一次函数测试题
人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。
m=,n=-B。
m=,n=-1C。
m=-1,n=-D。
m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。
n<-3或n>1B。
n>-3且n<1C。
n≥-3且n≤1D。
n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。
y1≤y2B。
y1=y2C。
y1<y2D。
y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。
A。
一B。
二C。
三D。
四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。
k>0B。
k<0C。
0<k<1D。
k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。
(-1,1) B。
(-1,-1) C。
(2,8) D。
(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。
y=x-2中,x取x≥2B。
y=2/(x+1)中,x取x≠-1C。
y=2x中,x取全体实数D。
y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。
一次函数测试题3套(有答案)

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=.y=C .D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分) 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1). 23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢? 25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.班级_____________座号____________姓名_____________成绩_________ __一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( ) A 、y=2x-1 B 、y=3C 、y=2x 2D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b=+上,且0k <.若12x x >,则1y ,2y 的关系是:( ) A 、12y y > B 、12y y < C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( ) A 、(-1,-1) B 、(-1, 1) C 、(1, -1) D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 八年级上学期第十四章《一次函数》单元测试----------------------------精品word文档值得下载 值得拥有---------------------------------------------- 10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。
一次函数测试题(最新人教版)

《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
一次函数综合测试题含答案

精品文档一、填空(10X 3 '=30')1、 已知一个正比例函数的图象经过点(-2, 4),则这个正比例函数的表达式是 ____________ 。
2、 若函数y= - 2x m+2是正比例函数,则 m 的值是 _______________ 。
3、 已知一次函数 y=kx+5的图象经过点(-1,2),则k= ______________ 。
4、 已知y 与x 成正比例,且当 x = 1时,y = 2,则当x=3时,y= ______________ 。
5、 点P (a , b )在第二象限,则直线y=ax+b 不经过第 __________ 象限。
6、 已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0 , -2),那么这个一次函数的表达式是 (A) k>0 , b>0(C) k<0 , b>016、 函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是()33(A ) m(B ) 1 m -(C ) m 1 (D ) m 14 417、 一支蜡烛长20厘米,点燃后每小时燃烧 5厘米,燃烧时剩下的高度 h (厘米)与燃烧时间t (时) 的函数关系的图象是()7、已知点A(-1 , a), B(2 , b)在函数y=-3x+4的象上,则a 与b 的大小关系是(D ) y 3x 215、已知一次函数 y=kx+b 的图象如图所示,则 b 的符旦 号是( 20.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如(B)k>0 , b<0 (D) k<0 , b<08、地面气温是20C ,如果每升高1000m,气温下降6C ,则气温t (C)与高度h (m )的函数关系 式是 ___________9、 一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: ____________________ 10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) _______________(1) y 随着x 的增大而减小, (2)图象经过点(1, -3 )。
(完整版)初中数学一次函数练习题及答案

一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。
一次函数测试题汇总

一次函数测试题(一)7、一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )8、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个9、函数中(1)y=-21x ; (2)y=-x 2;(3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个10.一次函数y kx b =+的图象只经过第一、二、三象限,则( )A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,11.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那么对k 和b 的符号判断正确的是( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<,12 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M13.在平面直角坐标系中,函数y =-x +1的图像经过( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限14.一次函数2y x =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限15.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限16.下列函数中,当x>0时,y 随x 的增大而减小的是( )A .x y =B .2+=x yC .2+-=x yD .2x y =17.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是( )A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <018.一次函数y=kx +6,y 随x 的增大而减小,则一次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限19.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <20.函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠321.下列函数中,自变量x 的取值范围是x ≥3的是( )A .31-=x yB .31-=x yC .3-=x yD .3-=x y22.函数2y x =-的自变量x 的取值范围是( )A .2x >B .2x <C .2x ≥D .2x ≤23.在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠x C .x ≤2 D .x ≥2 24.函数21y x =-中自变量x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤ 25.函数12y x =+的自变量x 的取值范围是( ) A .0x > B .2x -≥ C .2x >- D .2x ≠-26.函数2y x =+中,自变量x 的取值范围是( ) A .2x >- B .2x -≥ C .2x ≠- D .2x -≤27.下列函数中,自变量x 的取值范围是2x >的函数是( )A .2y x =-B .12y x =-C .21y x =-D .121y x =- 28.关于正比例函数y=-2x,下列结论正确的是( )A .图像必经过点(-1,-2)B .图像经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y<029.已知正比例函数y=kx(k ≠0)的图象过第二、四象限,则( )A. y 随x 的增大而减小;B. y 随x 的增大而增大;C. 当x<0时,y 随x 的增大而增大;当x>0时,y 随x 的增大而减小;D. 不论x 如何变化,y 不变。
一次函数综合测试题及答案

《一次函数》练习题11一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
2、若函数y= -2x m+2是正比例函数,则m 的值是 。
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。
5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。
6、已知y=kx-k+4的图象与y 轴的交点坐标是(0,-2),则一次函数的表达式是___________。
7、已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。
8、地面气温是20℃,若每升高1000m,气温下降6℃,则气温t 与高度h 的函数关系式是__________。
9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 12、下面哪个点不在函数32+-=x y 的图像上( ) (A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1) 13、直线y=kx+b 在坐标系中的位置如图,则( ) (A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y 15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<016、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )(A )34m < (B )314m -<< (C )1m <- (D )1m >-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时) 的函数关系的图象是( )A B C D18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( )19.一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于A.21B.21-C.23D.以上答案都不对20.某公司市场营业员销部的营销人员的个人收入与其每月的 销售量成一次函数关系,其图象如图所示.由图中给出的信息可 知,营销人员没有销售时的收入是 A.310 B.300 C.290 D.280 三、计算题21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0) (1)求这两个函数的解析式;(2)画出它们的图象;Oxy1 222、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值23、一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求:(1)a的值(2) k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。
《一次函数》测试题及答案

第十九章一次函数单元检测题班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A.①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 一次函数单元测试题
(时间55分钟,满分100分)
班别: 学号: 姓名: 得分:
一、选择题(每题3分,共30分)
1.下列函数中,y 是x 的正比例函数的是( ) A .21y x =- B .3
x
y = C .22y x = D .21y x =-- 2. 函数1
1
y x =
-中,自变量x 的取值范围应是( ) A .0x > B .0x ≠ C .1x ≠ D .1x ≥
3.已知函数y kx =的函数值随x 的增大而增大,则函数的图象经过( )
A .第一、二象限
B .第一、三象限
C .第二、三象限
D .第二、四象限 4.下面哪个点在函数1
13
y x =
-的图象上( ) A .(3,1) B .(3,1)- C .(3,0)- D .(3,0)
5.若把一次函数23y x =-向上平移3个单位长度,得到图象解析式是( )
A .2y x =
B .26y x =-
C .53y x =-
D . 3y x =-- 6.函数23y x =-+的图象大致位置应是下图中的( )
7.已知一次函数y kx b =+的图象如右图所示,当0x <时,y 的取值范围( )
A .0y >
B .0y <
C .20y -<<
D .2y <- 8.下列各图表示的函数中,y 是x 的函数的( )
A
B
D
9.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是( )
10.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )
二、填空(每题4分,共24分)
11.已知一个正比例函数的图象经过点()24-, ,则这个正比例函数的表达式是 . 12.若函数221m y x +=-+是一次函数,则m 的值是 .
13.已知一次函数的解析式为21y x =-+,则该函数的图象与x 轴交点坐标为 ,与y 轴
的交点坐标为 .
14.点()P a b ,在第二象限,则直线y ax b =+不经过第 象限.
15.已知点()A 1a -,, ()B 3b ,在函数34y x =-+的象上,则a 与b 的大小关系
是 .
16.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30
220
x y x y --=⎧⎨
-+=⎩的解是 .
三、解答题(共46分)
22、已知:一个正比例函数和一个一次函数的图像交于点P (-2、
2)且一次函数的图像与y 轴的交点Q 的纵坐标为4。
(1)求这两个函数的解析式;
(2)在同一坐标系中,分别画出这两个函数的图像;
(3)求△PQO 的面积。
7、若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.
11.用吸管吸易拉罐内的饮料时,如图,∠1=80°,则∠2= (易拉罐的上下底面互相平行) 12.如图,若∠1+∠2=220°,则∠3= .
第11题图 第12题图 第13题图 第14题图 13.如图,已知b a //,若∠3=50°,则∠2= 。
14.如图,为了把△ABC 平移得到△A ′B ′C ′,可以先将△ABC 向右平移 格,再向上平移 格。
15.把命题“等角的余角相等”写成“如果……,那么……。
”的形式为
. 16.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,
如果∠1=40°,则∠2= . 三、推理填空:
17.如图,直线AB 、CD 相交于O ,∠AOC=80°,∠1=30°,求∠2的度数.(9分)
解: ∵ =80°(已知)
又∵∠DOB=∠AOC ,( ) ∴∠DOB= °(等量代换) 又∵∠1=30°( )
∴∠2=∠ —∠
= —
A’ C
’ B
’ A
B
C
= °
四、操作题(5分)
18.平移三角形ABC ,使得顶点A 移到A ’(如图),作出平移后的三角形A ’B ’C ’.
五、解答题。
(每小题19-21每题6分,共24-25每题7分)
19.如图,AB ⊥CD 于点O ,直线EF 过点O ,若∠BOE=65°,求∠DOF 的度数.
20.如图,已知//DE BC ,∠B=80°,∠C=56°,求∠ADE 和的∠DEC 度数.
21.如图,已知AB BD ⊥,CD BD ⊥,∠1= ∠4,求证//BF ED ?
E D
C
B
A
C D
E
A A'
22.已知:如图:∠1=∠2 ,∠ C=70 ,∠ADE =70°,问 BD 平分∠ABC 吗?
23.已知:如图∠1=∠2,∠A=∠F ,请问∠C=∠D 吗?试写出推理过程.
24.(附加题:10分)已知:如图, AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°, ∠B -∠D=24°,求∠GEF 的度数.
H
G
2
1
F
E
D
C
B
A B
F C。