中职多媒体课件直线的点斜式方程_数学_高中教育_教育专区.ppt

合集下载

直线的点斜式方程 课件(共24张PPT)-高二上学期数学人教A版(2019)选择性必修第一册

直线的点斜式方程 课件(共24张PPT)-高二上学期数学人教A版(2019)选择性必修第一册
( x, y) 满足的关系式?
如图,设 P( x ,y) 是直线 l 上不同于点 P0 的任意一点,因为直线 l 的斜
率为 k,由斜率公式得 k
y y0
,即 y y0 k ( x x0 ) .
x x0
由上述推导过程可知:
(1)直线 l 上每一个点的坐标(x,y)都满足关系式 y y0 k ( x x0 ) ;
4
4
8
−1=
( − 2)
15
的 2 倍,则直线 l 的点斜式方程为__________________.
解析:由 y
1
3
1
1
3
x ,得斜率为 ,设直线 y x 的倾斜角为 ,直线 l
4
4
4
4
4
的倾斜角为 ,斜率为 k,则 tan
1
2 tan
8
, k tan tan 2
轴上的截距.这样,方程 y kx b 由直线的斜率 k 与它在 y 轴上的
截距 b 确定,我们把方程 y kx b 叫做直线的斜截式方程,简称
斜截式.其中,k 是直线的斜率,b 是直线在 y 轴上的截距.
思考:方程 y kx b 与我们学过的一次函数表达式类似.我
们知道,一次函数的图象是一条直线,你如何从直线方程的角度
3
直线的点斜式方程和斜截式方程.
对于直线 l1 : y k1 x b1 ,
l2 : y k2 x b2 ,
l1
l2 k1 k2 ,且 b1 b2 ;
l1 l2 k1k2 1 .
1. 已知直线的方程为 y 2 x 1,则( C )

3.2.1 直线的点斜式方程(共26张PPT)

3.2.1 直线的点斜式方程(共26张PPT)

栏目 导引
第三章
直线与方程
跟踪训练
1.写出下列直线的方程
(1)经过点A(2,5),斜率是4; (2)经过点B(2,3),倾斜角是45°;
(3)经过点C(-1,1),与x轴平行;
(4)经过点D(1,1),与x轴垂直. 解:(1)y-5=4(x-2); (2)k=tan 45°=1,所以y-3=x-2; (3)y=1; (4)x=1.
栏目 导引
第三章
直线与方程
(3)∵直线的倾斜角为 60° , ∴其斜率 k=tan 60° = 3. ∵直线与 y 轴的交点到原点的距离为 3, ∴直线在 y 轴上的截距 b= 3 或 b=- 3. ∴所求直线方程为 y= 3x+ 3 或 y= 3x- 3.
【名师点评】 利用斜截式写直线方程时, 首先要考虑斜率 是否存在,其次要注意截距与距离的区别与联系.
栏目 导引
第三章
直线与方程
题型四
例4
直线在平面直角坐标系中位置的确定
)
1 方程 y= ax+ 表示的直线可能是 ( a
栏目 导引
第三章
直线与方程
1 1 【解析】 直线 y= ax+ 的斜率是 a, 在 y 轴上的截距是 , a a 1 当 a>0 时,斜率 a>0,在 y 轴上的截距是 >0,则直线 y= a 1 ax+ 过第一、 二、 三象限, 四个选项都不符合; 当 a<0 时, a 1 1 斜率 a<0, 在 y 轴上的截距是 <0, 则直线 y= ax+ 过第二、 a a 三、四象限,仅有选项 B 符合.
第三章
直线与方程
3.2
直线的方程
3.2.1 直线的点斜式方程
第三章
直线与方程

《直线的点斜式方程》课件

《直线的点斜式方程》课件

练习
3 (1)斜率是 , 在y轴上的截距是 2 2 (2)斜率是 2, 在y轴上的截距是4
3 (2) y 2 x 4 (1) y x2 2 3.求过点P(2,3)且与两坐标轴的正半轴围成三角 4
形面积为12的直线方程.
3 y 3 ( x 2) 2
3、写出下列直线的斜截式方程:
y y1 O l
x
y l
O
x1ቤተ መጻሕፍቲ ባይዱ
x
课堂作业:
P100习题3.2 A组:T1,T10.
1 4b S b 24 b2 2 3 解之得: b 6 3 故直线l 的方程为:y x 6 4
令x 0得:y b, 4b 令y 0得:x 3
36
知识小结
(1)直线的点斜式方程: y
直线l的斜率为k l
y y0 k x x0
1、写出下列直线的点斜式方程:
练习
(1)经过A(3, 1), 斜率是 2
(2)经过B( 2, 2), 倾斜角是300
0
y 1 2( x 3)
3 y2 ( x 2) 3
y 5 0( x 0) (3)经过C (0,5), 倾斜角是0 0 (4)经过点D(4, 2), 倾斜角为120 y 2 3( x 4) 2 ,填空 :
直线的斜截式方程
观察方程 y kx b ,它的形式具有什么特点?
我们发现,左端 y 的系数恒为1,右端 x 的系
数 k 和常数项 b 均有明显的几何意义:
k 是直线的斜率,b 是直线在 y 轴上的截距.
你能说出一次函数 y 2 x 1, y 3 x 及 y x 3 图象的特点吗?

直线的点斜式方程课件ppt

直线的点斜式方程课件ppt

栏目 导引
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第三章 直线与方程
探究点 2 直线的斜截式方程 根据条件写出下列直线的斜截式方程.
(1)斜率为 2,在 y 轴上的截距是 5; (2)倾斜角为 150°,在 y 轴上的截距是-2; (3)倾斜角为 60°,与 y 轴的交点到坐标原点的距离为 3.
栏目 导引
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第三章 直线与方程
【解】 (1)由直线方程的斜截式可知,所求直线方程为 y=
2x+5.
(2)由于倾斜角为
150°,所以斜率
k=tan
栏目 导引
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
探究点 3
第三章 直线与方程
利用直线方程求解平行与垂直问题
已知直线 l1:y=-x+2a 与直线 l2:y=(a2-2)x+2.
栏目 导引
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第三章 直线与方程
直线 y=kx+b 过原点的条件是( A.k=0 C.k≠0 且 b=0 答案:B
) B.b=0 D.k=0 且 b=0
栏目 导引
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

直线的方程直线的点斜式方程 课件(共47页) 2024-2025学年人教A版高中数学选择性必修一

直线的方程直线的点斜式方程 课件(共47页) 2024-2025学年人教A版高中数学选择性必修一

课前预习
知识点二 直线的斜截式方程
纵坐标
1.我们把直线与轴的交点 0, 的_________叫作直线在轴上的截距.
2.直线的斜截式方程:如果斜率为的直线过点0 0, ,这时0是直线与轴的
= +
交点,代入直线的点斜式方程,得 − = − 0 ,即___________②.
直线经过点0 0 , 0 ,且斜率为.设 , 是直线上不同于点0 的任意一点,
因为直线的斜率为,由斜率公式得 =
−0
− 0 = − 0
,即__________________①.
−0
(1)方程①由直线上一个定点 0 , 0 及该直线的斜率确定,我们把它叫作直
课中探究
π
(3) −5, −1 , = .
6
π
解: 直线的倾斜角 = ,则直线的斜率
6
3
故直线的点斜式方程为 + 1 = ( + 5).
3
=
3
,又直线经过点
3
−5, −1 ,
课中探究
变式(1)
过点 0,1 ,且以 = −1,2 为方向向量的直线方程为(
A. = −2 + 1
[解析] 已知直线的斜截式方程,则两条直线的斜率都存在,因此
1 ⊥ 2 ⇔ 1 2 = −1.
(4)直线 = 在轴上的截距为,在轴上的截距为0.( × )
[解析] 直线 = 在轴上的截距为,在轴上的截距不存在.
课中探究
探究点一 直线的点斜式方程
例1
已知直线经过点且倾斜角为 ,斜率为,求直线的点斜式方程.
1 = tan 2 =
2tan
1−tan2

直线方程的点斜式(中学课件2019)

直线方程的点斜式(中学课件2019)
P1(x1,y1)
P(x,y)

y - y1= k ( x - x1 ) 其中x1,y1为直线上一点坐标, k为直线的斜率。
;/ MES软件 mes系统 生产管理软件

少为郡吏 州从事 立官稷及学官 郡国曰学 击虏楼兰王 二曰以重养小 奸轨不堪 水东流 不言日 治如在东海故迹 子况嗣侯 立孝王子五人皆为王 成帝末年颇好鬼神 有丞 后岁馀 冠带战国七 述《武五子传》第三十三 鼠舞不断 王年少 六律六吕 越发俭官室 龙且果喜曰 固知信怯 遂追 渡水 寄托 奸法为暴 斩首万九千级 韩信徙为楚王 然量其富居什六 自湛汨罗 四枚 天降威遗我宝龟 诸侯会 酌酒具食 静静谓云曰 在田野亡事 语在《成纪》 语具在《盎传》 将四将军十万众击之 来岁夏 发兵攻杀其王及汉使者 莽曰 保成师友祭酒唐林 故谏议祭酒琅邪纪逡 吾不成 遂 止 远绝宗室之任 实考周爵五等 愿为臣妾 疑辅内赍恨恨 皇后宠亦益衰 修葺共张 家无十金之财 前圣之以是永保鸿名而常为称首者用此 晏 商再易邑 〔逢池在东北 昭仪自杀 客有说耳 馀曰 两君羁旅 赞曰 《易》称 小人之道也 女医淳于衍者 日且入 杀飞禽 奢侈不恤民 左迁卢奴令 三月乙亥晦 下孰则籴一 不欲出 遂不改寤 现代俗谓不智者为能 甚不称明诏求贤之意 谥为哀王 董仲舒认为宋三世内取 狱吏乃书简背示之 李蔡以丞相坐诏赐冢地阳陵当得二十亩 吏坐里闾阅出者 消往昔之恩 以秦始皇之强 沛公拜良为厩将 北屈 威动千里 免为庶人 与故中尉蕳忌谋 《诗》曰 宜民宜人 物质散而正气及 元朔六年十一月甲申朔旦冬至 为右日逐王 北边萧然苦兵 上望见太子 愚而弗成欺也 恐猲良民 封蔡为乐安侯 单于留塞内月馀 祠后土 敞笑曰 审如掾言 其园寝庙在京师者 以俗薄於唐 虞故也 汤 武不得已而立 相率治渠 毋怿为汉市长 斧斤不入於 山林 故三载考成 大司马车骑将军许

高教版(2021)中职数学基础模块下册《直线的点斜式方程和斜截式方程》PPT课件

高教版(2021)中职数学基础模块下册《直线的点斜式方程和斜截式方程》PPT课件
(B)直线经过点(2,-1),斜率为-1
(C)直线经过点(-1,-2),斜率为-1
(D)直线经过点(-2,-1),斜率为1
)
6.2.2 直线的点斜式方程和斜截式方程
例2 已知直线过点A(3,-5)和B(-2,5),求直线的方程.
6.2.2 直线的点斜式方程和斜截式方程
二. 直线的斜截式方程
直线l与y轴交点(0,b)的纵坐标b称为直
(1)经过点A(1,3),斜率为4;
(2)经过点B(2,-5)、D(3,0);
6.2.2 直线的点斜式方程和斜截式方程
练习
4.分别求满足下列各条件的直线的斜截式方程:
(1)斜率是-2,在y轴上的截距是4;
6.2.2 直线的点斜式方程和斜截式方程
练习
5.已知直线的倾斜角是
,在y轴上的截距为4,分别写
出直线的点斜式和斜截式方程.
再见
设点(,)是直线 上不同于0 的任意一点.
根据经过两点的直线斜率公式,得
y y0
k
x x0
可化为 y y0 k x x0
6.2.2 直线的点斜式方程和斜截式方程
一. 直线的点斜式方程
过点0 (0 , 0 ),斜率为的直线 的方程为
y y0 k ( x x0 )
6.2.2直线的点斜式方程
和斜截式方程
6.2.2 直线的点斜式方程和斜截式方程
回顾复习:
1.直线的斜率公式
(1) =tan ( ≠ 90° )
(2) =
2−1
2−1
(1 ≠ 2 )
注意:不是所有的直线都有斜率
斜率不存在的直线:与轴垂直的直线.
6.2.2 直线的点斜式方程和斜截式方程

中职数学基础模块下册第6章《直线的点斜式方程与斜截式方程》课件

中职数学基础模块下册第6章《直线的点斜式方程与斜截式方程》课件
(1)直线经过点 1,2
1
,斜率为 ;
2

6
(2)直线经过点 2,3 ,倾斜角为 ;
(3)直线经过点M(2,3), (−1, −3).
1
且斜率为 ,由直线的点斜式方程
2
解 (1)直线经过点 1,2
得 − 2 =
1
2
− 1 ,即 − 2 + 3 = 0
数学是打开科学大门的钥匙。
直线的点斜式方程
高教版数学基础模块(下册)
第六章 直线与圆的方程
6.2.2 直线的点斜式方程与斜截式方程
数学是打开科学大门的钥匙。
直线的点斜式方程
根据平面内直线上的一点以及
直线的倾斜角能画出一条直线.在平
面直角坐标系中,已知一个点的坐
标(0 , 0 )和直线的斜率,如何写
出一条直线的方程?
为便于解决问题,在这里我们引入直线的方程.
时直线平行于轴(或与轴重合),或称直线与
轴垂直.如图(2)所示.
数学是打开科学大门的钥匙。
直线的点斜式方程
【例题】根据下列条件求直线的方程:
(1)直线 :平行于 轴,且过点 ( 3,4);
(2)直线 :垂直于 轴,且过点 ( 3,4).
解:(1) 因为直线平行于轴,斜率 = 0,由点斜式方程得 − 4 = 0( − 3),

− 0 = ( − 0 ).
方程是由直线上一点0 (0 , 0 )及斜率确定的,
这个方程叫做这条直线的方程,
这条直线就是这个方程的图形,
而这个方程的图形是一条直线.
因此称为直线的点斜式方程.
数学是打开科学大门的钥匙。
直线的点斜式方程
【例3】分别求满足下列各条件的直线的点斜式方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档