橡胶圈的直径计算

合集下载

橡胶密封圈直径测量方法

橡胶密封圈直径测量方法

橡胶密封圈直径测量方法Rubber seals are essential components in many industrial and household applications. They are used to prevent leaks and create a barrier to protect objects from contaminants. However, the effectiveness of a rubber seal largely depends on its diameter. Therefore, measuring the diameter of a rubber seal accurately is crucial to ensure its proper function.橡胶密封圈直径的测量方法对于确保其正确功能至关重要。

在许多工业和家庭应用中,橡胶密封圈是必不可少的组件。

它们用于防止泄漏并创建防护屏障,以保护物体免受污染物的侵害。

然而,橡胶密封圈的有效性很大程度上取决于其直径。

There are several methods available for measuring the diameter of a rubber seal. One common method is to use a caliper, which is a precision instrument designed for taking accurate measurements. By gently placing the caliper jaws around the rubber seal and adjusting them until they come into contact with both sides of the seal, a precise measurement can be obtained. This method is ideal for smaller diameter seals that require high precision measurements.有几种可用于测量橡胶密封圈直径的方法。

橡胶密封圈规格

橡胶密封圈规格

橡胶密封圈规格1. 简介橡胶密封圈是一种常见的密封材料,广泛应用于各个行业的机械设备中。

橡胶密封圈的规格包括内径、外径和厚度等方面的要求。

本文将介绍橡胶密封圈规格的相关内容,包括常见规格参数以及其选择要点。

2. 常见规格参数橡胶密封圈的规格参数主要包括内径、外径和厚度三个方面,下面将逐一介绍这些参数的作用及其常见取值范围。

2.1 内径橡胶密封圈的内径是指密封圈中心孔的直径,用于与密封装置中的轴或杆相匹配。

内径的选择要根据实际使用情况来确定,一般应选择与轴或杆的直径相匹配的密封圈。

常见的内径取值范围为2mm至500mm。

2.2 外径橡胶密封圈的外径是指密封圈外缘的直径,用于与密封装置中的孔相匹配。

外径的选择要根据实际使用情况来确定,一般应选择与孔的直径相匹配的密封圈。

常见的外径取值范围为5mm至600mm。

2.3 厚度橡胶密封圈的厚度是指密封圈的厚度,用于确定密封圈的弹性和密封性能。

厚度的选择要考虑密封圈的压缩率、工作压力等因素,一般应根据实际需求选择适当的厚度。

常见的厚度取值范围为0.5mm至50mm。

3. 规格选择要点在选择橡胶密封圈的规格时,需要根据具体的使用情况和要求进行综合考虑。

以下是一些规格选择的要点供参考:3.1 工作温度工作温度是选择橡胶密封圈规格时需要考虑的一个重要因素。

不同材料的橡胶密封圈适用的工作温度范围有所不同,需要根据实际工作温度选择合适的密封圈。

一般来说,耐温性能好的橡胶密封圈价格相对较高。

3.2 工作压力工作压力也是选择橡胶密封圈规格时需要考虑的一个重要因素。

不同材料的橡胶密封圈适用的工作压力范围有所不同,需要根据实际工作压力选择合适的密封圈。

高压下工作的橡胶密封圈通常需要增加密封圈的厚度或使用更耐压的材料。

3.3 密封要求不同的密封要求对橡胶密封圈的选择也有一定的影响。

如果需要具有耐油、耐酸碱等特殊性能的密封圈,就需要选择相应材料的密封圈。

此外,还需要考虑密封圈的弹性和密封性能,以确保能够满足所需的密封要求。

橡胶密封圈的设计及参数的介绍

橡胶密封圈的设计及参数的介绍

橡胶密封圈的设计及参数的介绍橡胶密封圈,耐高温密封圈,耐腐蚀密封圈,大型密封圈,硅橡胶密封圈,氟橡胶密封圈,橡胶垫圈,夹布油封o形圈作动态密封时,用在往复运动状态和用在旋转运动状态的密封原理有所不同。

用于往复运动状态的o形圈,是靠由封作用达到密封的。

为此。

形圈的内径设计略小于袖径(约1g6),使o 形圈的内侧稍受扩张W抱在往复杆上。

当然.o形图的内径不能比轴径小很多,否则o形因61长期受捡伸—加剧变形,失去弹比引起早期泄漏。

同时,1 给予O形圈以14—20%的压缩量(其装配如图3 用于旋转运动状态的()形围。

其密封机理i 机理相仿,但由于O形圈与拙的接触团积比汕』接触面积要大,所以o形圈的少热大,易磨损。

密封时,拙速受到一定的限制,一般不超过2 压力为150公斤/厘米’。

O形图用于高速旋抽密封时,考虑列橡胶[ 收缩的情况,往往将它的内径设汁成比抽径大5 5—8%,其装配情况如刚—191)所示。

出于整’ 周向压缩,当拙旋转时,o形圈阅摩擦乍热而4 大于抽径5%的o形因正好抱紧机拙,从而起1 用。

如果o形周内径比抽径小,它就处于拉仲4 转时,摩擦生热引起o形圈收缩,促使o形圈对4 从上面的叙述可知,无沦用于甜态还是动态密封的o形蹋,都需根据使用条件,考虑纽子‘定购压缩民这是o形因能起密封作用的先决条件。

其次,o形圈的密封性能还与o形圈和轴表面的光洁度、容纳o形圈沟槽的大小、密封面之间的间隙大小以及胶料性能等闲素有关。

旋轴的表面、尤其是o形因的表面总是有[引凸不平的,这对o形圈的自封作用起了一定的破坏作用,因此对秒表面和o形图表面的光洁度要求要高。

容纳o形圈的沟槽最绊迫使用的是断而呈矩形的“矩形沟槽“,沟楷必须有容纳密封团变形的空间。

通常.沟榴的宽度一般为o形圈断面亢得的1.3一1.5倍。

因为固定用o形因的压缩虽较大,沟榴的宽度也通史偏大些。

拄复运动用o 形困压缩量铰小,沟槽览度可小些。

旋转轴密封的沟槽宽度应是o形圈断面的1.05—1.1倍。

特瑞堡o型圈计算

特瑞堡o型圈计算

特瑞堡o型圈计算特瑞堡(Trelleborg)O型圈是一种常见的密封元件,广泛应用于各种工业领域。

它是由橡胶或塑料材料制成的圆环,具有环形横截面的密封件。

O型圈的主要作用是防止液体或气体从密封接头处泄漏,并且还可以起到防尘、防水的作用。

本文将详细介绍特瑞堡O型圈的计算方法。

在进行特瑞堡O型圈的计算之前,需要掌握一些基本参数。

主要有以下几个方面:1.内径(ID):O型圈内部的直径。

2.外径(OD):O型圈外部的直径。

3.截面直径(CS):O型圈的横截面的直径。

4.圆周长(C):O型圈的圆周长。

5.压缩量(C.S):O型圈在安装后所受的压缩量。

6.压缩量百分比(C.S%):O型圈压缩量与其初始截面厚度之比的百分数。

特瑞堡O型圈的计算方法如下:1.确定密封的工作条件:O型圈主要用于密封液体或气体,因此需要知道该液体或气体的压力、温度等工作条件,以便选取合适的O型圈材料。

2.测量安装尺寸:在确定了安装位置后,需要测量设备的安装尺寸,包括内径(ID)和槽宽度。

3.选择合适的O型圈:根据测量的尺寸和工作条件,选择合适的O型圈材料和尺寸。

4.计算压缩量:根据安装尺寸和O型圈厚度,计算出压缩量(C.S)。

压缩量的计算公式如下:C.S=(ID+CS)-OD5.计算压缩量百分比:根据压缩量和初始截面厚度,计算出压缩量百分比(C.S%)。

C.S%=(C.S/CS)*100%6.验证O型圈的适用性:根据计算得到的压缩量和压缩量百分比,与特瑞堡提供的O型圈技术数据进行比较,验证选择的O型圈是否满足工作条件。

7.安装O型圈:根据测量的安装尺寸和选择的O型圈,进行安装。

确保O型圈完全填充密封槽,并在正确的位置。

总结起来,特瑞堡O型圈的计算主要包括确定工作条件、测量安装尺寸、选择合适的O型圈、计算压缩量和压缩量百分比等步骤。

只有选择合适的O型圈,并正确安装,才能确保其正常工作。

橡胶圈的直径计算

橡胶圈的直径计算

橡胶圈的直径计算本文将从橡胶圈的类型、计算公式及实际应用等方面,详细介绍橡胶圈直径的计算方法。

一、橡胶圈的类型根据橡胶圈的结构和功能,可以分为O型圈、D型圈、Y型圈、V型圈、U型圈等不同类型。

每种类型的橡胶圈都有其独特的设计要求和使用范围。

1.O型圈:O型圈是最常用的橡胶密封元件,它具有圆形的截面形状,能够在轴或孔的周边产生良好的密封效果。

O型圈常用于静态和动态密封,如水管、油管、气管等。

2.D型圈:D型圈的截面形状呈D形,它主要是用于轴向密封。

D型圈的特点是具有较好的弹性,能够自动适应轴的直径变化。

常见的应用场合包括汽车发动机、液压系统等。

3.Y型圈:Y型圈又称斜交圈,截面形状呈Y字形。

它主要用于剪切密封,能够在轴向和径向方向同时产生密封效果。

常见的应用场合包括液压缸和液压缸活塞等。

4.V型圈:V型圈的截面形状呈V形,它常用于泵阀密封。

由于V型圈的两侧可产生压紧力,使其密封效果良好。

常见的应用场合包括液压机械和流体系统等。

5.U型圈:U型圈的截面形状呈U形,它主要用于静态密封。

U型圈具有良好的弹性和耐磨性,常用于电线槽、门窗、仪表仪器等。

以上仅是橡胶圈的部分类型,每种类型的橡胶圈都有其特定的使用范围和设计要求。

二、橡胶圈直径的计算公式1.O型圈直径的计算公式:O型圈的直径(D)=内径(d)+2×截面直径(c)2.D型圈直径的计算公式:D型圈的直径(D)=内径(d)+2×压缩高度(h)+2×截面宽度(w)3.Y型圈直径的计算公式:Y型圈的直径(D)=内径(d)+2×压缩高度(h)+2×截面宽度(w)4.V型圈直径的计算公式:V型圈的直径(D)=内径(d)+2×压缩高度(h)+2×截面宽度(w)5.U型圈直径的计算公式:U型圈的直径(D)=内径(d)+2×厚度(t)在计算橡胶圈的直径时,需要先确定橡胶圈的内径,以及截面直径、压缩高度、截面宽度或厚度等参数。

橡胶密封圈规格型号表

橡胶密封圈规格型号表

橡胶密封圈规格型号表本文将为您介绍橡胶密封圈的规格型号表。

橡胶密封圈是一种常见的密封材料,广泛应用于各种工业领域,如汽车制造、机械设备、航空航天等。

了解不同规格型号的橡胶密封圈对于正确选择和使用密封圈至关重要。

1. 密封圈的定义和作用橡胶密封圈是一种环形零件,由橡胶材料制成,具有良好的弹性和耐磨性。

它被设计用于填充两个或多个连接部分之间的缝隙,以防止液体或气体泄漏,并防止外部杂质进入系统。

2. 密封圈的分类根据不同的应用需求和材料特性,橡胶密封圈可以分为以下几类:2.1 O型圈(O-Ring)O型圈是最常见且广泛使用的一种密封圈。

它具有环形截面,并可以在静态和动态应用中提供可靠的密封效果。

O型圈通常由聚合物材料(如丁腈橡胶、氟橡胶、硅橡胶等)制成,可以耐受不同温度和压力条件下的使用。

2.2 方形密封圈(Square Ring)方形密封圈是一种具有正方形或矩形截面的密封圈。

它通常用于静态密封应用,如管道连接点。

方形密封圈由橡胶材料制成,提供可靠的密封效果,并能够承受一定的压力。

2.3 X型圈(X-Ring)X型圈是一种具有四个唇部的密封圈,其截面呈“X”字形。

相比于O型圈,X型圈提供更好的密封效果,并减少了摩擦和磨损。

它通常由聚合物材料制成,适用于高温和高压环境。

2.4 其他类型除了上述三种常见的密封圈类型外,还有其他一些特殊用途的密封圈,如V型圈、U型圈、Y型圈等。

这些特殊类型的密封圈在特定领域有其独特的应用。

3. 密封圈的规格型号表下面是橡胶密封圈的规格型号表,其中包含了常见密封圈的尺寸、材料和适用范围:规格型号内径(mm)外径(mm)直径(mm)材料用范围O-101 5 10 2.5 丁腈橡胶一般工业应用O-201 10 15 2.5 氟橡胶高温、耐化学品应用O-301 15 20 2.5 硅橡胶高温应用X-102 6 12 3 氟橡胶高温、高压应用X-202 12 18 3 聚四氟乙烯高温、耐化学品应用Square-10 15 2.5 丁静规格型号内径(mm)外径(mm)直径(mm)材料用范围1 腈橡胶态密封应用Square-2 15 20 2.5 氟橡胶静态密封应用请注意,以上仅为示例,实际使用时应根据具体需求选择合适的规格型号。

O型圈规格与O型圈标准

O型圈规格与O型圈标准

O型圈规格与O型圈标准
O型圈是一种截面为圆型的橡胶O型密封圈,因其截面为O型,故称其为O型圈。

O型圈规格是:ID内径*CS线径。

比如:8*2,那么此O型圈的内径ID是8,外径OD是12,线径CS是2(即截面直径)。

但是国内也有以O型圈的外径*线径。

我公司的O型圈规格有ID内径0.8至2000mm*CS线径0.5至15mm。

O型圈规格内径*线径(1.78-133.07*1.78MM)
O型圈规格内径*线径(1.24-247.32*2.62MM)
O型圈规格内径*线径(4.34-456.06*3.53MM)
O型圈规格内径*线径(10.46-557.61*5.33MM)
O型圈规格内径*线径(113.67-557.66*6.99MM)
O型圈规格内径*线径(24.4-144.4*3.1MM)
O型圈规格内径*线径(149.3-299.3*5.7MM)
O型圈规格内径*线径(149.5-399.5*8.4MM)
O型圈规格内径*线径(0.8-500*0.5-1MM)
O型圈规格内径*线径(1-2000*1-15MM)
O型圈是一个标准件,O型圈规格又可以分为美标系列O型圈,日标系列O型圈,欧标系列O型圈,国标系列O型圈。

O型圈按材料的不同又可分为NBR丁腈橡胶O型圈,NR天然橡胶O型圈,SBR 丁苯橡胶O型圈,CR氯丁橡胶O型圈,EPDM三元乙丙橡胶O型圈,HNBR氢化丁腈橡胶O型圈,SILICOME硅胶O型圈,FKM(VITON)氟橡胶O型圈,FLS硅氟橡胶O型圈、PU聚氨脂O型圈、PTFEO型圈,聚四氟乙烯O型圈。

橡胶圈的直径计算

橡胶圈的直径计算

橡胶圈的直径计算(出自GB53268-97)d0=e/(K R0.5(1-ρ))d0——橡胶圈的截面直径(㎜)e——接口环向间隙(㎜)玻璃钢管取1.5~2㎜ρ——压缩率,玻璃钢管35%~40%。

D R=K R*D WD R——安装前橡胶圈环向内径(㎜)K R——环径系数,玻璃钢管取0.88~0.92D W——插口槽外径(㎜)O形密封圈和密封圈槽的选配及应用陈爱平周忠亚摘要O形密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。

据此提出一种选配两者尺寸的理论计算方法,并以Y341—148注水封隔器所选密封圈的计算为例说明,根据不同的密封圈可以计算出相应的密封圈槽尺寸。

为保证密封圈长期有效地工作,还必须合理选择其压缩率、拉伸量和孔、轴配合精度等相关参数。

选取压缩率时,应考虑有足够的密封面接触压力、尽量小的摩擦力和避免密封圈的永久性变形。

顾及到一般试制车间的加工水平和井下工具主要是静密封的状况,建议密封面的轴、孔配合应优先选用H8/e8。

主题词密封圈密封圈槽选配使用寿命Selection of O-ring and calculation of O-ring groove sizeChen Aiping,Zhou Zhongya(Research Institute of Oil Production Technology,Jianghan PetroleumAdministration,Qianjiand City,Hubei Province)Rational matching of O-rings and O-ringgrooves is of great importance to p[rolonging the service life of O-rings.A method for selecting O-ring was presented.The sizes of the O-ring gtoove can be calculated according to various O-rings.To ensure long-term and effective work of the ring,the compressibility,tensile dimension and bore-shaft matching accuracy should be properly selected.Subject Concept Terms:O-ring O-ring groove matching service life用O形密封圈(以下简称密封圈)密封是最常用的一种密封方式,然而至关重要的是如何正确地选择密封圈和设计密封圈槽尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

橡胶圈的直径计算(出自GB53268-97)d0=e/(K R0.5(1-ρ))d0——橡胶圈的截面直径(㎜)e——接口环向间隙(㎜)玻璃钢管取1.5~2㎜ρ——压缩率,玻璃钢管35%~40%。

D R=K R*D WD R——安装前橡胶圈环向内径(㎜)K R——环径系数,玻璃钢管取0.88~0.92D W——插口槽外径(㎜)O形密封圈和密封圈槽的选配及应用陈爱平周忠亚摘要O形密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。

据此提出一种选配两者尺寸的理论计算方法,并以Y341—148注水封隔器所选密封圈的计算为例说明,根据不同的密封圈可以计算出相应的密封圈槽尺寸。

为保证密封圈长期有效地工作,还必须合理选择其压缩率、拉伸量和孔、轴配合精度等相关参数。

选取压缩率时,应考虑有足够的密封面接触压力、尽量小的摩擦力和避免密封圈的永久性变形。

顾及到一般试制车间的加工水平和井下工具主要是静密封的状况,建议密封面的轴、孔配合应优先选用H8/e8。

主题词密封圈密封圈槽选配使用寿命Selection of O-ring and calculation of O-ring groove sizeChen Aiping,Zhou Zhongya(Research Institute of Oil Production Technology,Jianghan Petroleum Administration,Qianjiand City,Hubei Province)Rational matching of O-rings and O-ringgrooves is of great importance to p[rolonging the service life of O-rings.A method for selecting O-ring was presented.The sizes of the O-ring gtoove can be calculated according to various O-rings.To ensure long-term and effective work of the ring,the compressibility,tensile dimension and bore-shaft matching accuracy should be properly selected.Subject Concept Terms:O-ring O-ring groove matching service life用O形密封圈(以下简称密封圈)密封是最常用的一种密封方式,然而至关重要的是如何正确地选择密封圈和设计密封圈槽尺寸。

常规的方法是将密封圈套在宝塔上用游标卡尺测量外径,再确定其相应尺寸。

这种方法的弊端是:(1)密封圈是弹性体,外径测量不准确;(2)在设计新工具时,往往没有现成的密封圈,难以确定尺寸,其过盈量往往掌握不准。

过盈量太大时密封圈易被剪切损坏,太小时又容易失封。

针对这种状况,笔者提出一种选配密封圈的理论计算方法(指外密封圈),以供参考、讨论。

密封圈的密封机理[1]密封圈密封属于挤压弹性体密封,是靠密封环预先被挤压由弹性变形产生预紧力,同时工作介质压力也挤压密封环,使之产生自紧力。

也就是说,挤压弹性体密封属于自紧式密封。

密封圈在介质压力p1作用下,其受力状况如图1所示,产生的接触压力为p c =pco+Δpc(1)式中pc——介质压力下的总接触压力,MPa;p co——密封圈初始压力,称之为预接触压力,MPa;Δp c——介质压力经密封圈传递给接触面的接触压力,称为介质作用接触压力,Δp c=κp1,MPa,其中κ为侧压系数,κ=υ/(1-υ),对于橡胶密封件κ≈0.9~0.985;υ为密封圈材料的泊松比,对于橡胶密封件,υ=0.48~0.496。

图1 密封圈接触压力分布要保持密封,必须保证pc >p1,而Δpc永远小于p1,故应保持足够的预接触压力pco,即密封圈要有足够的预压缩率,才能保证密封。

但如果预压缩率太大,又会影响密封圈的工作寿命,因此密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。

密封圈及密封圈槽的选配方法内密封圈的选配比较简单,不再赘述,这里只介绍一种外密封圈的选配方法。

假定孔、轴直径分别为D、d,所选密封圈为D0×d0,问题是如何确定密封圈槽的底径D1,如图2所示。

图2 密封圈及密封圈槽尺寸密封圈被套在密封圈槽上之后,一般都有一定的拉伸量,其断面直径d变小了,假定变为d1,根据体积不变原理,则密封圈安装前后的体积相等,即(2)式中D——密封圈外径,mm;d——密封圈断面直径,mm;D——孔直径,mm;δ——密封圈过盈量,mm;d1——拉伸后的密封圈断面直径,mm。

式(2)中,δ值可根据D值从表1中选取,D0、d为已知值,则可计算出d1。

为了简化计算,用D+δ-d0代替D+δ-d1计算,则式(2)可简化为(3)简化后计算出的d1值有一定的误差,将d1再回归到式(3)中计算,求出d2,即(4)式中d2——拉伸后的密封圈断面直径,mm。

如此类推,可计算出d3、d4……,一般来说,d2值就已达到要求,则密封圈槽底径D1为D1=D+δ-2d2(5)现举例说明以上计算,如Y341—148注水封隔器活塞孔、轴尺寸为136H9/d9(孔为136 +0.10mm),所选密封圈为135mm×5mm,过盈量δ选为1.3mm,则变形后的密封圈断面直径为取d2=4.96mm,则D 1=D+δ-2d2=127.38mm结合孔径配上公差后,则槽底径D1为。

假定没有135mm×5mm的密封圈,只有132mm×5mm的密封圈,则密封圈槽底径可用同样方法算得,即配上公差后D1为。

由以上计算可知,根据不同的密封圈,可以计算出不同的密封圈槽尺寸,可见这种方法比较简单、灵活。

但是为保证密封长期有效地工作,还必须合理选择其压缩率、拉伸量和孔轴配合精度等相关参数。

相关参数的确定与应用1.压缩率ε或过盈量δ密封圈是典型的挤压型密封。

如图3所示,其压缩率ε通常由下式表示式中h0——密封圈槽底至被密封面的距离,mm。

图3 密封圈压缩率对于圆柱面静密封和往复动密封,ε=10%~15%;对于平面静密封,ε=15%~30%;旋转动密封ε=3%~8%;低摩擦密封ε=5%~8%。

选取密封圈压缩率时主要应考虑的因素,一是要有足够的密封面接触压力;二是摩擦力应尽量小;三是应尽量避免永久性变形。

与压缩率ε相对应的是过盈量δ,过盈量δ表示密封圈的预压缩情况,其推荐值见表1。

表1 基本尺寸与过盈量关系推荐值 mm注:井下工具用密封圈多为静密封,δ值应从静密封栏中选取。

2.拉伸量密封圈装入密封圈槽后,一般都会有一定的拉伸量。

但据所查阅的资料可知,尚未对拉伸量有明确的定义。

根据笔者的理解,拉伸量应是拉伸后的密封圈中径与自然状态时的中径之比,即a=(D1+d2)/(D-d) (6)式中a——密封圈的拉伸量,mm。

a的通常推荐值为1.01~1.05。

笔者一般取值为1.05,特殊情况下,甚至取为1.1。

为了保证密封圈装入密封圈槽后不至太松,a值取得稍大。

3.密封圈槽的宽度与形状一般推荐的密封圈槽尺寸见表2,其形状如图4所示。

槽宽大致为密封圈断面直径的1.3倍,而平时设计中往往是密封圈槽宽度与密封圈断面直径相等,或者不论密封圈断面直径多大,密封圈比槽宽0.5mm。

采用这种尺寸设计的弊端是:(1)用起子或铁钎撬密封圈时,容易损坏密封圈槽,尤其是内密封圈槽,这将降低其耐压差能力;(2)孔、轴相套时,由于密封圈有预过盈量,槽太窄易剪切密封圈。

因此,今后在设计密封圈槽宽时应规范尺寸。

在加工r为0.1~0.2和R 为0.2~0.5的圆弧时,要特别注意r处,如果太尖,在承受高压时易损坏密封圈,需用砂布将其稍稍打钝。

表2密封圈槽的尺寸[1]mm图4 密封圈槽的标准形状4.轴孔配合公差在承受大于16MPa以上压差时,孔、轴配合一般推荐为H8/f8或H8/f7,在承受高压情况下,还要安装密封挡环[1]。

而井下工具工作压力一般超过16MPa,所用孔、轴配合常常采用H9/d9、H10/d10、H10/c10,甚至H11/c11,一方面精度等级较低,另一方面轴、孔间隙太大。

这就要求密封圈的过盈量也要大。

如Y241—150酸化压裂封隔器的轴、孔配合采用H8/e8,Y341—148堵水封隔器采用H9/d9,轴、孔基本尺寸相同的酸化压裂封隔器密封圈的过盈量比堵水封隔器的小,密封效果就好。

相同精度等级轴、孔的配合间隙不同,其受力状况是有区别的,如H10/c10的轴、孔间隙比H10/d10大,密封圈在相同压力p作用下,其受剪切力的面积1大,则总作用力就大,密封圈损坏的可能性加大,但如果轴、孔间隙过小,则轴、孔的同轴度要求更高,加工难度增大。

如果片面追求高精度,势必增加加工难度和成本。

考虑到试制车间的加工水平及井下工具的实际工作状况(主要是静密封),笔者建议密封圈密封面的轴、孔配合应优先选用H8/e8,在使用要求不高的情况下,也可选用H9/e9。

5.橡胶硬度在工作压力8~16MPa范围内,橡胶推荐硬度为70~80HS;16~32MPa范围内,推荐硬度为80~90HS。

应加强密封圈进货质量检验。

建议(1)密封圈槽的尺寸和形状应规范设计,不可随心所欲。

(2)为保证密封圈长期有效地工作,必须合理选择压缩率(或过盈量)、拉伸量和孔轴配合精度等。

(3)密封圈及密封圈槽的选配可由计算求得。

相关文档
最新文档