第八章 三元相图1PPT课件

合集下载

三元相图ppt

三元相图ppt
三元相图的分析技巧
相态的分析
确定三元相图的三个相态
根据三元相图中的三个区域,可以确定三元相图的三个相态,即液相、固相和气 相。
确定相态之间的转化
三元相图中不同相态之间的转化与成分和温度有关,可以根据相图中的成分和温 度范围确定不同相态之间的转化条件。
结晶过程的分析
分析结晶过程
三元相图中的结晶过程分析需要了解不同成分的溶液中结晶 过程的特点,以及结晶过程中成分的变化规律。
材料科学的基础研究
三元相图的研究也是材料科学基础研 究的重要组成部分。通过对三元相图 的深入研究,可以更好地理解物质的 本质和规律,为材料科学的其他领域 提供基础支撑。
THANKS
谢谢您的观看
新型材料的探索
研究者们通过实验探索新型材料的三元相图,以寻找具有更优性能的相变材料, 应用于能源、环保等领域。
理论研究进展
计算方法的改进
研究者们不断改进计算方法,以更准确地预测三元相图中的 相行为。
分子动力学模拟
利用分子动力学模拟技术,研究者们可以模拟真实材料的三 元相图,为理论预测提供更为准确的依据。
多晶型和同素异构体的存在
在某些三元体系中,可能存在多种晶型和同素异构体,这些不同结构的物质在物理和化学 性能上可能存在显著的差异,因此如何考虑这些差异对三元相图的影响也是一个重要的问 题。
三元相图未来研究方向的建议
加强实验研究
由于三元相图的复杂性,实验研究仍然是确定三元相图最准确的方法。因此,需要发展新的实验技术,提高实验的精度和效 率,同时需要建立更加完善的数据库和理论模型来描述和预测三元相图。
应用研究进展
能源储存与运输
研究者们正在研究如何利用三元相图优化能源储存与运输过程中的性能。例 如,优化相变材料在储存和运输过程中的热力学性质。

材料科学基础三元相图PPT课件

材料科学基础三元相图PPT课件
代表的两组元的比值恒定。
17
与某一边平行的直线
B
含对角组元浓度相等
B%
C%
P
Q
A
← A%
C
18
过某一顶点作直线
A% C a1 Ba '1 Ba '2 C a2 常 数 C % Bc1 Bc1 Bc2 Bc2
B
a1′ a2′
c1
c2 E
F
C%
B%
A
← A% D a2 a1 C
19
课堂练习

N
B%
A
C%→
13
14
3 成分三角形中特殊的点和线 (1)三个顶点:代表三个纯组元; (2)三个边上的点:二元系合金的成分点;
15
II 点:40%A- 0%B- 60%C 90
III 点:20%A- 20%B- 60%C IV点:20%A- 50%B- 30%C 80
70
60 B% 50
B
10
还有偏共晶、共析、包析、包共析转变等。
22
5 共线法则与杠杆定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
26
二元匀晶相图
液相线 固相线
T (℃)
单相区 双相区
L
L +
A
B
27
三元匀晶相图
70 60 B% 50 40
30
20
10
10
20
30
40
II

8_第八章 三元相图

8_第八章 三元相图
由液相直接结晶出单相固 溶体的转变(相变)
—— 形成匀晶相图的条件 B
组元在液相、固相均可完全 互溶;
组元晶体结构相同、原子
尺寸、电负性相似。
A
C
21
(1)相图及其投影图
二元匀晶
液相线 固相线 单相区 双相区
T
(℃)
L
L +

A
B
组元在液相、固相均可完全互溶 22
(1)相图及其投影图
液相面
—— 由液相线演化而来
固相面
B
—— 由固相线演化而来
L
L+ C

三元匀晶相图
23
A
(1)相图及其投影图
B
C
A
24
二元相图与三元相图的关系:
二元相图
(二维平面图)
平面相区 线 点
组元
+1个
+1维
+1维 +1维 +1维
维数
+1维
三元相图
(三维立体图)
立体相区 面 线
自由度
+1度
25
(2)三元匀晶结晶过程
L B
L→
第八章 三元相图
ternary phase diagram
B
C
A
1
工业上所使用的金属材料 多元合金体系
Basic binary system other elements alloying
B
Change solid solubility Form new phases
A
C
2
8.1 三元相图的基础知识
三元垂直截面
36
2. 三元共晶相图 Ternary eutectic phase diagram

材料科学基础第八章 三元相图

材料科学基础第八章 三元相图
材料科学基础 第八章 三元相图
1
本章章节结构 8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图 8.3 固态有限互溶的三元共晶相图
2
内容预报
• 三元相图基础 • 三元相图有很多面
水平、垂直截面图 • 由平面回溯立体
3
8.1 三元相图基础
8.1.1 成分表示方法 1.成分三角形 2.成分三角形中的特殊线 3.杠杆定律及重心定律
49
典型合金的平衡结晶过程-3
3. 位于三相平衡共晶转变终了面及双析溶解度曲面 投影内的合金(图8.19中Ⅴ区)。 结晶过程:L→L+α初→α初+(α+β)共→α初+ (α+β)共+γⅡ
50
典型合金的平衡结晶过程-4
4. 位于三相平衡共晶转变终了面但不在双析溶解度 曲面投影内的合金Ⅳ(图8.19中)。 结晶过程:L→L+α初→α初+(α+β)共 可用同 样的方法分析其它合金的结晶过程,图8.19中所 标注的六个区域。
• 在垂直截面图中发生两相共晶转变的三相区为尖 点向上的曲边三角形。
43
投影图
44
45
相区接触法则
• 空间相图、水平截面、垂直截面相图。 • 相邻相区的相数差1; • 立体相图中在面两侧判断,截面图中在线两侧判
断; • 除截到的零变量点外,所有的点均有四条相界线
相交。
46
8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图
B% 50
10
20
30
40 C%
50
40 30 20
AxC4x-B
60
70 80
10
90
A
90 80 70

材料科学基础-第8章-三元相图

材料科学基础-第8章-三元相图
B
L
α C A B L1 S1 L+α L+α n L o L2
7
m
α S2
C
A
第五章 材料的变形与再结晶 L
4、变温截面(垂直截面)图 变温截面(垂直截面) (1)通过成分三角形顶点的截面
α
★ 位于该截面上的所有合金含另外两 顶点组元量之比w 相同。 顶点组元量之比wA/wC相同。 ★ 此图可反映合金在不同温度时所存 在相的种类; 在相的种类;
α
β
γ
L+α L+α+β、α+β+γ 一个四相平衡区:L+α 一个四相平衡区:L+α+β+γ
19
20
2、投影图
E1 A B
o
E E3 E2
C
合金o冷却过程中的相变: 合金o冷却过程中的相变:
L+α L+(α )+α→L+(α )+(α )+α L→ L+α→ L+(α+β)+α→L+(α+β+γ)+(α+β)+α→ )+(α )+α (α+β+γ)+(α+β)+α
A C L L+α α
α B
9
第五章 材料的变形与再结晶
5、投影图
L
α A B
C
10
第五章 材料的变形与再结晶
第二节 固态互不溶解的三元共晶相图
1、相图分析 每个侧面为组元固态下互不溶的二 元共晶相图。 三个共晶点。 元共晶相图。E1、E2、E3三个共晶点。 三个液相面: ★ 三个液相面: tAE1EE3tA、 tBE1EE2tB、 tCE2EE3tC。 三元四相共晶点E ★ 三元四相共晶点E:L→A+B+C ★ 重要的线: 重要的线: 三元三相共晶线E 三元三相共晶线E1E:L→A+B 三元三相共晶线E 三元三相共晶线E2E:L→B+C 三元三相共晶线E 三元三相共晶线E3E:L→A+C

三元相图ppt

三元相图ppt
智能化数据库
通过建立智能化数据库,可以实现对大量计算结果的自动分析和处理,从而更好地挖掘三 元相图中的信息。
06
其他相关三元相图的内容
三元合金的物理性质
液相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时液态三元合金的最低共晶 成分的液相组成点连接形成的曲 线。
固相线
三元合金在一定温度和压力下, 各相之间的混合物处于平衡状态 ,此时固态三元合金的共晶成分 的固相组成点连接形成的曲线。
数据库管理系统
通过建立数据库管理系统,可以将三元相图计算结果进行分类、整理和归纳,方 便研究人员进行查询和使用。
三元相图的集成与智能化研究
多尺度模拟
利用多尺度模拟方法可以将微观结构和宏观性能联系起来,从而更好地研究三元相图。
机器学习
机器学习技术可以对三元相图计算结果进行分析、归纳和预测,从而为研究三元相图提供 了新的思路和方法。
优化合金组织
通过三元相图,可以预测合金在不同温度和成分下的组织,进而优化合金组织结 构,提高材料综合性能。
材料制备
优化制备工艺
三元相图可以预测不同制备工艺下的材料相变行为,为制备 工艺的优化提供依据。
新型材料制备
利用三元相图可以设计新型的高性能材料,并通过合适的制 备工艺制备得到所需的材料体系。
工业生产过程
三元相图
xx年xx月xx日
目录
• 三元相图简介 • 三元相图的基本理论 • 三元相图的主要分析方法 • 三元相图的具体应用 • 三元相图的发展趋势和前景 • 其他相关三元相图的内容
01
三元相图简介
定义和意义
定义
三元相图是一种图形表示,主要用于描述 三个变量或三种物质之间的相互关系。

第八章 三元相图..

第八章 三元相图..

垂直截面(2)
5、投影图
投影图是相图中各类相界面的交线在浓度三角形上的 投影,也可给出不同温度下液相面和固相面等温截面的投 影。利用投影图可方便的判断三元合金的各类反应并分析 其结晶过程。 由于面上无点和线,所以投影无意义。但可给出不同 等温截面固、液相线的投影,见图 三元合金相图投影图。 可确定不同成分合金的结晶开始温度和终了温度范围。实 线为液相线,虚线为固相线。
α、L成分确定后,可用杠杆定律求出相对量:
wα = ×100% wL = ×100%
通过分析不同T的等温截面图,可了解合金状态随T改变 的情况,如:何时开始凝固,何时凝固完毕等。表示合金 在结晶过程中发生的变化,它的外形与二元相图相似,但 两者有原则区别。
4、变温截面(垂直截面)
垂直截面是沿一组成分特性线(平行于一边的成分线或 过一顶点的成分线)垂直浓度三角形所截取的截面。根据垂 直截面可分析处于该成分特性线的一组三元合金,在不同温 度下相的状态及其变化的情况,即可分析在结晶过程中发生 的反应及反应前后相的状态。
图13 组元在固态完全不固溶 的三元共晶相图
线:E1E、E2E、E3E为二元共晶线,此线上发生二元共晶反应: E1E:L → A+B E2E:L → B+C E3E:L → A+C 面:液相面:TAE1EE3TA:L TBE1EE2TB:L → → A B
TCE3EE2TC:L

C
固相面:过E点的平面△A1B1C1,也是三元共晶面。 液固相面之间还有6个二元共晶曲面: 后: E1EB1B3E1 E1EA1A3E1 左:E3EA1A2E3 E3EC1C2E3 右:E2EB1B2E2 E2EC1C3E2
B1
A
B

材料科学基础 chp8三元相图PPT课件

材料科学基础 chp8三元相图PPT课件
2020/11/7
T℃等温面
A
B
L+α
α
N
K
M
O
K
bL
C
ML T
L+α
α K
O
返回
N K
2020/11/7
截面两相区不能代表两相浓 度,且不能用杠杆定律确定 两相相对量。
返回
变温截面的功能:
• 定性地揭示不同成分的系统的结晶过程 • 确定相变的临界温度 • 不能揭示多个平衡相的成分,故也不能揭示各平 衡相的质量分数
=xxCA
N
=EAE C=常数
N
PQ E
%A
xAN xAM C
2020/11/7
返回
8.2 平衡相的定量法则
B
一、直线定律
• 已知成分的两合金P、Q,熔 配成新合金R,R必在PQ连
α Oβ
线上,且在重量重心上。
PR Q
wPRP=wQRQ
A
C
• 成分为O的合金,分解为αβ两相,则αβ连线必过O点。
w % = o 10 % 0w % = o 10 % 0
2020/11/7
返回
二、重心定律
• 已知成分的三个合金P、Q、N,
B
熔配成一个新的合金R,R成分
点必在△PQN内,且在△重量
Q
重心上。
wP·RP = wQ ·RQ = wN ·RN
nR p
Pq
N
A
C
• 证:将PQ合金按直线定律熔配
成n,再由n和N按直线定律熔
在TE等温四相面以上有三个三相区,以下有一个,称 为3/1转变。
三相区由三相平衡三角形滑动而成。三相区棱边为三
个相的浓度变温线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 三元相图
8.1 三元相图基础
三元相图的基本特点为: (1) 完整的三元相图是三维的立体模型。 (2) 二元系中可以发生3相平衡转变。由相律可以确定二元系中的最大平衡相数 为3,而 三元系中的最大平衡相数为4。三元相图中的四相平衡区是恒温水平 面。 (3) 根据相律得知, 三元系三相平衡时存在一个自由度,所以三相平衡转变是 变温过程,反映在相图上,三相平衡 区必将占有一定空间,不再是二元相图 中的水平线。
所以,sPg三点必在一条直线上。
© meg/aol ‘02
6)杠杆定律——由以上推导可得:
% fgqP,% ef Ps。
eg qs
eg qs
7)重心法则
B
j(β)
ro t
i(α) s
k(γ)
A
C
© meg/aol ‘02
假设合金o在某一温度由α、β和γ三相组成,则合金o的成分点一定在α、β和γ 三相成分点i、j、k组成的共扼三角形中。可以设想先把α和β混合成一体,合金o
Wo
it
W % os 100%
Wo
js
上式表明,o点正好位于三角形ijk的质量重心,所以把它叫做三元系的重心法则。
© meg/aol ‘02
8)直接用代数法计算三个平衡相的相对含量.
合金O中A、B、C三组元的百分含量分别是: x A 、 x B 、 x C
各相中某一组元的含量之和应该等于合金中这种组元的含量,即
4)背向规则——从任一三元合金M中不断取出某一组元B,那么合金
浓度三角形位置将沿BM的延长线背离B的方向变化,这样满足B量不断 变化减少,而A、C含量的比例不变。当B减为零,合金成分点到达AC
线上。
C
M
A
B
© meg/aol ‘02
5)直线定律——在一确定的温度下,当某三元合金处于两相平衡时, 合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直 线上。该规则成为直线定律。
© meg/aol ‘02
O合金成分: A%/B%=Ca/AM (定义)
=ob/op =BG/GA. 因为 ob/oc=BG/CG op/oc=AG/CG
A
两式相除,得:ob/op=BG/AG
B Q G M
o
p
b N C
a
© meg/aol ‘02
3)推论:位于三角形高BH上任一点的合金,其两边组元的含量相等。
© meg/aBiblioteka l ‘02例如,三角形ABC内S点所代表的成分可通过下述方法求出: 设等边三角形各边长为100%,AB,BC,CA顺序分别代表B,C,A三 组元的含量。由 S点出发,分别向A,B,C顶角对应边BC,CA,AB 引平行线,相交于三边的c,a,b点。根据 等边三角形的性质,可得 Sa十Sb十Sc=AB=BC=CA=100%, 其中,Sc=Ca=ωA/(%),Sa=Ab=ωB /(%), Sb=Bc= ωC /(%)。 于是,Ca,Ab,Bc线段分别代 表S相中 三组元A,B,C的各自质量分数。 反之,如已知3个组元质量分数时, 也可求出S点 在成分三角形中的位置。 确定合金某组元(如B)成分的方法: 通过合金成分点作B组元对边的平行线 与另两边中任一边相交于(如 b点),则Ab长度就是B组元的成分©。meg/aol ‘02
b. 直角成分坐标
当三元系成分以某一组元为主、其 他两个组元含量很少时,合金成分 点将靠近等边三角形某一项角。若 采用直角坐标表示成分,则可使该 部分相图清楚地表示出 来。设直 角坐标原点代表高含量的组元,则 两个互相垂直的坐标则代表其他两 个组元的成 分。
© meg/aol ‘02
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
© meg/aol ‘02
8.11 三元相图成分表示方法
1. 等边成分三角形
图8.1为等边三角形表示法,三角 形的三个顶点A,B,C分别表示3 个组元,三角形的边AB,BC,CA 分别表示3个二元系的成分坐标, 则三角形内的任一点都代表三元系 的某一成分。
便是由γ相和这个混合体组成。按照直线法则,这个混合体的成分点应在ij连线上 ,同时也应该在ko连线的延长线上。满足这个条件的成分点就是ko延长线和ij直线 的交点r。利用杠杆法则,可以计算出γ相在合金中的百分含量:
W % or 100%
Wo
kr
同时可以导出α相和β相在合金中的百分含量:
W % ot 100%
WPAf W Ae W Ag (W W )Af W Ae W Ag (C组元质量守恒) WPAf ' W Ae' W Ag' (W W )Af ' W Ae' W Ag(' B组元质量守恒)
W W
(Af (Af
'
Ae) W (Ag Af ) Ae') W (Ag' Af '
)
fg f 'g' ef e' f '
B
es平行AB
e’s平行AC
g’
f’
e’
s
(α)
q (β)
P
A
e fg
C
© meg/aol ‘02
证明如下:设合金P在某一温度下处于α相(s点)和β相(q点)两相平衡, α相和β相中的B组元含量分别为Ae’和Ag’,C组元含量分别为Ae,Ag。两相中 C、B两组元的质量之和应等于合金中P中C、B两组元的质量之和。令合金P的质 量为WP, α相的质量为Wα, β相的质量为Wβ,则WP=Wα+ Wβ,由于合金中 的C、B组元的含量分别为Af和Af’,由C、B质量守恒分别的下两式:
2. 浓度三角形具有如下一些特性
B
M G
A
N C
© meg/aol ‘02
(1)等含量规则——平行于三角形任一边的直线上所有合金中有一组 元含量相同,该直线为直线所对顶角上的元素,如下图中的MN线上, B%之值恒定。(根据成分的确定方法)
(2)等比例规则——通过三角形顶点的任何一直线上的所有合金,其 直线两边的组元含量之比为定值,如图中CG线上的任何合金,A%与B %的比值为定值,即A%/B%=BG/GA。 证明:在CG上任何一合金o,如下图所示, 过o点作MN//AC,bp//AB, aQ//BC。
© meg/aol ‘02
© meg/aol ‘02
3. 成分的其它表示方法
a. 等腰成分三角形
当三元系中某一组元含量较 少,而 另两个组元含量较多时,合金成分 点将靠近等边三角形的某一边。为 了使该部分相图清晰地表示出来, 可 将成分三角形两腰放大,成为等 腰三角形。如图8.3所 示。
© meg/aol ‘02
相关文档
最新文档