勾股定理的几种证法

合集下载

勾股定理的十种证明方法

勾股定理的十种证明方法

勾股定理的十种证明方法勾股定理是我们初中时就接触到的重要定理,也是数学史上最为著名的定理之一,在几何运算和三角函数中都有广泛应用。

其说法是:在直角三角形中,直角边上的平方和等于斜边上的平方,即 a^2+b^2=c^2。

本文将会介绍十种不同的证明方法,每种证明方法都体现了数学思维中的不同角度与方法。

1. 几何证明方法这种证明方法是最早的证明方法之一,它主要通过图形来证明定理的正确性。

我们可以通过构建一条边长为 a 和一条边长为 b 的正方形,再以这两条正方形的对角线为直角边构建一个直角三角形,即可证明勾股定理。

2. 相似三角形证明方法这种证明方法主要通过相似三角形来证明勾股定理的正确性。

我们可以画出一系列相似的三角形,来证明斜边和直角边之间的关系。

3. 数学归纳法证明方法根据数学归纳法,证明当 n=1 时定理成立,当 n=k 时定理成立,则推出 n=k+1 时定理也成立。

此证明方法需要适当运用代数知识来完成。

4. 三角函数证明方法使用三角函数来证明勾股定理也是一种有效的证明方法。

通过使用正弦、余弦、正切等函数来证明斜边和直角边之间的关系。

5. 向量证明方法通过考虑向量的长度和夹角关系,证明斜边和直角边之间的关系。

此方法依赖于向量的基本运算和性质。

6. 代数证明方法这种证明方法主要依赖于代数计算的过程,可以通过平方、开方、因式分解等方法来证明定理的正确性。

7. 微积分证明方法从微积分的角度来考虑勾股定理,可以通过求导和积分的运算关系来证明斜边和直角边之间的关系。

8. 数组和矩阵证明方法运用数组和矩阵的运算来证明勾股定理的正确性,需要适当了解数组和矩阵的基本运算和性质。

9. 物理学应用证明方法勾股定理在物理学中也有广泛的应用,比如在机械学中,勾股定理可以用来计算质点的速度和加速度。

10. 函数图像证明方法运用函数图像的特点来证明勾股定理的正确性,需要适当了解函数图像的特点和性质。

对于一些特殊的函数,也可以通过对其函数图像进行研究来证明定理的正确性。

初中数学-勾股定理16种证明方法

初中数学-勾股定理16种证明方法

勾股定理的16种证明方法【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜D 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED,C∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC,交AC 于点P . 过点B 作BM ⊥PQ,垂足为M;再过点F 作FN ⊥PQ,垂足为N .∵ ∠BCA = 90º,QP ∥BC, ∴ ∠MPC = 90º, ∵ BM ⊥PQ, ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE,交AB 于点M,交DE 于点L . ∵ AF = AC,AB = AD,∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB, 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC,AF 交GT 于F,AF 交DT 于R . 过B 作BP ⊥AF,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c,∴ Rt ΔDHA ≌ Rt ΔBCA .K∴ DH = BC = a,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b,AP= a,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a,下底BP= b,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 = ab b 212-, 985S S S +=,∴824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b, ∴ Rt ΔHBT ≌ Rt ΔABE .∴ HT = AE = a . ∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.R∵ DB = EB ―ED = b ―a, ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM,又得QM = AE = a,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c (如图). 过点A 作AD ∥CB,过点B 作BD ∥CA,则ACBD为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c,AD = BC = a, AC = BD = b,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 作Rt ΔABC 的内切圆⊙O,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF,BF = BD,CD = CE,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AO C BO CAO B ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A,∴ 若 AD :AC ≠AC :AB,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B, ∴ 若BD :BC ≠BC :AB,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a,连结DA 、DC,则 AD = c .∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC,DC = AD = c .∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC,CB ∥DA,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,D D∴ ∠BAF=∠DAE .连结FB,在ΔABF 和ΔADE 中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c,BF = CG = a, ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。

勾股定理常见证法

勾股定理常见证法

勾股定理有多种证明方法,以下是其中一些常见证法:1. 欧几里德证明:通过勾股圆方图证明勾股定理,大正方形的面积等于4个直角三角形加上一个小正方形面积之和。

2. 加菲尔德证明:在梯形中构造三个直角三角形,利用梯形面积等于三个直角三角形的面积之和,证明勾股定理。

3. 小K证明:通过相似三角形,边长之比相等,证明勾股定理。

4. 辅助圆证明:以点B为圆心,BA为半径作圆,延长BC交圆于点E,D,则三角形DCA相似ACE,从而证明勾股定理。

5. 切割定理证明:直角三角形ABC,以点B为圆心BC为半径作圆,交AB及AB延长线于D,E,则BE=BC=BD=a,从而证明勾股定理。

6. 面积合成证明:利用图形拼接证明勾股定理。

7. 行列式证明:n阶行列式等于以n个向量为边在n维空间中张成的n维体的体积,从而证明勾股定理。

8. 赵爽弦图证法:利用弦图构造直角三角形,利用面积法证明勾股定理。

9. 毕达哥拉斯证法:利用正方形分割法证明勾股定理。

10. 书本证明方法:利用八个全等的直角三角形和三个边长分别为a、b、c的正方形构造两个正方形,从而证明勾股定理。

11. 三角形相似推导:利用三角形相似的性质推导勾股定理。

12. 切割线定理证明:利用切割线定理和相似三角形证明勾股定理。

13. 托勒密定理证明:利用托勒密定理和相似三角形证明勾股定理。

14. 利用切线长定理:利用切线长定理和相似三角形证明勾股定理。

15. 总统证法:美国第20任总统加菲尔德在五年前证明了勾股定理,其方法被称为“总统证法”,具体为梯形面积等于三个直角三角形的面积之和。

16. 射影定理证明:利用射影定理和相似三角形证明勾股定理。

17. 余弦定理证明:当90度角时,利用余弦定理证明勾股定理。

18. 达芬奇的证明:利用几何图形和比例关系证明勾股定理。

19. 高斯公式证明:利用高斯公式(也叫鞋带公式)证明多边形面积,从而证明勾股定理。

以上是常见的勾股定理的证法,其中最常用的是面积法,同时还会结合其他几何知识如相似三角形、切割线定理、射影定理等进行证明。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

勾股定理证明方法大全

勾股定理证明方法大全

勾股定理证明方法大全
勾股定理是数学中比较基础的内容,下面介绍几种证明方法: 1. 几何证明法
构造直角三角形ABC,其中∠ABC=90度,AB=c,AC=a,BC=b,则根据勾股定理,有:
c = AB + AC
即:
c = a + b
这个方法是最常见的证明方法,也是最直观的。

2. 代数证明法
将勾股定理转化为代数式,如下所示:
设直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,有:
c = a + b
将c用另一种方式表示,如下所示:
c = sqrt(a + b)
将c代入原式,并进行平方操作可以得到:
c = a + b
因此,勾股定理成立。

3. 数学归纳法
首先,在直角三角形中,当一条直角边为0时,另外两条直角边的长度必然相等,而且都为0,勾股定理显然成立。

接下来,假设当直角边长为n时,勾股定理成立,即:
c = a + b
考虑当直角边长为n+1时,如何证明勾股定理仍然成立。

此时,可以将直角边长为n+1的直角三角形划分成以一条边长为n的直角三角形和一个长度为1的小直角三角形。

根据勾股定理,前者的斜边平方和等于两直角边平方和,后者的斜边平方就是1。

组合起来就得到:
(c + 1) = a + b + 1
即:
c + 2c + 1 = a + b + 1
移项可得:
c = a + b
因此,当直角边长为n+1时,勾股定理仍然成立。

根据数学归纳法,勾股定理对所有正整数均成立。

十种方法证明勾股定理

十种方法证明勾股定理

十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。

它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。

2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。

3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。

4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。

5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。

6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。

7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。

8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。

9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。

10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。

这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。

利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。

2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。

3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。

4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。

5. 通过三角形内部的相似三角形进行推导得出勾股定理。

将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。

6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。

7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。

8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。

9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。

这可以通过暴力算法或递推算法来实现。

10. 利用反证法证明勾股定理。

假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。

通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。

11. 利用勾股定理证明三角形的周长和面积公式。

将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。

12. 利用勾股定理证明三角形的内心与垂心之间的关系。

将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。

13. 利用勾股定理证明三角形的外心与垂心之间的关系。

通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。

14. 利用圆的性质证明勾股定理。

将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。

15. 通过三角形的相似性质,证明勾股定理。

将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。

勾股定理的证明方法5种

勾股定理的证明方法5种

勾股定理的证明方法5种勾股定理是几何学中最为经典的定理之一,它揭示了直角三角形中直角边与斜边的关系。

勾股定理有多种不同的证明方法,下面我们将依次介绍其中五种不同的证明方法。

方法一:几何法证明这种证明方法是最为直观的,它通过几何形状的变换来证明勾股定理。

首先,我们先画出一个直角三角形ABC,然后作出辅助线AD ⊥BC,将三角形ABC分成两个小三角形ΔABD和ΔADC。

根据相似三角形的性质,我们可以得到BD/AB=AB/AC,即BD*AC=AB^2。

同理,我们可以得到CD*AB=AC^2。

将这两个式子相加起来,我们就可以得到BD*AC+CD*AB=AB^2+AC^2,根据平行四边形的性质,我们可以得到BC*AD=AB^2+AC^2,而BC*AD就是直角三角形ABC的斜边的平方AC^2。

因此,通过几何法证明,我们可以得到勾股定理成立。

方法二:代数法证明这种证明方法是使用代数运算来证明勾股定理。

我们可以用直角三角形的三条边的长度来表示三角形的面积。

假设直角三角形的三条边分别为a、b、c,其中c 为斜边,利用面积公式S=1/2*底*高,我们可以得到三角形面积的两种表达式:S=1/2* a*bS=1/2* c*h通过这两个表达式,我们可以得到c*h=a*b,即c^2=a^2+b^2。

方法三:相似三角形法证明这种证明方法利用相似三角形的性质来证明勾股定理。

我们可以在直角三角形ABC中找到一个与之全等的直角三角形DEF。

然后我们可以发现直角三角形ABC和DEF分别是直角三角形ACB和EDF的相似三角形。

由于相似三角形的对应边成比例,我们可以得到AB/DE=BC/EF=AC/DF。

利用这个性质,我们可以得到AB^2=DE^2+DF^2和AC^2=DE^2+EF^2。

将这两个式子相加起来,我们可以得到AB^2+AC^2=DE^2+DF^2+DE^2+EF^2,根据平行四边形的性质,我们可以得到AB^2+AC^2=2*DE^2+2*DF^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 2 a + b + 4 × ab = c + 4 × ab 2 2
2 2
a +b = c
2 2
2
F
方法10 方法
b G c
a E P b C H c a B c D a
b c a b A
方法11 方法
F
E b c a A P b c M N a Q c B c C
方法12 利用相似三角形的性质 方法
所以 a 2 + 2 ab + b 2 = c 2 + 2 ab
故a 2 + b 2 = c 2
方法6 方法6: 意大利文艺复兴时代的著名画家达·芬 意大利文艺复兴时代的著名画家达 芬 奇的拼图验证法
1.在一张长方形的纸板上画两个边长分别为a 1.在一张长方形的纸板上画两个边长分别为a、b的正方形,并 在一张长方形的纸板上画两个边长分别为 的正方形, 连结BC、EF,如图所示; 连结BC、EF,如图所示; BC 如图所示
SABCDEF
=
SA’B’C’D’E’F’ BCDEF
1 1 即a 2 + 2 × ab + b 2 = c 2 + 2 × ab 2 2 a 2 + ab + b 2 = c 2 + ab
故a 2 + b 2 = c 2
方法7: 方法7:欧几里得的证明方法
E
C D
H G
A
P
B
F
a
C a A b M B b
G A F D
a
B
c
c
b
b
E
a
C
美国第二十任总统 伽菲尔德的证法
如图:因为 S 梯形ABCD =
D A a B b c c E a C b
1 1 (a + b) 2 = (a 2 + 2ab + b 2) 2 2
又因为S 梯形ABCD = S ∆ABE + S ∆AED + S ∆CDE
1 1 1 ab + c 2 + ab 2 2 2 1 = (c 2 + 2ab) 2 =
c
1 a ab 2 C b
方法19 方法
c 5 A b E b
B
4 F G a 3 a 6 H c a
c C a 7 M
c 2 1 b D
A B aO C b E Ⅰ Ⅱ F B’ C’
A’ 较图1、图2中两个多边形ABCDEF和ABCDEF的面积, 比较图1 中两个多边形ABCDEF和ABCDEF的面积, ABCDEF 的面积 你能验证勾股定理吗? 你能验证勾股定理吗? 让学生相互交流、讨论、合作,利用面积关系可得到: 让学生相互交流、讨论、合作,利用面积关系可得到:
K
c
H
F G
D
L
c
E
方法8: 方法8: 把原来的两个小正方形, 把原来的两个小正方形,剪几刀 再重新组合成另一个大正方形
5块 块
6块 块
7块 块
8块 块
9块 块
方法9 方法
a b
a a a
b c b a a
b c
a b c
c
b
b
b
c
c b
a
a
b
a
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再 个全等的直角三角形,设它们的两条直角边长分别为a 斜边长为c 做三个边长分别为a 做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a b,所以面积相等. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
勾股定理 的几种证法: 的几种证法:
方法1: 方法1: 用四个全等的直角三角形拼成如图 所示的图形,利用面积关系可得到: 所示的图形,利用面积关系可得到: (1)
b a c c c b a
图3
a b
s大正方形 = s小正方形+4s直角三角形 小正方形+
a 2 + 2ab + b 2 = c 2 + 2ab
如图6 :
c
5 2 4 3
大正方形c 2 :由S1、S 2、S3、S 4、S5组成; 小正方形a 2 :由S1、S 3组成; 小正方形b 2 :由S 2、S 4、S5组成
b
4
5
1
2
故a 2 + b 2 = c 2
3 1
a
(3).用上面的两副五巧板, (3).用上面的两副五巧板,还可以拼出 如下所示的图形: 如下所示的图形:
A B a O C b E F
A B a O C b E Ⅰ Ⅱ F B’
A’ F’
C’ D’
E’
图1
图2
图3
2.沿ABCDEFA剪下,得到两个大小相同的纸板Ⅰ、Ⅱ如 ABCDEFA剪下,得到两个大小相同的纸板Ⅰ 剪下 所示; 图2所示; 将纸板Ⅱ翻转后与Ⅰ拼成如图3所示的图形; 3.将纸板Ⅱ翻转后与Ⅰ拼成如图3所示的图形;
Beijing
August 20--28 2002
方法3 方法3:
中国古代数学家刘徽与“青朱出入图” 中国古代数学家刘徽与“青朱出入图”
刘徽在他的《九章算术》中给出了注解,大意是: 刘徽在他的《九章算术》中给出了注解,大意是:三 角形ABC为直角三角形,以勾为边的正方形为朱方, ABC为直角三角形 角形ABC为直角三角形,以勾为边的正方形为朱方,以 股为边的正方形为青方;以盈补虚, 股为边的正方形为青方;以盈补虚, B 将朱、青二方并成弦方, 将朱、青二方并成弦方, 朱出 2 a c 依其面积关系有a 2 + b 2 = c , 朱方 青入 由于朱方、 由于朱方、青方各有 C A b 一部分在弦方内, 一部分在弦方内, 青入 那一部分就不动了。 那一部分就不动了。 青方
c
4
b
2 5 3 4
5 3
1
2
图7
a
方法5: 方法5: 纸箱妙用: 如图,有一只纸箱ECDG 纸箱妙用: 如图,有一只纸箱ECDG 竖放在地上,用手一推,纸箱向前倒去, 竖放在地上,用手一推,纸箱向前倒去,旋转 90度 到了ABEF的位置, ABEF的位置 90度,到了ABEF的位置,由此勾股定理就可 以得到证明. 以得到证明.你知道为什么吗 ?
方法16 方法 利用多列米定理证明
D a A c b b c B a C
方法17 作直角三角形内切圆证明 方法
A c F b
B
r r E O r a D C
方法18 方法
A a
b ab
a
a
2
D a
A
1 ab a 2
b c c
c2
a D 1 ab 2 b
b
b2
ab a
b C
B
b
c b 1 ab 2 a B
2 2
2
方法2: 方法2:
中国古代数学家赵爽的证法
中国古代方法(赵爽弦图) 中国古代方法(赵爽弦图) 与世界数学家大会
ICM---2002 ICM---2002 --International Congress of Mathematicians International Congress of Mathematicians
C a c
a 2 H 3 c Q E 7 B 4 D c b 9 F8 R T c 1 P 5 c a 6 A
b
A
D
G
B
方法13 方法
b
C
T
b 8 D 3 M 4
B 2 C 6 1 E 5 R a A c
方法14 方法
H G F 7
Q
方法15 利用切割线定理证明 方法
C a E a B a c D A b
故a 2 + b 2 = c 2
1 即( a + b) = c + 4 × ab 2
2 2
c b
a
c
(2)
b
a
s小正方形+4s直角三角形= s大正方形 小正方形+ 直角三角形=
1 即(b − a) + 4 × ab = c 2 2 b 2 − 2ab + a 2 + 2ab = c 2
2
故a + b = c
朱入
青出
青出
方法4 方法4:用五巧板拼图验证
如图所示) (1). 动手制作一副五巧板 (如图所示)
4 5 3 2
1
关键: (2)关键:把斜边上的正方形拆成直角边 上的两个正方形
用两副五巧板, 将其中的一副拼成一个以c 用两副五巧板 , 将其中的一副拼成一个以 c 为边 长的正方形; 将另一副拼成两个边长分别为a 长的正方形 ; 将另一副拼成两个边长分别为 a 、 b 的正 方形。你拼出来了吗?你能验证勾股定理了吗? 方形。你拼出来了吗?你能验证勾股定理了吗?
相关文档
最新文档