Essential Statistical Thermodynamics
推荐几本热力学与统计物理外文教材?

结构。
这两个分支的研究内容涉及到热力学定律、热力学过程、热力学平衡、热力学势、热力学函数、统计力学、量子统计、玻尔兹曼方程等方面。
对于学习物理学的学生来说,热力学与统计物理是必修的课程,而选择一本好的外文教材对于学习这两个分支的知识非常重要。
下面,我将推荐几本热力学与统计物理的外文教材,希望能够帮助大家更好地学习这两个分支的知识。
1.《Thermal Physics》这本教材是由Charles Kittel和Herbert Kroemer合作编写的,是热力学和统计物理方面的经典教材之一。
该教材详细介绍了热力学和统计物理的基本概念、定律和公式,并通过大量的例题和习题来帮助学生理解和掌握相关知识。
该教材还涉及了热力学和统计物理在其他物理学领域中的应用,如固体物理、凝聚态物理、光学等。
2.《Statistical Mechanics》这本教材是由R.K. Pathria和Paul D. Beale合作编写的,是统计物理方面的经典教材之一。
该教材介绍了统计物理的基本概念、理论和应用,包括热力学极限、配分函数、热力学势、统计力学中的量子理论、相变等方面。
该教材还涉及了统计物理在其他物理学领域中的应用,如凝聚态物理、高能物理、生物物理等。
3.《Introduction to Modern Statistical Mechanics》这本教材是由David Chandler编写的,是统计物理方面的著名教材之一。
该教材介绍了统计物理的基本概念、理论和应用,包括热力学极限、配分函数、热力学势、统计力学中的量子理论、相变等方面。
该教材还涉及了统计物理在其他物理学领域中的应用,如凝聚态物理、高能物理、生物物理等。
该教材的特点是注重对物理概念的阐述和理解,同时也涉及了一些现代统计物理的前沿研究内容。
4.《Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers》这本教材是由Robert Floyd Sekerka编写的,是热力学和统计物理方面的著名教材之一。
Thermodynamics培训课件

Application of thermodynamics in engineering
Introduction to thermodynamics
Second law of thermodynamics
Case studies in thermodynamics
02
基本概念
系统与环境
系统
指我们所研究的物体或物质,以及 与其周围的环境相互作用的成分的 总体。
在材料科学中,第三定律可以用来研究材料的热学性 质,例如热膨胀系数、热导率等。
在化学中,第三定律可以用来计算化学反应的熵变, 从而预测反应的方向和程度。
在能源领域,第三定律可以用来评估能源转换的效率 和损失,例如在制冷、发电等过程中。
06
应用案例
制冷机
逆卡诺循环
通过制冷剂在冷凝器、节流阀 、蒸发器等部件中的循环,实
Statistical mechanics: 研究分 子统计和热力学性质 的关系
Fluid mechanics: 研 究液体和气体中能量 的传递和转换
Thermal engineering: 将热力 学原理应用于工程领 域
thermodynamics的重要性
Understand the behavior of systems
只能增加或保持不变。
第二定律的数学表达式
热力学第二定律可以用数学公式表 示为:dS ≥ 0,其中S表示系统的熵 ,dS表示系统熵的变化量。
VS
这个公式意味着,系统熵的变化量 等于流入系统的熵加上系统内部产 生的熵。
第二定律的应用
热力学第二定律在能源、环境、材料等领域都有 广泛的应用。
在环境领域,热力学第二定律可以帮助我们了解 自然界的能量流动和物质循环,为环境保护和可 持续发展提供理论支持。
英国著名物理学书籍

英国著名物理学书籍物理学是一门研究物质、能量、空间和时间等基本概念及其相互关系的科学。
在过去的几个世纪中,英国一直是物理学研究的重要中心之一。
英国的物理学家们在各个领域都做出了杰出的贡献,他们的研究成果被收录在了许多著名的物理学书籍中。
本文将介绍几本英国著名物理学书籍。
1.《自然哲学的数学原理》《自然哲学的数学原理》(Mathematical Principles of Natural Philosophy)是英国物理学家艾萨克·牛顿的代表作,也被认为是现代物理学的奠基之作。
这本书于1687年首次出版,共包含三卷。
第一卷介绍了牛顿的三大运动定律和万有引力定律;第二卷讨论了天体力学;第三卷则探讨了流体力学和声学。
这本书的出版对物理学的发展有着深远的影响,被誉为“自然科学的圣经”。
2.《热力学与统计物理学》《热力学与统计物理学》(Thermodynamics and Statistical Mechanics)是英国物理学家弗朗西斯·艾弗里的经典著作。
这本书于1960年首次出版,共分为两卷。
第一卷主要介绍了热力学的基本概念和原理,包括热力学第一、二、三定律、热力学函数、相变等内容。
第二卷则讨论了统计物理学的基本概念和应用,包括分子动力学、玻尔兹曼方程、热力学平衡、热力学涨落等内容。
这本书是热力学和统计物理学领域的经典著作之一,被广泛应用于物理学、化学、材料科学等领域的教学和研究。
3.《物理学的方法》《物理学的方法》(The Methods of Theoretical Physics)是英国物理学家弗利曼·戴森的著作,于1949年首次出版。
这本书主要介绍了理论物理学家在工作中使用的方法和技巧,包括数学方法、物理学建模、近似方法、对称性原理等内容。
这本书对理论物理学的教学和研究具有重要意义,被誉为“理论物理学的圣经”。
4.《量子力学的数学原理》《量子力学的数学原理》(Mathematical Foundations of Quantum Mechanics)是英国物理学家约翰·冯·诺伊曼的代表作,于1932年首次出版。
统计热力学 Statistical Thermodynamics

The number of combinations for having N1 students in a room can be calculated from
WN1 =
The average occupation numbers
• In the above case, it means the average number of students in room 1 or room 2. • Let j = 1 or 2 , where N1 is the number of students in room 1 and N2 is the number of students in room 2; Let Njk be the number of students in room j for the kth case
Total
1
4
6
A2
A3 A4 Case 5 0 4 1
In this example, the macrostate corresponds to the case (i.e. the # students can be found in each room), whereas the number of possible arrangements for each case is viewed as the corresponding thermodynamic probability. More specifically, for the macrostate 2 (i.e. case 2), the thermodynamic probability is 4. The thermodynamics probability for macrostate 3 equals 6.
机械工程学专业词汇英语翻译(S)2

specimen 试样 speckle 散斑 speckle holography 散斑全息照相术 speckle interferometry 散斑⼲涉法 spectral condition 谱条件 spectral curve 谱曲线 spectral density 谱密度 spectral displacement 谱位移 spectral distribution 谱分布 spectral frequency 谱频率 spectral function 谱函数 spectral line 谱线 spectral method 谱⽅法 spectral position 谱位置 spectral shift 谱位移 spectral theory 谱理论 spectrum 谱 spectrum matrix 谱矩阵 spectrum tensor 谱张量 speed 速率 speed change 变速 speed control 速率第 speed error 速率误差 speed governor 蒂机 speed indicator 速度计 speed limiting device 限速器 speed of autorotation ⾃转速度 speed of heat propagation 热传播速率 speed of light 光速 speed of perception 感觉速率 speed of response 响应速度 speed of sound 声速 speed per hour 时速 speed range 变速范围 speed reduction 减速 speed regulation 速度第 speed regulator 蒂机 speedometer 转速表 sphere 球 sphere of reflection 反射球 sphere shaped 球形的 spherical angle 球⾯⾓ spherical bearing 球⾯⽀承 spherical coordinates 球⾯坐标 spherical function 球⾯函数 spherical joint 球形接头 spherical motion 球⾯运动 spherical pendulum 球摆 spherical shell 球壳 spherical shock wave 球⾯激波 spherical space 对映空间 spherical strain tensor 球⾯应变张量 spherical stress tensor 球⾯应⼒张量 spherical surface 球⾯ spherical tensor 球⾯张量 spherical top 球形陀螺 spherical wave 球⾯波 spheroidal wave function 球波函数 spillway 溢淋 spillway dam 溢劣 spin angle ⾃旋⾓ spin angular momentum ⾃旋⾓动量 spin axis ⾃旋轴 spin coordinate ⾃旋坐标 spin eigenfunction ⾃旋本寨数 spin eigenstate ⾃旋本宅 spin interaction ⾃旋相互酌 spin orbit potential ⾃旋轨道势 spin relaxation ⾃旋弛豫 spin resonance ⾃旋共振 spin resonance frequency ⾃旋共振频率 spin slip spectrum ⾃旋反转谱 spin tensor ⾃旋张量 spin tensor operator ⾃旋张量算符 spin wave ⾃旋波 spin wave theory ⾃旋波理论 spindle 轴 spinning 尾旋 spinning detonation 旋焰爆炸 spinning obstacle 旋转障碍 spinning top 旋转陀螺 spinning wind tunnel 螺旋风洞 spinor field 旋量场 spinor gravitation 旋量引⼒ spinor wave 旋量波 spinor wave equation 旋量波⽅程 spinor wave function 旋量波函数 spiral 螺线 spiral dislocation 螺旋形位错 spiral fiber structure 螺旋形纤维结构 spiral flow 螺旋流 spiral of archimedes 阿基⽶德螺线 spiral orbit 螺线轨道 spiral propeller 螺旋推进器 spiral spring 螺旋形弹簧 spiral trajectory 螺线轨道 spiral vortex 螺旋形涡流 spiral vortex model 螺旋涡模型 spire 尖塔 spirit level ⽔准器 split hopkinson bar 分离式霍普⾦森杆 split pattern 分离模式 splitting 分裂 spoiler 绕菱 sponge 海绵 spongy 海绵状的 spontaneous combustion ⾃燃 spontaneous crack propagation ⾃发裂缝传播 spontaneous emission ⾃发发射 spout 瘤⼝ spouted bed 喷出床 spouting spring 喷泉 spray 喷雾 spray pump 喷淋泵 spray resistance 喷雾阻⼒ spraying effect 雾化效应 spraying nozzle 喷雾嘴 spring 弹簧 spring back 弹性回复 spring balance 弹簧秤 spring buffer 弹簧绶冲器 spring constant 弹簧常数 spring dynamometer 弹簧秤 spring force 弹簧弹⼒ spring hammer 弹簧锤 spring manometer 弹簧式压⼒计 spring model 弹簧模型 spring oscillator 弹簧振⼦ spring pressure 弹簧压⼒ spring pressure gage 弹簧式压⼒计 spring ring 弹簧圈 spring scales 弹簧秤 spring tension 弹簧张⼒ spurious frequency 寄⽣频率 spurious oscillation 寄⽣振荡 spurious scattering 虚散射 squagging ⾃锁 square measure ⾯积单位 square wave ⽅形波 square wave oscillation 矩形波振荡 square wave pulse 矩形脉冲 squashing 压碎 squeezing 压榨 stability 稳定性 stability condition 稳定性条件 stability constant 稳定性常数 stability curve 稳定性曲线 stability layer 稳定层 stability limit 稳定性极限 stability line 稳定性曲线 stability of equilibrium 平衡稳定性 stability of motions 运动稳定性 stability of parallel flow 平⾏寥定性 stability of stratified flow 分层寥定性 stability of structures 结构稳定性 stability of vibration 振动稳定性 stability tensor 稳定性张量 stability theorem 稳定性定理 stabilization 稳定化 stabilized equilibrium 稳定平衡 stabilizer 稳定器 stabilizing force 稳定⼒ stabilizing gyroscope 稳定陀螺 stable axis 稳定轴 stable equilibrium 稳定平衡 stable equilibrium position 稳定平衡位置 stable motion 稳定运动 stable orbit 稳定轨道 stable state 稳定状态 stable system 稳定系 stable wave 稳定波 stage 阶段 stage discharge curve ⽔位量曲线 stage efficiency 分级效率 staged rocket 多级⽕箭 staggered arrangement 交错配置 staggered riveting 交错铆接 staggering 摇摆 stagnant water 静⽔ stagnation 停滞 stagnation curve 静⽔曲线 stagnation density 滞⽌密度 stagnation point 驻点 stagnation point flow 驻点流 stagnation pressure 驻点压⼒ stagnation temperature 滞⽌温度 stake 杆 stalled airfoil 失速机翼 stalled condition 失速条件 stalled flow 失速流 stalled wing 失速机翼 stalling 失速 stalling angle 失速迎⾓ stalling characteristics 失速特性 stalling flight 失速飞⾏ stalling point 失速点 stalling speed 失速速率 stand by power 备⽤功率 standard atmosphere 标准⼤⽓ standard condition 标准条件 standard density 标准密度 standard deviation 标准偏差 standard equation 正规⽅程 standard frequency 标准频率 standard frequency spectrum 标准频谱 standard isobaric surfaces 标准等压⾯ standard linear solid 标准线形固体 standard load 正常负载 standard measure 标准衡器 standard orifice plate 标准孔板 standard pressure 标准压⼒ standard resistance 标准阻⼒ standard solid 标准固体 standard state 标准状态 standard test specimen 标准试样 standard water column 标准⽔柱 standard wave 标准波 standard wind 标准风 standing wave 驻波 star connection y 形接法 starboard 右舷 starling hypothesis 斯塔林假说 start up time 起动时间 starting air 起动空⽓ starting lever 起动杆 starting of oscillations 振荡起动 starting oscillation 起动振动 starting period 起动时间 starting power 起动功率 starting pulse 起动脉冲 starting resistance 起动阻⼒ starting torque 起动转矩 state continuity 状态连续性 state curve 状态曲线 state equation 物态⽅程 state feedback control 状态反馈控制 state function 态函数 state of aggregation 聚集状态 state of energy 能量状态 state of plane stress 平⾯应⼒状态 state of rest 静态 state of strain 应变状态 state of stress 应⼒状态 state of suspension 悬浮状态 state parameter 状态参数 state space 状态空间 state vector 态⽮量 static 静的 static accuracy 静态准确度 static balance 静态平衡 static balancing 静⼒平衡 static balancing machine 静平衡试验机 static constraint reaction 静反⼒ static deflection 静载挠度 static elasticity 静弹性 static equilibrium 静态平衡 static fatigue 静疲劳 static field 静场 static force 静⼒ static fracture 静态破裂 static friction 静摩擦 static head 静压头 static hysteresis curve 静态滞后曲线 static imbalance 静⼒不平衡 static indeterminateness 超静定性 static instability 静⼒不稳定性 static lift 静升⼒ static load 静负载 static magnetic field 静磁场 static modulus of elasticity 静弹性模量 static moment 静⼒矩 static moment of the surface 静⼒表⾯矩 static pressure 静压 static pressure tube 静压管 static reaction 静反酌 static rolling friction 静滚动摩擦 static slip 静滑移 static stability 静⼒稳定性 static strength 静⼒强度 static stress 静应⼒ static surface tension 静表⾯张⼒ static temperature 静温 static test 静⼒试验 static unbalance 静⼒不平衡 statical condition 静⼒条件 statically defined 静定的 statically determinate 静定的 statically determinate beam 静定梁 statically determinate reaction 静定反⼒ statically determinate structure 静定结构 statically determinate system 静定系 statically indeterminate beam 静不定梁 statically indeterminate structure 静不定结构 statically indeterminate system 静不定系 statics 静⼒学 stationary axle 固定轴 stationary blade 固定叶⽚ stationary creep 定常蠕变 stationary distribution 定常分布 stationary equilibrium 定常平衡 stationary field 恒定场 stationary flow 定常流 stationary motion 定常运动 stationary orbit 静⽌轨道 stationary point 平稳点 stationary potential 稳定势 stationary random process 平稳随机过程 stationary satellite 静⽌卫星 stationary state 平稳态 stationary vibration 平稳振动 stationary vortex 定常涡旋 stationary wave 驻波 statistic test 统计检验 statistical accuracy 统计精度 statistical analysis 统计分析 statistical fluctuation 统计涨落 statistical mechanics 统计⼒学 statistical noise 统计噪声 statistical theory of turbulence 湍脸计理论 statistical thermodynamics 统计热⼒学 statistical weight 统计重量 statistics 统计学 staude cone 斯陶德锥⾯ steady detonation 定常爆轰 steady flow 定常流 steady free surface flow 定常⽆压流 steady gas flow 定常⽓流 steady load 不变负荷 steady motion 定常运动 steady potential 稳定势 steady precession 稳定旋进 steady rest 稳定架 steady state 平稳态 steady state creep 定常蠕变 steady state magnetic field 稳定磁场 steady state oscillation 稳态振荡 steady vorticity 定常涡流 steam 蒸汽 steam bleeding 抽汽 steam drive 蒸汽传动 steam ejector 蒸汽喷射器 steam extraction 抽汽 steam hammer 蒸汽锤 steam injector 蒸汽喷射器 steam jet 蒸汽喷流 steam meter 蒸汽量计 steam nozzle 蒸汽喷嘴 steam power 汽⼒ steam pressure 蒸汽压 steep throw 陡抛 steepness of wave edge 波前陡度 steering angle 转向⾓ steering column 转向柱 steiner theorem 平⾏轴定理 stellar dynamics 恒星动⼒学 stellar energy 恒星能量 stellar guidance 天⽂导航 stellar structure 恒星结构 step disturbance 阶跃扰动 step rocket 多级⽕箭 step velocity 阶跃速度 stepped shaft 梯级式轴 stepwise loading 逐步加载 stereographic net 伍尔夫经纬圈 stereographic projection 球⾯投影 stereophotogrammetry ⽴体照相测量术 steric acceleration 空间加速度 stiff chain 刚链 stiff joint 刚节点 stiffener 加劲材 stiffening 加劲 stiffening plate 加强板 stiffening rib 加强肋 stiffening ring 加强环 stiffness 刚度 stiffness coefficient 刚度系数 stiffness matrix 刚度矩阵 stiffness method 刚度法 stiffness modulus 劲度模量 stiffness reactance 劲度⼒抗 stiffness rotor 刚性转⼦ stiffness term 刚度项 stochastic acceleration 随机加速度 stochastic force 随机⼒ stochastic hydraulics 随机⽔⼒学 stochastic process 随机过程 stochastic similarity 随机相似 stochastic simulation 随机模拟 stockmayer potential 史托克梅耶势 stokes approximation 斯托克斯近似 stokes flow 斯托克斯怜 stokes fluid 斯托克斯铃 stokes law 斯托克斯定律 stokes stream function 斯托克斯怜数 stokes theorem 斯托克斯定理 stokes wave 斯托克斯波 stoma ⼩孔 stone stream 岩⽯流 stop 停⽌ stopping distance 停⽌距离 storage 存储 storage modulus 存储模量 stored energy 储能 stored energy function 储能函数 storm surge 风暴潮 storm wave 风暴波 straight angle 平⾓ straight line motion 直线运动 straight line plot of the bending stress 弯曲应⼒直线图 straight line wedge 直线楔 straightening 矫正 straightness 平直度 strain 应变 strain ageing 应变时效 strain amplitude 应变幅度 strain anisotropy 应变蛤异性 strain anneal method 应变退⽕法 strain component 应变分量 strain crack 应变裂缝 strain deviator 形变偏量 strain ellipsoid 应变椭球 strain energy 应变能 strain energy density 应变能密度 strain energy function 应变能函数 strain energy method 应变能法 strain energy theory 应变能理论 strain fatigue 应变疲劳 strain field 应变场 strain free lattice ⽆应变点阵 strain gage 应变计 strain gradient 应变梯度 strain hardening 应变硬化 strain hardening capacity 应变硬化能⼒ strain hardening coefficient 应变硬化系数 strain hardening curve 应变硬化曲线 strain hardening index 应变硬化指数 strain history 应变历程 strain intensity 应变强度 strain invariant 应变不变量 strain matrix 应变矩阵 strain measure 应变量度 strain measurement 应变测定 strain potential 应变势 strain rate 应变率 strain rate effect 应变率效应 strain rate history 应变率历程 strain relaxation 应变弛豫 strain space 应变空间 strain tensor 应变张量 strain theory 应变理论 strain work 形变功 strainer 式过滤器 stranded wire 绞线 strap 带 stratification 分层 stratification coefficient 分层系数 stratification of atmosphere ⼤⽓分层 stratification of water mass ⽔团分层 stratification of wind 风分层 stratiform structure 层状结构 stratosphere 平零 stream 怜 stream bed 河床 stream cross section center 怜截⾯中⼼ stream flow 河流 stream function 怜数 stream sheet 怜层 stream surface 伶 stream tube 淋 streamer 闪流等离⼦柳 streaming 怜 streaming around 绕流 streaming potential 怜位势 streamline 吝 streamline analogy 吝相似 streamline field 吝场 streamline flow ⽚流层流 streamli n e f o r m T b_ / p >。
迪昂关于热力学得的书

迪昂关于热力学得的书以下是迪昂关于热力学的一些书籍推荐:1. "热力学基础"(Fundamentals of Thermodynamics)- Author: Claus Borgnakke, Richard E. Sonntag该书全面介绍了热力学的基本原理和应用,内容包括热力学基本概念、热力学性质、热力学第一和第二定律、热力学循环等。
2. "工程热力学"(Engineering Thermodynamics)- Author: Yunus A. Çengel, Michael A.Boles该书适用于工程专业的学生,详细解释了热力学的基础知识和应用,包括能量分析、物质平衡、热力学第一和第二定律、热力循环等。
3. "材料热力学"(Thermodynamics of Materials)- Author: David R. Gaskell, David E. Laughlin该书主要讨论了材料的热力学性质和行为,包括相变、相图、固溶体、合金等内容,能帮助读者更好地理解和预测材料的热力学行为。
4. "非平衡热力学导论"(An Introduction to Non-equilibrium Thermodynamics)- Author: Jemal Guven, J.A. González该书重点介绍了非平衡(不可逆)热力学的基本原理和方法,包括经典非平衡热力学、宏观系统的非平衡热力学、微观系统的非平衡热力学等。
5. "统计热力学导论"(An Introduction to StatisticalThermodynamics)- Author: Terrell L. Hill该书介绍了统计热力学的基本概念和理论,包括微观和宏观观点的关系、分子速度分布、理想气体、热力学函数等内容。
热力学一些词汇

一些热力学词汇:Heat pump(热泵)Heat source(热源)Heat(enthalpy) of formation(生成热(生成焓))Heat(热)Helmholtz function(亥姆霍兹函数)Hess’law(赫斯定律)Humidity(湿度)Ideal gas equation of state(理想气体状态方程)Inequality of Clausius(克劳修斯不等式)Intensive quantity(强度量)Internal combustion engine(内燃机)Internal energy(热力学能(内能))Inversion curve(转变曲线)Inversion temperature(转回温度)Irreversible cycle(不可逆循环)Irreversible process(不可逆过程)Isentropic compressibility(绝热压缩系数)Isentropic process(定熵过程)Isobaric process(定压过程)Isolated system(孤立系)Isometric process(定容过程)Isothermal compressibility(定温压缩系数)Isothermal process(定温过程)Joule,J.P.(焦耳)Joule-Thomson effect(焦耳-汤普逊效应)Kelvin, L.(开尔文)Kinetic energy(动能)Kirchhoff’s law(基尔霍夫定律)Latent heat(潜热)Law of corresponding states(对应态定律)Law of partial volume(分体积定律)Le Chatelier’s principle(吕-查德里原理)Local velocity of sound(当地声速)Lost of available energy(有效能耗散)Mach number(马赫数)Mass flow rate(质量流量)Maximum work from chemical reaction(反应最大功)Maxwell relations(麦克斯韦关系)Mayer’s formu la(迈耶公式)Mechanical equilibrium(力平衡)Mixture of gases(混合气体)Moist air(湿空气)Moisture content(含湿量)Molar specific heat(摩尔热容)Nernst heat theorem(奈斯特热定理)Nozzle(喷管)One dimensional flow(一维流动)Open system(开口系)Otto cycle(奥托循环)Parameter of state(状态参数)Perfect gas(理想气体)Perfect gas(理想气体)Perpetual-motion engine of the second kind(第二类永动机)Perpetual-motion engine(永动机)Phase(相)Polytropic process(多变过程)Potential energy(位能)Power cycle(动力循环)Pressure(压力)Principle of increase of entropy(熵增原理)Process(过程)Psychrometric chart(湿空气焓-湿图)Pure substance(纯物质)Push work(推挤功)Quality of vapor-liquid mixture, Dryness(干度)Quantity of refrigeration(制冷量)Quasi-equilibrium process(准平衡过程)Quasi-static process(准静态过程)Rankine cycle(朗肯循环)Ratio of pressure of cycle(循环增压比)Real gas(实际气体)Reduced parameter(对比参数)Refrigerant(制冷剂)Refrigeration cycle(制冷循环)Refrigerator(制冷机)Regenerative cycle(回热循环)Reheated cycle(再热循环)Relative humidity(相对湿度)Reversed Carnot cycle(逆卡诺循环)Reversed cycle(逆循环)Reversible cycle(可逆循环)Reversible process(可逆过程)Saturated air(饱和空气)Saturated vapor(饱和蒸汽)Saturated water(饱和水)Saturation pressure(饱和压力)Saturation temperature(饱和温度)Second law of thermodynamics(热力学第二定律)Simple compressible system(简单可压缩系)Sink(冷源)Specific heat at constant pressure(比定压热容)Specific heat at constant volume(比定容热容)Specific heat(比热容)Specific humidity(绝对湿度)Specific volume(比体积)Stagnation enthalpy(滞止焓)Standard atmosphere(标准大气压)Standard enthalpy of formation(标准生成焓)Standard state(标准状况)State postulate(状态公理)State(状态)Statistical thermodynamics(统计热力学)Steady flow(稳定流动)Steam(水蒸气)Subsonic(亚声速)Superheated steam(过热蒸汽)Supersonic(超声速)Technical work(技术功)Temperature scale(温度标尺)Temperature(温度)Theoretical flame temperature(理想燃烧温度)Thermal coefficient(热系数)Thermal efficiency(热效率)Thermal equilibrium(热平衡)Thermodynamic Probability(热力学概率)Thermodynamic system(热力学系统)Thermodynamic temperature scale(热力学温标)Thermodynamics(热力学)Third law of thermodynamics(热力学第三定律)Throttling(节流)Triple point(三相点)Unavailable energy(无效能)Universal gas constant(通用气体常数)Vacuum(真空度)Van der Waals’equation(范德瓦尔方程)Velocity of sound(声速)Virial equation of state(维里状态方程)Wet saturated steam(湿饱和蒸汽)Wet-Bulb temperature(湿球温度)Work(功)Working substance(工质)Zeroth law of thermodynamics(热力学第零定律。
热力学书籍

热力学书籍
热力学是物理学中的一个重要分支,研究热与其他形式的能量之间的相互转换关系。
在学习热力学理论时,需要阅读相关的热力学书籍,以下是一些经典的热力学书籍推荐:
1.《热力学与统计物理学》(Thermodynamics and Statistical Mechanics):作者是 Richard Fitzpatrick,这本书具有较强的教学性质,内容系统全面,适合初学者学习。
2.《热力学及其应用》(Thermodynamics and Its Applications):作者是 Jefferson W. Tester,这本书对热力学基础知识和实际应用都有涉及,尤其对于化工和材料领域的学生非常有用。
3.《热力学和统计物理学:一种简明教程》(Thermodynamics and Statistical Physics: A Short Course):作者是 Richard E. Wilde,这本书采用简明易懂的方式讲解热力学和统计物理学的基本概念和
应用,适合快速入门的读者。
4.《热力学与材料科学》(Thermodynamics and Materials Science):作者是 Richard A. Swalin,这本书探讨了热力学在材料科学中的应用,包括物质的相变、材料的热力学性质等方面,对于材料科学专业的学生非常有用。
总之,热力学是一个广泛应用的学科,对于理工科学生来说是必修的课程之一,选择一本适合自己的热力学书籍进行学习是非常重要的。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Appendix BEssential Statistical ThermodynamicsKarl K. IrikuraPhysical and Chemical Properties Division,National Institute of Standards and Technology, Gaithersburg, MD 20899Some computational methods, particularly ab initio techniques, producedetailed molecular information but no thermodynamic informationdirectly. Further calculations are needed to generate familiar, ideal-gasquantities such as the standard molar entropy (S E ), heat capacity (C p E ),and enthalpy change [H E (T )-H E (0)]. This Appendix details the necessaryprocedures, including worked examples. Thermochemical calculationscan be extended to transition states of chemical reactions. Procedures areprovided for converting such information into rate constants. Tables arealso provided for unit conversions and physical constants.Statistical thermodynamics calculations are necessary to compute properties as functions of temperature. In some computations, such as ab initio electronic calculations of molecular energy, the raw results do not even correspond to properties at absolute zero temperature and must always be corrected. All the corrections are based upon molecular spectroscopy, with temperature-dependence implicit in the molecular partition function,Q . The partition function is used not only for theoretical predictions, but also to generate most published thermochemical tables. Many data compilations include descriptions of calculational procedures (1-3).Corrections Unique to Ab Initio PredictionsBy convention, energies from ab initio calculations are reported in hartrees, the atomic unit of energy (1 hartree = 2625.5 kJ/mol = 627.51 kcal/mol = 219474.6 cm -1) (4). These energies are negative, with the defined zero of energy being the fully-dissociated limit (free electrons and bare nuclei). Ab initio models also invoke the approximation that the atomic nuclei are stationary, with the electrons swarming about them. This is a good approximation because nuclei are much heavier than electrons. Consequently, theIrikura, K. K. In "Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics" (ACS Symposium Series 677); Irikura, K. K. and Frurip, D. J., Eds.; American Chemical Society: Washington, DC, 1998.Errata corrected through January 19, 2001ZPE '12j 3N &6i '1i (1)H 2%F 2 2HF (2)resulting energies are for a hypothetical, non-vibrating molecule. Although oscillators may be at rest in classical mechanics, real (quantum-mechanical) oscillators are always in motion. The small residual motion at absolute zero temperature is the zero-point vibrational energy , abbreviated ZPVE or ZPE. For a simple harmonic oscillator, the ZPE equals one-half the vibrational frequency. Although all real molecular vibrations are at least slightly anharmonic, they are usually approximated as harmonic. Thus, the molecule’s ZPE may be taken as one-half the sum of the vibrational frequencies. In equation 1, N is the number of atoms in the molecule and the i are the fundamentalvibrational frequencies. There are 3N -6 vibrations in a non-linear molecule and 3N -5 in a linear molecule; equation 1 is for the more common non-linear case. The ZPE must be added to the raw ab initio energy to obtain an energy corresponding to absolute zero temperature, T = 0 K.In practice, the ZPE correction is slightly complicated by the observation that ab initio vibrational frequencies are often in error by +5% to +10%. To compensate for this error, the computed frequencies are usually multiplied by empirical scaling factors. The most recent recommendations are those of Scott and Radom (5). For example, they suggest scaling HF/6-31G* frequencies by 0.8953 to predict vibrational spectra (i.e.,fundamental frequencies), by 0.9135 for the computation of ZPEs, by 0.8905 to predict enthalpy differences H E (298.15) - H E (0), and by 0.8978 to predict S E (298.15). The methods for computing these quantities are described below. Common abbreviations and acronyms of the ab initio literature are defined in the glossary (Appendix D) of this book.In this Appendix, the degree sign (E ) that indicates ideality and standard pressure (1 bar)is omitted except where the thermal electron convention for ions is being emphasized (see below).Enthalpies of formation depend upon the thermodynamic conventions for reference states of the elements. Since this information is not intrinsic to an isolated molecule, an ab initio reaction energy (i.e., energies for at least two molecules) must becombined with experimental data to compute an enthalpy of formation, f H E .Example: f H E 0 of hydrogen fluoride. There are many levels of approximation in ab initio theory; several are described in the chapters of this book. For the present example,we choose the CCSD(T)/aug-cc-pVTZ//B3LYP/6-31G(d) level. The notation indicates that (1) molecular geometries are calculated at the density-functional B3LYP level using the 6-31G(d) basis set and (2) molecular electronic energies are calculated at the high CCSD(T) level of theory using the rather large aug-cc-pVTZ basis set. To compute an enthalpy of formation for HF, we must also choose a balanced chemical reaction for which to calculate an energy. We choose arbitrarily the reaction shown in equation 2.Note that the ideal-gas energy and enthalpy are equal at 0 K, since H = E + PV = E +n RT = E.Q (T )'j i exp(&i /kT )(3)The optimized B3LYP/6-31G(d) bond lengths are 0.743, 1.404, and 0.934 D for H 2, F 2, and HF respectively, in reasonably good agreement with the experimentally derived values r e = 0.741, 1.412, and 0.917 D respectively (6). The calculated (harmonic)B3LYP/6-31G(d) vibrational frequencies are 4451, 1064, and 3978 cm -1 for H 2, F 2, and HF respectively, in modest agreement with the experimentally derived harmonicfrequencies e = 4401, 917, and 4138 cm -1 respectively (6). Since 1 cm -1 equals only 0.01196 kJ/mol, small errors in ZPE will not cause significant errors in the final enthalpy of formation. Scaling the calculated frequencies by 0.9806 (5) and substituting them into equation 1 yields ZPE = 2182, 522, and 1950 cm -1 = 0.009943, 0.002377, and 0.008887hartree for H 2, F 2, and HF respectively. At these optimized geometries, the CCSD(T)/aug-cc-pVTZ energies are E e = -1.172636, -199.313519, and -100.349402hartree for H 2, F 2, and HF respectively. Adding the ZPEs thus leads to enthalpies (or energies) at T = 0 K of E 0 = -1.162693, -199.311142, and -100.340515 hartree for H 2,F 2, and HF respectively. The calculated enthalpy change is then r H E 0(reaction 2) =-0.207194 hartree = -544.0 kJ/mol. Using the experimental (defined, in these cases)enthalpies of formation for H 2 and F 2 of 0 and 0 kJ/mol (1), we obtain f H E 0(HF) =-272.0 kJ/mol. This is in good agreement with the experimental value of -272.5 ± 0.8kJ/mol (1). All the ab initio calculations for this example were done on a personal computer.General Relationships of Statistical ThermodynamicsIn the present context, statistical thermodynamics is meant to include the methods used to convert molecular energy levels into macroscopic properties, especially enthalpies,entropies, and heat capacities. Molecular energy levels arise from molecular translation (i.e., motion through space), rotation, vibration, and electronic excitation. This information constitutes the spectroscopy of the molecule of interest and can be obtained experimentally or from calculations.Partition Function.The molecular energy levels i are used to compute the molecular partition function , usually denoted by the symbol Q , as shown in equation 3. The sumextends over all energy levels. (Sometimes this sum is written only over all unique energy levels, in which case a level degeneracy g i must be included in the sum.) However, for very high temperatures at which the molecule becomes unstable, the extent of the sum may be ambiguous. Tabulated thermochemical data must be used with caution under such conditions; the values (1) may depend strongly upon the high-energy cutoff procedure adopted and (2) may deviate implicitly from the ideal-gas model.One typically chooses the lowest energy level to be the zero of energy, so that no levels lie at negative energies. From equation 3 it follows that the largest contributions to Q are from the lowest energy levels. Conversely, levels that lie far above kT (207 cm -1at room temperature) have only a minor effect on Q and its derivative thermodynamic quantities.S 'T ln Q )&ln N %(4)C v 'NkT M 2M T 2(T ln Q )(5)C p 'C v %R (6)H (T )!H (0)~m T0C p d T 'RT 2Q M Q %RT (7)M M T (T ln Q )'ln Q %T Q M Q M T (8)M 2M T 2(T ln Q )'2Q M Q M T %T Q M 2Q M T 2&2(9)M Q MT '1kT 2j ii exp(&i /kT )(10)M 2QM T 2'&2T M Q%1k 2T 4j i 2i exp(&i /kT )(11)Thermodynamic Functions. Given the partition function, the usual molar thermodynamic functions can be calculated based upon the following general equations.Equation 4 is for the entropy, equation 5 for the heat capacity at constant volume,equation 6 for the heat capacity at constant pressure, and equation 7 for the enthalpydifference relative to absolute zero temperature. N is Avogadro ’s number (6.022137 ×1023), k is the Boltzmann constant (1.38066 × 1023 J/K), and the ideal-gas constant R /Nk (4). The last two terms inside the brackets in equation 4 arise from the indistinguishability of identical molecules, which requires a factor of (1/N !) in the partition function for the ensemble. Expressions 4-7 may more easily be evaluated using equations 8-11 for the various derivatives.Practical CalculationsA complete set of molecular energy levels is almost never available. To simplify the problem, one usually adopts a model in which translation, rotation, vibration, and electronic excitation are uncoupled. In other words, one makes the approximation that the different types of motion are unaffected by each other and do not mix together. This leads to a separability of Q into four factors that correspond to separate partition functions for translation, rotation, vibration, and electronic excitation. This is shown in equation 12, where the explicit dependence upon temperature has been dropped forQ'Qtrans QrotQvibQelec(12)Qtrans'(2mkT)3/2h&3V(13)S trans 'R[(3/2)ln(2m/h2)%(5/2)ln(kT)&ln(p)%5/2](14)Cp,trans'(5/2)R(15)simplicity. When electronically excited states are considered, one often assumes that the translational, rotational, and vibrational spectra of the excited state are the same as those of the ground electronic state. This is crude, but is convenient when no other information is available. Moreover, if the excited state lies far above kT, the final results will not be sensitive to such details.Different energy units are used conventionally in the fields of molecular spectroscopy, quantum chemistry, and thermochemistry. To provide some feeling for magnitudes, the values of the thermal energy kT, at “room temperature” (298.15 K) and at 1000 K, are listed in Table I in several units. In this Appendix, all units are of the SI (Système International: kg, m, s, Pa, K) unless otherwise indicated.Table I. Thermal energy (kT) at two temperatures, expressed in various unitsUnit“Roomtemperature”1000 Kkelvin (K)298.151000 wavenumber (cm-1)207.2695.0 Hertz (s-1) 6.212 × 1012 2.084 × 1013 kJ/mol 2.4798.314 kcal/mol0.592 1.987 electron volt (eV)0.02570.0862 hartree (atomic unit)0.0009440.003167Translational Partition Function. Rigorously, Qtrans must be calculated from a sumover all the translational energy levels that are available to a molecule confined to a cubic box of volume V = RT/p (molar volume of an ideal gas at temperature T and pressure p). This is seldom done. Instead, the sum is approximated as an integral to obtain equations 13-16. This approximation is good as long as m3/2T 5/2p-1»h3(2)-3/2k-5/2 (3). At the standard pressure p = 1 bar = 105 Pa = 0.986923 atm, this condition is met for sufficiently heavy molecules, m (in amu) » 11.4 T -5/3, and for sufficiently high temperatures, T» 4.31 m-3/5 (m expressed in amu). Fortunately, this covers the conditions of common chemical interest. For an atomic ideal gas, there is no vibrational or rotational motion.[H (T )&H (0)]trans '(5/2)RT (16)Q rot '82h 3(2kT )3/2(I A I B I C )1/2'(kT /h )3/2(ABC )&1/21/2&1(17)Q linear rot '82IkTh 2'kT/(hB )(18)As an example, we can calculate the standard entropy for neon ideal gas at T =298.15 K. The atomic mass is converted to SI units using the equivalence N A amu =0.001 kg, where N A = 6.022 × 1023 mol -1 is the Avogadro constant. Thus for 20Ne (m =19.992 amu), m = 3.320 × 10-26 kg. The values of the physical constants are h = 6.626× 10-34 J s, k = 1.381 × 10-23 J K -1, and R = kN A = 8.3145 J mol -1 K -1 (7,4). The standard pressure is p = 105 Pa. Substituting these values into equation 14 yields S 298.15(20Ne) =146.21 J mol -1 K -1. For 21Ne (m = 20.994 amu), S 298.15(21Ne) = 146.82 J mol -1 K -1, and for 22Ne (m = 21.991 amu), S 298.15(22Ne) = 147.40 J mol -1 K -1. Averaging these values using the natural abundances of 90.48%, 0.27%, and 9.25%, respectively (7,8), we find S 298.15= 146.32 J mol -1 K -1 for the naturally occurring isotopic distribution. This agrees well with the accepted value of 146.33 J mol -1 K -1 (9).Rotational Partition Function. The free rotation of a rigid molecule is also quantized (the angular momentum and its projection are integer multiples of h /2), so the rotational energy is restricted to certain discrete levels. Rotational spectra are characterized by the constants A , B , and C , where A / h /(82I A ) and likewise for B and C . The quantities I A,B,C are the principal moments of inertia of the molecule, with the convention I A # I B # I C (orA $B $C ). Many computer programs, including ab initio packages, report the rotational constants when provided with a molecular geometry. The moments can also be calculated manually as the eigenvalues of the inertial tensor, which has elements like and , where the index i runs over all atoms in I xy '&j m i x i y i I xx '%j m i (y 2i %z 2i )the molecule and the coordinate origin is at the center of mass. Linear molecules (I A = 0)are described by a single rotational constant, B , and a single moment of inertia, I . Details may be found in textbooks of molecular spectroscopy.Fortunately, at high enough temperatures (kT » hA ), the sum can be replaced by an integral as it is for translation. In the general case, the rotational partition function is given by equation 17. For linear molecules, equation 18 should be used instead. In theseand subsequent equations, the symbol denotes the “rotational symmetry number ” or “external symmetry number ” for the molecule. This is the number of unique orientations of the rigid molecule that only interchange identical atoms. It preserves parity restrictions on the interchange of identical nuclei when summation is replaced by integration.Identifying the correct symmetry number is a common point of difficulty; it is discussed further below.For the typical case (equation 17), the thermodynamic functions are given by equations 19-21. For linear molecules (equation 18), equations 22-24 are used instead.Srot 'R [ln(82/)%(3/2)ln(2kT /h 2)%(1/2)ln(I A I B I C )%3/2]'R [(3/2)ln(kT /h )&(1/2)ln(ABC /)&ln()%3/2](19)C p ,rot '(3/2)R(20)[H (T )&H (0)]rot '(3/2)RT(21)S linearrot 'R [ln(82IkT /h 2)%1]'R [ln(kT /hB )%1](22)C linear p ,rot 'R(23)[H (T )&H (0)]linear rot 'RT (24)External Symmetry Number. Some computer programs, such as many ab initio packages, determine the molecular symmetry and external symmetry number ()automatically. If such a program is unavailable, may be determined by hand. Withpractice, this becomes very fast.If you are familiar enough with group theory to identify the molecule ’s point group (10), then can be determined from Table II (11). Without identifying the pointgroup, one can count manually the number of orientations of the rigid molecule that interchange only identical atoms.Table II. Symmetry numbers corresponding to symmetry point groups Group Group Group GroupC 1, C i , C s , C 4v1D 4h 2T , T d 12O h 24I h 60S n n /2C n , C nv , C nh n D n , D nh , D nd 2nFor example, the benzene molecule (C 6H 6) belongs to the D 6h point group. From Table II, = 12. Alternatively, one can draw the molecule as a hexagon with numberedvertices. Rotating the drawing by n × 60E , where n runs from 0 to 5, generates six different orientations that are distinguished only by the artificial numbering of the vertices.Each of these six orientations can be flipped over to generate another orientation, for a total of 12 unique orientations, = 12.Another example is methyl chloride, CH 3Cl. This belongs to the C 3v point group,so = 3. Alternatively, one can artificially number the hydrogen atoms and see that there are three unique orientations, related by rotations of n × 120E (n = 0-2) around the C-Cl bond axis.Q vib 'k i 1&e&h i /&1(25)S vib '&R j i&e&h i /%R j i h &h i /kT i (26)C p ,vib 'R jih kT 2e &h i /kT &e&h i /(27)[H (T )&H (0)]vib 'RT j ikT &h i /kT(28)Chlorobenzene, C 6H 5Cl, belongs to the C 2v point group, so = 2. Alternatively,one can again number the hydrogen atoms and see that there are two unique orientations,related by rotations of n ×180E (n = 0-1) around the C-Cl bond axis. In contrast, toluene (C 6H 5CH 3) belongs to the C s point group, so = 1. There are no ways to rotate or flip the molecule rigidly that will leave it unchanged. Allowing the methyl group to rotate leads to an internal symmetry number which is discussed below, following the section on internal rotation.Vibrational Partition Function. To complete the simple rigid-rotator/harmonic oscillator (RRHO) model, one must consider the molecular vibrations. As indicated in the discussion of ZPE (equation 1), a molecule that contains Natoms has 3N -6 vibrational frequencies (3N -5 for linear molecules). The partition function is given in equation 25,where the product runs over all vibrational frequencies i . The corresponding thermodynamic functions are given by equations 26-28.Example: Hydrogen Fluoride . Earlier we used the results of ab initio calculations to obtain a value for f H E 0(HF). The other equations above permit us to compute ab initio thermodynamic functions, which will provide an enthalpy of formation at the more useful temperature of 298.15 K. Results are summarized in Table III. For simplicity, we will neglect the naturally occurring heavy isotopes of hydrogen. The molecular weight of 1H 19F is 20.006 amu. Using equation 14, as done above for neon,leads to S trans = 146.22 J mol -1 K -1. HF is a linear molecule, so we use equation 22 to calculate S rot . The ab initiocalculation reports a rotational constant B = 605.64 GHz =6.0564 × 1011 s -1 based upon the calculated B3LYP/6-31G(d) equilibrium geometry and the most common isotopes. This molecule belongs to the C 4vpoint group ( = 1); there are no identical nuclei that can be interchanged by any rotation. Hence S rot = 27.67 J mol -1K -1. For the vibrational contribution, we scale the B3LYP/6-31G(d) frequency of 3987cm -1 by 1.0015 as suggested for entropies (5) to obtain = 3993 cm -1. This is multiplied by the speed of light, c = 2.998 × 1010 cm s -1 (7,4), to convert wavenumbers to SI frequency units, = 1.197 × 1014 s -1. Thus h /kT = 19.27 and equation 26 yields S vib =7.22 × 10-7 J mol -1 K -1. The total entropy is S 298.15 = S trans + S rot + S vib = 173.89 J mol -1 K -1,in good agreement with the accepted value of 173.78 J mol -1 K -1 (9).For enthalpy and heat capacity, the B3LYP/6-31G(d) frequency is scaled by 0.9989 (5) to obtain = 3983 cm -1. The heat capacity Cp (HF) is calculated using equations 15, 23, and 27, leading to C p = C p, trans + C p, rot + C p, vib = (5/2)R + R + 1.38 × 10-5 J mol -1 K -1 = 29.10 J mol -1 K -1. This compares well with the accepted value of 29.14J mol -1 K -1 (1). Finally, the enthalpy difference can be computed using equations 16, 24,and 28 to be [H (298.15)-H (0)] = (5/2) RT + RT + 2.14 × 10-4 J mol -1 = 8.68 kJ mol -1.This can be used to computef H E 298.15(HF) = f H E 0(HF) + [H (298.15)-H (0)]HF -[H (298.15)-H (0)]elements . Taking the ab initio value f H E 0(HF) = -272.0 kJ/mol from above, the calculated enthalpy difference of 8.68 kJ/mol for HF, and the accepted enthalpy differences of (8.47)/2 and (8.83)/2 kJ/mol for ½H 2 and ½F 2 (9), we obtainf H E 298.15(HF) = -272.0 kJ/mol, in agreement with the accepted value of -273.3 ± 0.7 kJ mol -1 (9) [-272.5 ± 0.8 kJ/mol is listed in older ref (1)].Table III. Results for Hydrogen Fluoride ExampleContributionS , J/(mol @K)C p , J/(mol @K)[H (298.15)-H (0)], kJ/mol Translation146.2220.79 6.20Rotation27.678.31 2.48Vibration7 × 10-7 1 × 10-5 2 × 10-4Total 173.8929.108.68Electronic Partition Function. Although they may not have low-lying electronic excited states, some molecules have degenerate electronic ground states. Free radicals are a common example. They may have unpaired electrons in their electronic ground states and a net electron spin of S = n unpaired /2, where n unpaired is the number of unpaired electrons.(Beware not to confuse the spin quantum number S with the entropy.) The multiplicity,or degeneracy g , of such a state is g = (2S +1). Using degeneracy numbers is equivalent to an explicit count of all states, including degenerate ones. Thus, Q elec = g is a constant and only affects the entropy: S elec = R ln(g ) and C p, elec = [H (T )-H (0)]elec = 0. Since most free radicals have only a single unpaired electron, the usual effect is to increase the entropy by R ln(2). In addition to spin degeneracies, some states have spatial degeneracies. This situation is most common for diatomic molecules. Linear molecules with a spatial symmetry other than G (e.g., or ) have a spatial degeneracy of 2. Forexample, the OH radical has a 2 ground state, so its degeneracy is g = 2 (spin) × 2(spatial) = 4. If there are both spin and spatial degeneracies, spin-orbit coupling lifts the degeneracy, often significantly. In the example of OH, the 4-fold degenerate ground state is split into two doubly-degenerate levels separated by 139.2 cm -1 (6). In such a case the low-lying excited states should be included in the calculation of thermodynamic quantities.The partition function is given by equation 29, wherei and g i are the excitation energiesQ elec 'j g i exp(&i /kT )(29)S elec 'Rg i e &i /%R j g i(i /kT )e &i /kTj g i e &i /kT (30)C p ,elec '&&2(31)[H (T )&H (0)]elec 'RT j g i(i /kT )e &i /kT j g i e &i /kT (32)(spectroscopic T 0) and degeneracies of the excited states, g 0and 0 / 0 are for the ground state, and the sum runs over all the electronic states being considered, including the ground state. The contributions to the thermal functions are given by equations 30-32.This treatment assumes, rather crudely, that the rotations and vibrations are unaffected by electronic excitation.Example: Entropy of Methyl Radical. For simplicity, we again neglect minor isotopes. Results are summarized in Table IV. The molecular weight of CH 3 is then m = 15.023 amu, so S trans = 142.65 J mol -1 K -1. This is a flat, triangular molecule that belongs to the D 3hpoint group, = 6. The experimental bond length is r e = 1.0767 D =1.0767 × 10-10 m (12-14). The moments of inertia can be evaluated using the symmetry of this oblate top, or more generally by diagonalizing the inertial tensor. We place the molecule in the yz plane with one hydrogen atom on the z axis. The center of mass coincides with the carbon atom. The cartesian coordinates then lead to an inertial tensor with components I xx = 3m H r e 2, I xy = I yx = 0, I xz = I zx = 0, I yy = (3/2)m H r e 2, I yz = I zy = 0, and I zz = (3/2)m H r e 2 = 2.910 × 10-47 kg m 2. This is already diagonal, with eigenvalues I A =I B = 2.910 × 10-47 kg m 2 and I C = 5.820 kg m 2 so that S rot = 43.50 J mol -1 K -1 (equation19). The observed vibrational frequencies of CH 3 are 3004.4, 606.5, 3160.8, and 1396cm -1 for 1, 2, 3, and 4 respectively (15). Since 3 and 4 are both doubly degenerate (e N symmetry), they are counted twice and we have the correct number of vibrations, 3N -6 = 6. Converting to SI units leads to S vib = 6.51 × 10-5 + 1.84 + 6.42 × 10-5 + 0.15 =1.99 J mol -1 K -1. In this case, this is a radical with one unpaired electron, S = ½(electronic ground state is 2A 2O ), so the degeneracy g = 2 and S elec = R ln(2). Adding the four contributions to the entropy gives S 298.15 = 193.9 J mol -1 K -1, in agreement with the literature value of 194.2 ± 1.3 J mol -1 K -1 (1).Example: Entropy of Hydroxyl Radical. For simplicity, we again neglect minor isotopes. Results are summarized in Table IV. The molecular weight of OH is then m = 17.003 amu, so S trans = 144.19 J mol -1 K -1. Again using the simple RRHO model,the observed bond length is r e = 0.96966 D (6) and the symmetry number = 1 (C 4v pointQ free rotor '(int h )&3I int(33)I int 'I top &I 22I A%2I B I C(34)group). Hence I = 1.480 × 10-47 kg m 2 and S rot = 28.22 J mol -1 K -1. Using the observed vibrational fundamental for the vibrational frequency,= 0 = 3568 cm -1 (6) leads to S vib = 5.04 × 10-6 J mol -1 K -1. If spin-orbit splitting is ignored, Q elec = 4 as explained above,so S elec = 11.53 J mol -1 K -1. Combining these four contributions yields S = 183.9 J mol -1K -1. If instead the spin-orbit splitting is included, so that g 0 = g 1= 2 and 1 = 139.2 cm -1= 2.765 × 10-21 J, then equation 30 yields S elec = 11.08 J mol -1 K -1 and so the total S =183.5 J mol -1 K -1. The literature value is 183.71 ± 0.04 J mol -1 K -1 (1).Table IV. Methyl and Hydroxyl Examples, S E 298, J/(mol @K)ContributionMethyl Hydroxyl a Hydroxyl b Translation142.65144.19144.19Rotation43.5028.2228.22Vibration1.99 5 × 10-6 5 × 10-6Electronic 5.7611.5311.08Total 193.9183.9183.5a Spin-orbit splitting ignored.b Spin-orbit splitting included.Internal Rotation. This refers to torsional motion, most commonly involving methyl groups. There are three ways to treat such a rotor, depending upon its barrier to rotation.The free and hindered rotor models require that an internal symmetry number, int , beincluded. int equals the number of minima (or maxima) in the torsional potential energy curve. The harmonic oscillator model does not require int because it ignores all but one of the energy minima. For intermediate barrier heights (hindered rotor), the appropriateness of an internal symmetry number may be confusing. In such cases, avoid over- or under-counting states by ensuring that the limiting case of infinite barriers(harmonic oscillator model, no int ) moves smoothly into the limiting case of zero barrier(free rotor model, int needed) as the barrier height decreases. Note that the vibrational frequency corresponding to the torsion must be deleted if the torsion is treated as a free or hindered rotation.Free Rotor. If the barrier to rotation is much less than kT , then the rotor may be considered freely rotating. For a symmetric rotor such as a methyl group, the partition function is given by equation 33, where I int is the reduced moment of inertia for the internal rotation and is given by equation 34 (3). Asymmetric rotors can be treated using。