Realizing Smart Distribution with IEC 61850
IEC61850关键技术实现方案

变电站自动化IEC-61850 标准实现方案一、背景国内外数字化变电站都是遵循IEC61850 标准进行设计的。
其系统结构示意图如图1 所示。
图 1 数字化变电站系统结构示意图在综合自动化变电站中实现IEC-61850 标准,需要考虑以下几个问题:1.做为系统集成商,监控系统以IEC-61850 标准接入其它厂商的IED(保护、测控)。
2.做为系统集成商,远动系统以IEC-61850 标准接入其它厂商的IED(保护、测控)。
3.做为系统集成商,故障信息系统以IEC-61850 标准接入其它厂商的IED(保护、故障录波)。
4.做为系统集成商,对全站的IED 进行系统配置。
5.做为设备供应商,以IEC-61850 标准接入到变电站自动化系统。
图 1 所示,IEC61850 将变电站从网络通信的角度分为三层:变电站层、间隔层和过各层。
各层的设备与本层的设备以及与其它层的设备是怎么实现通信的呢?如图2 为IEC61850提供的几种协义栈,以满足数字化变电站中设备层间以及层内通信。
从图中可知核心ACSI服务是映射到MMS 协议上,该协议栈的实现了IEC61850 中绝大部分的ACSI 接口,故它是实现数字化变电站的最重要的一步。
实现ACSI 接口,就是要实现MMS(人工制造报文协议)提供的服务(子集)。
图2 IEC61850 通信协议栈示意图图 3 为从应用实现的角度来观察IEC61850 的通信系统,从图中可以看出ACSI 接口的实现是至关重要的。
图 3 应用程序通信结构二、实现方案1.硬件技术IEC61850 的应用可以分为变电站层、间隔层、过程层,以下逐层分析。
1.1 变电站层变电站层的远动系统以前主要应用工控PC,为了提高可靠性,现在普遍使用嵌入式装置。
在IEC61850 之前,远动系统对外以IEC60870-5-101、104、DNP3 等协议通信,对内处理各种私有协议。
现有嵌入式远动系统基本上是按满足目前这种应用需求设计的硬件。
iec61850通信规约

iec61850通信规约IEC61850是一种基于Internet协议(IP)的域网通信规范,主要指智能电力系统(SPS)域中用于检测、控制和监控设备之间的通信。
IEC 61850能够简化复杂的域网络架构,从而降低通信延迟,提高系统可靠性和安全性,简化配置和维护。
IEC 61850系统的应用可以分为3个层次:传感器系统、控制系统和治理系统。
传感器系统可以监测电力系统的状态、负荷和故障;控制系统可以按照指令对系统进行控制;治理系统可以为电力系统提供实时的管理和控制,有效提升系统的容错性和可靠性。
IEC 61850设计旨在提供一种统一的物理层基础,使电力系统的子系统能够更好地联系在一起。
它可以支持多种类型的应用,以及针对不同设备和系统之间的通信,例如IEC 61850-7-420等。
由于IEC 61850可以支持不同类型的应用,包括智能设备、SCADA系统、集中式控制、虚拟供电技术、自动发电系统(AGC)和虚拟电力技术(VPT)等,因此可以有效地提高电力系统的可靠性、效率和灵活性。
IEC 61850拥有一系列重要功能,其中包括实时多点通信、高精度数据采集、快速和高可靠的通信、可靠的信息安全机制以及可配置的配置和控制系统。
此外,还有一些实用的可选特性,包括软件定义网络(SDN)、网络异步传输模式(NAT)、多媒体流处理、虚拟示例网络(VLAN)等等。
此外,IEC 61850还可以应用到其他行业,如制造业、汽车行业、医疗行业、金融行业等等。
IEC 61850技术能够提高企业的管理水平,可以很好地适应企业自身的业务需求,从而更好地提升企业的效率和功能。
通过以上分析,可以看出,IEC 61850通信规约是一种非常先进的技术,具有高效、可靠、安全与可配置的优点,已经被全球各个国家应用于电力系统的建设,并可以拓展到其他行业当中。
虽然IEC 61850可以简化电力系统的建设,但仍需要经过严格测试,才能保证建设的安全可靠性。
IEC 61850通信标准说明书

been intimately involved since its incep-tion. “Communication networks and sys-tems for power utility automation,” as the IEC document is properly known, is a comprehensive standard broken down into components that, for example, specify how the functionality of substa-tion devices should be described – how they should communicate with each o ther, what they should communicate and how fast that communication should be. All of this is critical to realizing the benefits of a truly digital substation.At the station level, things are generally digital, even in relatively old installations. SC ADA (supervisory control and data a cquisition) systems usually demand Digital signaling offers excellent reliability and capacity, and has been in use in power infra-structure for decades. Most existing electricity grids employ digital f iber-optic networks for the reliable and efficient transport of operation and su-pervision data from automation systems in substations – and even power line net-works carry tele-protection signals these days. But only now are the advantages of standardized digital messaging start-ing to extend into the deeper substation environment.IEC 61850Without standards, the adoption of digi-tal messaging for intrasubstation com-munication was piecemeal and fragment-ed, with mutually incompatible signaling creating an assortment of messaging within vertical silos. ABB has long cham-pioned industry adoption of IEC 61850, a standard with which the company has STEFAN MEIER – The concept of a digital substation has long been an insubstantial thing – an ideal vision of all-knowing substations networked into an intelligent grid. But the concept is now a lot more practical so the specifics of what makes a substation “digital,” and why that is such a desirable thing, can be discussed.The smarter grid needs a smarter substation, and it has to be digital Enabling digital substations Title picture Technology is now available to allow substations to be completely digital – right down to the currenttransformers. The advantages of having a digital substation are manifold.FOCS Robustness and reliability requirements apply to new technologies such as ABB’s fiber-optic current sensor (FOCS) too. A FOCS [1] can directly monitor current running through a high-voltage line with-out having to involve a current trans-former (CT) to step down the current to a measurable value. Eliminating the C T also eliminates the risk of open C T cir-cuits, in which life-threatening voltages can occur, and so increases safety.A FOCS exploits the phase shift in polar-ized light introduced by an electromag-netic field (the Faraday effect). The shiftis in direct proportion to the current flow-ing in the high-voltage line, around whichthe fiber carrying the light is wrapped.The measurement is digitized right atthe source and transmitted as a digitalsignal, via the process bus, to the pro-tection and control IEDs, as well as therevenue meters.Such an optical C T takes up a lot lessspace than its analog equivalent. It caneven be integrated into a disconnectingcircuit breaker (as ABB did in 2013) tocombine the functions of circuit breaker,current transformer and disconnector inone device – halving the size of a newsubstation.The FOCS is one of a range of noncon-ventional instrument transformers (NCITs)that can make things entirely digital.NCITs have to be every bit as reliable asthe equipment being replaced – and theydigital information and ABB has been selling fiber-optic “backbones” for more than two decades.Between the station level and the bays, fibers can carry digital data – conforming to IEC 61850 – but to become a true digital substation the standard has to e xtend even further.Deep digitalThe world beyond the bays is still pre-dominately analog. The conventional pri-mary equipment, like current and voltage transformers, is connected back to intel-ligent electronic devices (IEDs) using par-allel copper wires carrying analog voltage signals ➔1a. The IEDs receiving that data perform first-level analysis and often pro-vide the gateway into a digital world.But there is little advantage in keeping the data in analog form for so long and to properly earn the title of “digital substa-tion” the transition to digital must takeplace as soon as the data is gathered ➔1b.Through permanent system supervision, digital equipment reduces the need for manual intervention and the adoption of the all-digital process bus allows sensitive equipment to be relocated into the bays. The digital equipment that has to bel ocated out in the yard must be easy to fit, and every bit as robust and reliable as the analog equipment it is replacing or inter-facing to ➔2.Digital signaling offers excellent reliability and capacity, and has been in use in power infrastruc-ture for decades.1a Today 1b Tomorrow670 series 670 series REB500REB500650 series 650 seriescurrent transformer, arcing may occur as dangerously high voltages build and a copper line can suddenly carry high volt-age, putting workers and equipment at risk. Less copper brings greater safety.The digital substation dispenses with cop-per by using the digital process bus, which might use fiber optics or a wireless net-work, such as ABB’s Tropos technology.Just the removal of copper can, in some circumstances, justify the switch to digital. Going digital can cut the quantity of cop-per in a substation by 80 percent – a sub-stantial cost saving and, more importantly, a significant safety enhancement.The process bus also adds flexibility: Digital devices can speak directly to each other ➔3. For this, IEC 61850 defines the GOOSE (generic object-orientatedsubstation events)protocol for fasttransmission of bi-nary data. Part 9-2of the standard de-scribes the trans-mission of sampledvalues over Ether-net. These principlesensure the timelydelivery of high-pri-ority data via other-wise unpredictableEthernet links. ABB’s ASF range of E thernet switches fully supports this crit-ical aspect of substation messaging.are: Over the past decade ABB has sup-plied more than 300 NC ITs (combined current and voltage sensors fitted into gas-insulated switchgear) for use in Queensland, Australia, and the utility has yet to see a single failure in the primarysensor. Extensive use of NCITs makes a substation simpler, cheaper, smaller and more efficient.Not everything can be digital – analog data will continue to arrive from conven-tional current and voltage transformers, for example. But there is no reason for wholesale replacement when a stand-alone merging unit can perform the tran-sition to digital right beside the existinginstrument transformer. Fiber optics can then replace the copper cables connect-ing the primary equipment to the protec-tion and control IEDs.Process bus As a conductor, every bit of copper in a substation is a potential risk. For exam-ple, where current is incorrectly discon-nected, such as with an open secondary A FOCS can direct-ly monitor current running through a high-voltage line without having to involve a current transformer to stepdown the current to a measurable value.2 New equipment destined for use out in the yard is exposed to the elements so has to be very robust.ABB has long championed industry adoption of IEC 61850, a standard with which the company has been intimately involved since its inception.Installations ABB has been heavily involved in IEC 61850 since its inception. The stan-dard is essential to ensure that utilities can mix and match equipment from dif-ferent suppliers, but, through compli-ance testing, it also provides a bench-mark against which manufacturers can be measured.ABB deployed the first commercial IEC 61850-9-2 installation in 2011 at the Loganlea substation, for Powerlink Queens-land. The use of ABB’s IEC 61850-9-2- compliant merging units and IEDs, not to mention NCITs, makes the deployment a landmark in the evolution of substation design.That project was part of an upgrade of an existing station, an upgrade that saw it move into an IEC 61850 future, adopting digital standards for effective future-proof-ing. ABB created a retrofit solution based on specifications from Powerlink that can be applied to another five Powerlink substa-tions when they are ready for refitting.Two of those stations, Millmerran and Bulli Creek, were already upgraded in 2013 and 2014, respectively. The refurbished sub-stations have a MicroSCADA Pro SYS600 system and RTU560 gateway that manage Relion 670 protection and control IEDs, with REB500 busbar protection. These all communicate over IEC 61850-9-2 to the merging units and over IEC 61850 to the station-level devices. A fully digital substation is smaller, more reliable, has a reduced life-cycle cost and is simpler to maintain and extend than an analog one. It offers increased safety and is more efficient than its ana-log equivalent.Not every substation needs to be cata-pulted into a wholesale digital world – it depends on the substation size and type, and whether it is a new station or a retrofit of the secondary system. Different ap-proaches and solutions are required. ABB’s extensive IEC 61850 experience and portfolio of NCITs, merging units, pro-tection and control IEDs as well as station automation solutions eases utilities into the digital world. Flexible solutions allow utilities to set their own pace on their waytoward the digital substation.3 IEC 61850 makes the fully digital substation a reality.Stefan MeierABB Power Systems Baden, Switzerland *******************.com An optical CT takes up a lot less space than its analog equivalent and can even be integrated into a disconnecting circuit breaker to combine the func-tions of circuit breaker, current transformer and disconnector in one device – halv-ing the size of a new substation.Reference [1] S. Light measures current – A fiber-optic current sensor integrated into a high-voltage circuit breaker. Available: /global/scot/scot271.nsf/veritydisplay/0d948cedb40451cec1257ca900532dd0/$file/12-17%201m411_EN_72dpi.pdf。
IEC61850概述

面向协议的标准3
IEC61850目标1
IEC61850目标2
IEC61850目标3
IEC61850体系构成
IEC61850特点
面向对象建模(电力系统信息 Server、LD、LN、Data、DAs), -7-2是类的定义,-7-3是具体DAs、CDCs的定义,-7-4是LNs的具 体定义。这些就是上面所提及的“WHAT” 抽象通讯服务接口(ACSI-Abstract Communication Service Interface -7-2)它屏蔽了具体的通讯协议栈和具体规约、具体的 通讯介质,它是“HOW”,是应用层访问IEC61850对象空间的接 口。可以有多种SCSM(Specific Communication Service Mapping)与之对应,-8-1是映射到MMS(ISO9506-1、 ISO9506-2)和ISO/IEC8802-3的SCSM 面向实时的服务(GOOSE、Sampled Values) SCL配置语言(-6) 电力系统的数据统一建模
IEC61850技术之一 IEC61850技术之一
IEC61850概述 IEC61850概述
柳凤夙 2007.06
背景1
由IEC(国际电工委员会)TC57制定 未来变电站自动化的全球唯一通讯标准 IEC61850国际标准包含14个标准 提供了自动化设备“互联”(work together)的方法 定义了通讯 “什么”及“如何”通讯(defines WHAT to communicate and HOW to communicate) 定义装置/变电站的配置方式(defines the CONFIGURATION of devices/substation)(基于 W3CXML1.0的SCL语言)
智能变电站IEC61850服务端仿真软件研究

智能变电站IEC61850服务端仿真软件研究摘要:本文主要研究一种IEC61850服务端仿真软件,将智能变电站间隔层及过程层二次设备的ICD/CID文件载入该软件后,即可模拟该二次设备的遥信变位、告警变化及遥测变化,实现监控后台及远动主站遥信、遥测信息快速核对,将该仿真软件应用于智能变电站新建、改扩建工程验收中,将极大提高验收工作效率。
关键词:智能变电站IEC61850服务端遥信遥测一、引言后台监控系统及远动服务器是电力系统最重要的二次设备之一,主要承担变电站数据的统一采集、处理、存储、传输等任务。
根据南方电网二次一体化建设要求, 在远动主站建设全景的数据中心, 整合各专业数据, 对数据进行分类、定级,实现对电网数据分级监控。
变电站端需要与主站配合完成“遥信、遥测、遥控、遥调”信息核对,任何数据的错误或者缺漏都有可能对电网的稳定运行造成不良影响,因此对“四遥”数据完备性及准确性提出了非常严格的要求。
变电站二次设备数量众多,涉及几千个遥信量、遥测量,均需要逐一与监控后台、远动主站联调验证数据正确性。
站内测试人员在对整站装置人工触发信号或模拟量变化时,面对的装置厂家及型号繁多,不同装置的测试方法又不同,测试工作量很大,很容易造成测试的随机性、盲目性及冗余或遗漏,测试耗时耗力效率低,且存在人为因素导致的测试结果误差等情况,影响变电站二次设备验收进度。
如何提高监控后台机及远动服务器遥信、遥测信息核对工作效率成为亟待解决的问题。
二、研究目标智能变电站是智能电网的重要内容,变电领域的发展重点是智能变电站,智能变电站通过“三层两网”结构,实现全站信息数字化,通信平台网络化、信息共享标准化、系统功能集成化、结构设计紧凑化,从而实现全站实时在线分析决策,提高设备运行可靠性及经济性。
相比较于传统常规变电站,智能变电站二次设备数据模型协议标准化,不同厂家设备具备了互操作性。
利用这一技术特点,本文研制一种IEC61850服务端仿真软件,将智能变电站间隔层及过程层二次设备的ICD/CID文件载入该软件后,即可模拟该二次设备的遥信变位、告警变化及遥测变化,并支持多实例连接,对不同客户端提供独立的访问视窗和各种标准服务,可同时对后台监控系统及远动服务器进行信号点核对测试。
IEC61850在配电自动化中的应用(V2.0)

配网自动化系统采用IEC61850的益处
通信服务
IEC61850标准定义了60多种抽象通信服务接口 (ACSI),为配网自动化系统的应用提供了良好 的支撑。 IEC61850完备的ACSI、丰富的底层协议映射、 开放的通信服务架构,可适应配网自动化系统点多 面广的特点。
配网自动化系统采用IEC61850的益处
IEC61850的新进展
IEC TC57 WG10与各标准化组织合作通过对国际标 准的不断修订以及相关技术报告和技术规范的不断 起草使IEC61850技术不断前进,形成一个大的技术 体系,满足智能电网的应用需求。
IEC61850的新进展 可再生能源领域
1)IEC61400-25:风电场监控 IEC TC57 WG10与IEC TC88合作制定,以 IEC61850为基础,增加新逻辑节点用于对风电场进 行数据建模,底层通信协议除了映射到制造报文规 范(MMS)外,新增了对WebService等其他4种协 议的映射,并完善了通信一致性测试案例。 IEC61400-25使风电场监控系统有标准可依,实 现了设备间的互操作,简化了系统集成。
需要解决的问题 架构 IEC61850-90-15给出的DER集成5层设备架构
Market
Market
Market Operator Market Operator Market Operator
Market DER Management System DSO DSO DER Management System Facility DER Management System
IEC61850的最新进展
IEC61850的新进展
在IEC61850标准架构中,很多文件是通用的, 适用于多个领域。 例如:IEC61850-4 系统和项目管理 IEC61850-10 通信一致性测试。 通用文件通过经过5年左右会修订一次。 有些文件则是针对特定领域的, 例如:IEC61850-7-410 水电厂监控应用的逻辑节 点 IEC61850-7-420 分布式能源应用的逻辑节点。
IEC61850第二版介绍

数据模型
IEC61850-7-4 ED2 5)通用逻辑节点组:G GLOG(通用日志) 6)接口与查询逻辑节点组:I ISAF(安全告警功能)、ITPC(保护通信接口) 7)机械非电一次设备逻辑节点组:K KFAN(风扇)、KFIL(过滤器)、KPMP(泵)、KTNK(油 箱)、KVLV(阀控制) 8)测量计量类逻辑节点组:M MENV(环境信息)、MFLK(FLICKER测量)、MHYD(水 文信息)、MMDC(直流测量)、MMET(气象信息)、 MMTN(计量)
1输变电设备状态监测网络通信规范2高压智能组件网络通信规范技术路线拓展了iec61850的应用范围技术路线文件体系文件状态iec618504ed2系统与项目管理201104发布iec618506ed2与变电站ied相关通信的配置描述语言200912发布iec6185071ed2基本通信结构原则与模型201107发布iec6185072ed2基本通信结构抽象通信服务接口201008发布iec6185073ed2基本通信结构公共数据类201012发布iec6185074ed2基本通信结构兼容逻辑节点和数据对象类201003发布iec6185081ed2特定通信服务映射映射到mms和以太网201106发布iec6185092ed2特定通信服务映射采样值映射到以太网2011发布iec618501ed2介绍与概述正在提交iec总部iec618503ed2通用需求正在征求意见iec618505ed2功能通信需求与设备模型正在投票iec6185010ed2一致性测试正在提交iec总部iec618507410ed2水电厂监控正在提交iec总部iec618507420基本通信结构分布式能源逻辑节点200903发布数据模型iec6185073ed2新增加csghsttsg公用数据类
IEC61850系列标准简介(中)解读

BufTim IntgPd º ´ » æ
DataSetRef TrgOps(dchg,qch,g dupd,integrity,gi) ±¸ ¨ æ ¸ ñ Ê ½ à Ö ± Æ TrgOps(dchg,qch,g
6
Ú ² Ä ¿ Ê Â ¼ þ â Á ² ¿ Á ¿ µ Ä ² Ê Ë ±Ö µ À Ç Ë ø Ö µ Ê ¾ ý Ý ¸ Ä ± ä dchg)
Client/Server 服务
服务模型
通用服务 数据集(DATA-SET) 关联(Application association) 报告控制块 (REPORT-CONTROL-BLOCK) 控制(CONTROL) 定值组控制块(SETTING-GROUP-CONTROL-BLOCK) 通用变电站事件 (Generic substion even) 取代模型(Substitution) 时间和时间同步模型(Time & time-synchronization) 日志控制块 (LOG-CONTROL-BLOCK)
LNRef
Data [1..n] DataSet [0..n]
ObjectReference
DATA DATA-SET
路径名
BufferedReportControlBlock [0..n] UnbufferedReportControlBlock [0..n] LogControlBlock [0..n]
3、缓存时间从1毫秒直到1小时。
4、在缓存时间内,如果收到同一数据的笫二个内部通知,对 于状态信息,应立即发送报告,并重新启动定时器,处理 第二个通知。对于模拟信息,可以采用与状态信息相同的 方式,或者直接用新值替换原值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
�Generation / Load capabilities
– DRCT – rated characteristics (Min/Max/Nom, Sup/Dmd, W/VAr) – DRCS – actual characteristics (Min/Max, Sup/Dmd, W/VAr)
© 2012 it4power CB 2012-08-24
Aggregations of generic electrical Generic electrical e.g. MMXU, …, DRCS, DRCC, etc DER Unit DER Unit DER Unit DER specifics e.g. DCIP, DBAT, …
Inverter, etc specific e.g. ZINV, ZRCT Inverter, etc specific e.g. ZINV, ZRCT
Stability issues
© 2012 it4power CB 2012-08-24
New mix of energy resources
Need to communicate
© 2012 it4power CB 2012-08-24
The three pilars for Smart Distribution
© 2012 it4power CB 2012-gy - Scope
Realizing the three pillars of Smart distribution
Cost balancing group deviation
VPP operation Today Monday, 15. May 2011 100 % 100 % 40 %
11
© 2012 it4power CB 2012-08-24
Ongoing standardization
� IEC 61850-90-6: Using IEC 61850 for distribution automation � IEC 61850-90-7: IEC 61850 object models for photovoltaic, storage and other DER inverters � IEC 61850-90-8: IEC 61850 object models for electrical vehicles � IEC 61850-90-9: IEC 61850 object models for battery storage systems � IEC 61850-90-10: Modeling of schedules in IEC 61850 � IEC 61850-90-15: Hierarchical DER system model � IEC 61850-8-2: Mapping on Web Services
Example – Energy storage (cont)
� Storage capabilities
– DRCT – installed energy at nominal power – DRCS – available charge / discharge energy
� Operational characteristics
© 2012 it4power CB 2012-08-24
IEC 61850 for DER
� IEC 61850-7-420: Communications Systems for Distributed Energy Resources (DER)
– Object models for distributed energy resources – Reciprocating engines, fuel cells, microturbines, wind turbines, photovoltaic and storage devices
� Control
– DRCC – setpoints, operation modes, schedules, limits (functions)
© 2012 it4power CB 2012-08-24
Architecture of DER System
� Control with
DER Network Services
ISO 9506 ASN.1 Session
RFC 1006 (Port 102)
TCP IP Ethertype Ethernet, ... Physical
© 2012 it4power CB 2012-08-24
What is IEC 61850?
… domain specific object models
© 2012 it4power CB 2012-08-24
5
Data Requirements
© 2012 it4power CB 2012-08-24
Requirements for Standards
� Global Standard to access all distributed energy resources � Interface with standardized semantic � Data interface that is independent from plant (generator, load, storage) technology � Communication protocol that can be used on various physical media � Related work is ongoing in IEC TC57 / WG17 based on the IEC 61850 standard
SIMG SIMG XSWI SIMG TCTR PDIS PTOC
XSWI
TVTR
MMXU XCBR CSWI CSWI
Primary technology
Secondary technology
© 2012 it4power CB 2012-08-24
What is IEC 61850?
… domain specific object models �Defines models for functions of the power system
Past Today
HV: 110kV Load flow
Load flow
MV: 10/20/ 30 kV
LV: 400V
Generator
Industr y
House hold
2
Transform er
© 2012 it4power CB 2012-08-24
Why Smart Distribution?
€
18
© 2012 it4power CB 2012-08-24
Project Web2Energy
� > 100 Smart Meters in 5 locations � One Smart Distribution Loop with self healing capability � 7 Storage Batteries (10 / 100 kWh) � 3 CHP � 1 Biogas Plant � 3 Windpower Installations � 12 Photovoltaics � 2 Hydro Powerplants
+ + -
+
-
Distribution automation
Smart Aggregation
Smart Metering
Voltage and load flow monitoring. Automated location and elimination of faults – Improved Quality of supply
12
© 2012 it4power CB 2012-08-24
Example – Self healing grid
3
x
1
x
4 2.1 2.2
Information
� Short circuit indication (LN SFPI) � Switch control and status (LN CSWI / XSWI) � Measured values (LN MMXU) � Metered values (LN MMTR)
© 2012 it4power CB 2012-08-24
DER Tech view DER Unit DER Unit
DER Tech view
Logical nodes – modeling approach
Electrical connection Aggregations of Generic electrical ECP specific LNs e.g. DCRP, DOPR, DOPA
– Direct interaction – Schedule based
DER System
� Methods of operation based on
– Individual setpoints (e.g. active power, reactive power) – Autonomous behavior (e.g. price based, temperature based) – Operation modes (e.g. VoltVar, VoltWatt)
Aggregation of dispersed generators storage and loads for balancing. Simulation of prospective market models