦⎤14x 4-15x 510=π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎛02x 6d x =1287π V y =π⎠⎛08⎝⎛⎭⎫22-y 23d y =645π. (2)星形线x 2/3+y 2/3=a 2/3绕x 轴旋转; 解:见图15,该曲线的参数方程是: ⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π20()a sin 3t 2d ()a cos 3t =6πa 3⎠⎜⎛0π2sin 7t cos 2t d t =32105πa 3 (15)8.求由参数式2020sin d cos d t t x u u y u u ⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot .d d sin d yy t t t x x tt===9.利用定义计算下列定积分:(1) d ();ba x x ab <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n -=+=-记每个小区间1[,]i i x x -长度为,i b a x n-∆=取, 1,2,,,i i x i n ξ== 则得和式 211()2(1)()[()]()2n n i i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得 220122()(1) d lim ()lim[()]21 ().2n bi i a n i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰ (2) 10e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-记每个小区间长度1,i x n ∆=取 (1,2,,),i i x i n ξ==则和式111()in n n i i i i f x e nξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i n nxn n n n n n i n n n n n n n n n x n n n n n n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰10.利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭; 证明:令 ()n f x x = 12(),()(1)0n n f x nx f x n n x --'''==-> , 则曲线y =f (x )是凹的,因此,x y R +∀∈, ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e ()2x y x yx y ++>≠ ; 证明:令f (x )=e x()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠ 则 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 2e e e 2x yx y++<. (3) ln ln ()ln (0,0,)2x y x x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x '''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+, 即 ln ln ()ln2x y x x y y x y ++>+.11.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+ 610y x ''=-,令0y ''=可得53x =.当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)xxy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的, 故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).12.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=-令0V '=,得.h =时,其体积为最大.13.已知a >0,试证:11()11f x x x a =+++-的最大值为21aa++. 证明: 11,01111(),01111,11x x x a f x x a x x a x a x x a⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2ax =,且422a f a⎛⎫= ⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得 故 {}max 242(),,0121a af x a a a++==+++.14.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰15.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlimsin x x x x →; ⑵ lim (1)x x k x→+∞+; ⑶ sin lim sin x x xx x→∞-+; ⑷ e e lim .e e x x xx x --→+∞-+ 解:⑴ ∵200111sin2sin coslimlim sin cos x x x x x x x x x→→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1limlim sin 0sin x x x x x x x→→==, 故不能使用洛必达法则. ⑶ ∵sin 1cos limlimsin 1cos x x x x xx x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x x x x xx x x→∞→∞--==++故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xxx x x x x x x x ------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2). 16.证明:11(1)arcsin h ln( (2)arctan h ln,1121xx x x xx+==-<<-证: (1)由e esinh2x xy x--==得2e2e10x xy--=解方程2e2e10x xy--=得e x y=因为e0x>,所以e x y=ln(x y=所以sinhy x=的反函数是arcsin h ln(().y x x x==+-∞<<+∞(2)由e etanhe ex xx xy x---==+得21e1xyy+=-,得1112ln,ln121y yx xy y++==--;又由11yy+>-得11y-<<,所以函数tanhy x=的反函数为11arctan h ln (11).21xy x xx+==-<<-17.设()f x在[,]a b上有(1)n-阶连续导数,在(,)a b内有n阶导数,且(1)()()()()0.nf b f a f a f a-'=====试证:在(,)a b内至少存在一点ξ,使()()0nfξ=.证明:首先,对()f x在[,]a b上应用罗尔定理,有1(,)a a b∈,即1a a b<<,使得1()0f a'=;其次,对()f x'在[,]a b上应用罗尔定理,有21(,)a a b∈,即12a a a b<<<,使得2()0;,f a''=一般地,设在(,)a b内已找到1n-个点121,,,,na a a-其中121,na a a a b-<<<<<使得(1)1()0nnf a--=,则对(1)()0nf x-=在1[,]na b-上应用罗尔定理有1(,)(,),na b a bξ-∈⊂使得()()0nfξ=.18.球的半径以速率v改变,球的体积与表面积以怎样的速率改变?解:324dπ,π,.3drV r A r vt===2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅19.利用微分求下列各数的近似值: ⑴⑵ ln 0.99; ⑶ arctan1.02.解:⑴113x ≈+,有112(1) 2.0083380==≈⋅+⨯=. ⑵ 利用近似公式ln(1)x x +≈,有ln 0.99ln(10.01)0.0100.=-≈-⑶ 取()arctan f x x =,令01,0.02x x ==, 而21()1f x x'=+,则 21arctan1.02arctan10.0211=0.7954.≈+⨯+20.求由下列参数方程所确定函数的二阶导数22d d yx:⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩ (a 为常数);⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d y y a t tt x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1=(1-cos )(1cos )1=.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅---⑵ d d ()()()d d d ()d y y f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.21.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=22.试求曲线exy -=在点(0,1)及点(-1,0)处的切线方程和法线方程.解:231e e (1)3xxy x ---'=-⋅+12. 3x x y y ==-''=-=∞故在点(0,1)处的切线方程为:21(0)3y x -=--,即2330x y +-=法线方程为:21(0)3y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =- 法线方程为:0y =23.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x y a ===24.设()()f x x a x ϕ=-,其中a 为常数,()x ϕ为连续函数,讨论()f x 在x a =处的可导性. 解:()()()()()lim lim ()()()()()()lim lim ()x a x a x a x a f x f a x a x f a a x a x af x f a a x x f a a x a x aϕϕϕϕ++--+→→-→→--'===----'===---.故当()0a ϕ=时,()f x 在x a =处可导,且()0f a '= 当()0a ϕ≠时,()f x在x a =处不可导.25.求下列函数的导数: (1) y =解:y '=(2) y =解:5323yx -'=-(3) 2y =解:2512326y x x +-==561.6y x -'=26.求下列函数在0x 处的左、右导数,从而证明函数在0x 处不可导.(1) 03sin ,0,0;,0,x x y x x x ≥⎧==⎨<⎩证明:00()(0)sin (0)lim lim 1,0x x f x f xf x x+++→→-'===- 300()(0)(0)lim lim 0,0x x f x f x f x x---→→-'===- 因(0)(0)f f +-''≠,故函数在00x =处不可导.(2) 10,0,0;1e 0,0,xx x y x x ⎧≠⎪==+⎨⎪=⎩证明:100()(0)1(0)lim lim 0,01e xx x f x f f x +++→→-'===-+ 100()(0)1(0)lim lim 1,01e xx x f x f f x ---→→-'===-+ 因(0)(0)f f +-''≠,故函数在00x =处不可导.(3) 021,1.,1,x y x x x ≥==<⎪⎩证明:11()(1)1(1)lim lim ,12x x f x f f x +++→→-'===- 211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 因(1)(1)f f +-''≠,故函数在01x =处不可导.27.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值?解:因211lim ()lim 1(1)x x f x x f --→→=== 11lim ()lim()x x f x ax b a b ++→→=+=+ 要使()f x 在1x =处连续,则有1,a b +=又211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 111(1)lim lim ,11x x ax b ax af a x x +++→→+--'===-- 要使()f x 在1x =处可导,则必须(1)(1)f f -+''=, 即 2.a =故当2,1a b ==-时,()f x 在1x =处连续且可导.28.设()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明:方程()()f x f x a =+在[0,a ]内至少有一根.证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=, 即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根, 综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.29.当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.30.试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有 π3π0()(coscos3)3x f a x x ='==+,得a =2. 又 π3π0()(2sin 3sin 3)3x f xx =''=<=--,所以π3x =是极大值点,极大值为π()3f =【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
高等数学上期末试卷(含答案)

一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。
(完整版)高等数学(同济第六版)上册-期末试卷及答案,推荐文档

8.
若
f
(
x0
)
3
,则
lim
h0
f (x0 h) f (x0 3h) h
. 12
9. 若 x pdx 收敛,则 p 的范围是 1
. p 1
10. lim( 2x 3)x1 x 2x 1
.e
11.设 f (x)dx F (x) c ,则 f (2x)dx
. 1 F(2x) c 2
f (x 1)dx =
x2 , x 0
2
.5 6
第2页共7页
二、选择题
1.
设
f
(
x)
x2
cos
1 x
,
0 x 1 ,在 x 0 处()A Nhomakorabeax
, 1 x 0
A. 连续,不可导 B. 连续,可导 C. 可导,导数不连续 D. 为间断点
2.曲线 y sin x 在 x 0 处的切线与 x 轴正方向的夹角为( ) B 2
0
0
0
20. (x) x xex2 dx ,则 (1) 0
. (1)
. 1 (e 1) , e 2
. 1 2
21. df (x2 ) 1 ,则 f (x) dx x
.1 2x
提示:
f (x2 ) 2x
1 x
f (x2 )
1 2x2
22.曲线 y f (x) 在点 (2, f (2)) 处的切线平行于直线 y 3x 1,则 f (2)
5.设 f (x) 的导函数为 sin x ,则 f (x) 的一个原函数为(
D. f (x0 ) 0 或不存在
)
D
A.1 sin x
B.x sin x
2019最新高等数学(上册)期末考试试题(含答案)HK

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列初等函数的边际函数、弹性和增长率: (1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数. 弹性为:1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+. (2) y =a e bx ;解:边际函数为:y ′=ab e bx 弹性为:1e ebx bx Ey ab x bx Ex a =⋅⋅=, 增长率为: e ebxy bxab b a γ==. (3) y =x a解:边际函数为:y ′=ax a -1.弹性为:11a a Ey ax x a Ex x-=⋅⋅=, 增长率为: 1.a y a ax ax xγ-==2.将()2132f x x x =++展开成(x +4)的幂级数.解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑3.判定下列级数的敛散性:(1) 1n ∞=∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+;(3) ()23133222213333nn n --+-++-;(4)155n +++++;解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散.4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.5.设某企业固定成本为50,边际成本和边际收入分别为 C ′(x )=x 2-14x +111,R ′(x )=100-2x . 试求最大利润. 解: 设利润函数L (x ). 则L (x )=R (x )-C (x )-50由于L ′(x )=R ′(x )-C (x )=(100-2x )-(x 2-14x +111)=-x 2+12x -11 令L ′(x )=0得x =1,x =11.又当x =1时,L ″(x )=-2x+12>0.当x =11时L ″(x )<0,故当x =11时利润取得最大值.且最大利润为 L (11)=1120(1211)d 50x x x -+--⎰311013341[611]50111.333x x x =-+--==6.已知电压u (t )=3sin2t ,求 (1) u (t )在π0,2⎡⎤⎢⎥⎣⎦上的平均值;解: π2026()3sin 2d .ππu t t t ==⎰(2) 电压的均方根值.解:均方根公式为 ()f x =故()u t =====7.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。
2019最新高等数学(上册)期末考试试题(含答案)XU

2019最新高等数学期末考试试题(含答案)一、解答题1.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1,x x f x x ⎧≤<=⎨=⎩;⑵ ()1, [0,2] f x x =-;⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩ 解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩ (1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件. 而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩ 即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.2.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+3.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()010********31314413334713n n n n n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭+=--<<∑∑ 又()()()010********21214412224622n n n n n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑4.若2lim n n n U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n 而21n M n ∞=∑收敛,故1n n U ∞=∑绝对收敛.5.某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱?解:设每年以均匀流方式存入x 万元,则5= 10(10)0.050e d t x t -⎰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013
1 高等数学A1(B 卷)
数理学院 高密电专 (答案写在答题纸上,写在试题纸上无效)
一、填空题(每小题3分,共15分)
1.2
00
2
ln(1)lim
_______(1)sin x x x t
t dt
e tdt
→+=-⎰⎰
;
2.已知cos 2x
y x
=,则=dx dy ; 3.
2
1x dx x
=-⎰
;
4.2
1
2
11x dx x -=+⎰ ;
5.设sin x y e x =,则__________=dy 。
二、选择题(每小题3分,共15分) 1.下列极限存在的是:( )
)A 2)1(lim x x x x +∞→;)B 01lim cot x arc x →;)C 1
0lim x
x e -→;)D x
x x 1lim 2++∞→; 2. 下列极限等于1的是( ) )A 0
1lim sin
x x x → )B sin lim x x x →∞ )C 0lim sin x x x → )D 1
lim sin 1x x x
→∞=
3.下列结论正确的是:( )。
)A 1
ln(1)(1)1d x d x x --=
--; )B 211cot x
dx x darc --=;
)C )1sin()1cos(x dx x d -=-; )D 4
212tan x x
dx x d +=;
4.设⎰
+-=x
dt t t
x F 0
4
11
)(,则)(x F ( ) )A 有极小值0; )B 有极大值0; )C 没有极值; )D 有极小值-1;
课程考试试题 学期 学年 拟题人:
校对人: 拟题学院(系): 适 用 专 业:
5.若()F x 是)(x f 的一个原函数,则()xf x dx '=⎰
( )
)A ()()xf x F x C -+ )B ()()xf x F x C ++ )C ()()xf x f x C -+ )D ()()f x F x C -+
三、计算题(共28分)
1. 求数列极限3lim(1)n
n n
→∞
- ; (7分)
2.求函数极限0(121)ln(1)
lim
arctan (1)
x x x x x e -→----;(7分)
3. 求参数方程⎩⎨⎧=+=t
y t x arctan 2)
1ln(2所确定的函数()y y x =的一、二阶导数。
(7分)
4. 求不定积分ln xdx ⎰。
(7分) 四、计算题(共24分)
1.求定积分
⎰
-π
2sin 1dx x 。
(7分)
2.列表求函数3231y x x =-+的增减区间、极值、凹凸区间及拐点;(10分) 3. 求解一阶线性微分方程23x x
y
y +-='。
(7分) 五、应用题(10分)
设由曲线2y x =与2x y =所围成的平面图形为A , (1)求平面图形A 的面积;
(2)求平面图形A 绕x 轴旋转一周所得旋转体的体积。
六、证明题(8分) 设,a b 为常数,证明:()()b
b
a
a
f x dx f a b x dx =+-⎰
⎰
拟题学院(系): 数理学院 适用专业: 2012级电专
2012-2013 学年 1 学期 高等数学A1(B 卷) 试题标准答案
(答案
要注明各个要点的评分标准)
一、 填空题:(每小题3分,共15分)
1. 2;
2.2
2sin 2cos 2x x x x +-
;3.2
1x C --+;4. 22
π-;5.(sin cos )x e x x dx +。
二、选择题:(每小题3分,共15分)
1).A ; 2).D ; 3).C ; 4).B ; 5).A 。
三、计算题(本大题共28分)
1.原式333lim[(1)]n
n n
--→∞=+
- -------------------------------------------------------4分 3e -= -------------------------------------------------------7分
2.原式01
(2)()
2lim ()
x x x x x →-⋅-=⋅- -------------------------------------------------------4分
1=-------------------------------------------------------7分 3.解:221dy dt t =+,221dx t dt t =+ --------------------------------------------2分
1
dy dx t
= --------------------------------------------4分 =2
2
dx y d 1()1()d d dt t dx dx t dt =2232
11221t t t t t -+==-+ -----------------------7分
4.解: 1
ln ln xdx x x x dx x
=⋅-⋅⎰⎰ --------------------------4分
ln x x x C =-+ ---------------------------------7分
四、计算题(本大题共24分)
拟 题 人: 书写标准答案人:
1.解:20
2
cos cos cos xdx xdx xdx π
π
π
π=
=+-⎰
⎰⎰原式 ----------------4分
2
02
[sin ][sin ]2x x π
ππ=-= ------------------------------------7分-
2. 解:函数的定义域为(,)-∞+∞,
3(2),6(1)y x x y x '''=-=-,令0,y '=得0x =,2x =
令0y ''=,得1x = . -------------------------------4分 列表讨论如下:
-------------------------
减区间为(0,1),增区间为(,0)-∞,(2,)+∞,极大值为1,极小值为-3
凹区间为(1,)+∞,凸区间为(,1)-∞,拐点为(1,1)- -------------10分 3.解:23
();()p x Q x x x
=
= ------------------------2分 3
3
2
[]dx dx x
x y x e dx C e -⎰⎰=⋅+⋅⎰ ------------------------5分
2333
31[]6
y x x dx C x x C x --=⋅+⋅=
+⋅⎰------------------------7分 五、应用题(10分)
1、解(1)平面图形的面积1
2
1()3
A x x dx =
-=⎰ ------------5分 (2)所求的体积为2114
00
3()10
V x dx x dx πππ=-=⎰⎰ ------------------------10分 六、证明题(8分)
证明:作变换t a b x =+- -------------------------------------------3分
()()b
a
a
b
f a b x dx f t dt +-=-⎰
⎰------------------------------------5分
()b
a
f x dx =
⎰
--------------------------------8分
x (-,0)∞
()0,1
1
()1,2
2
()+∞2,
y '
+
0 - - 0 + y ''
-
-
+
+ y
增区间
凸区间 极大值1 减区间 凸区间 拐点(1,-1)
减区间 凹区间 极小值-3
增区间
凹区间。