旋转---新

合集下载

图像处理中的图像旋转算法

图像处理中的图像旋转算法

图像处理中的图像旋转算法在日常生活和工作中,我们经常需要对图像进行旋转操作,比如将图片调整成合适的方向以便阅读,或者根据需求将图像进行合适的旋转。

而在图像处理、计算机视觉等领域中,这种操作更是十分常见。

本文将主要探讨一些常见的图像旋转算法及其优缺点。

一、旋转的原理在介绍旋转算法之前,我们先简单了解一下旋转的原理。

对于一个平面上的点(x,y),我们可以通过对其坐标系进行旋转操作,得到一个新的坐标(x',y')。

其中,旋转角度为θ,坐标轴的转向和选取的方向有关。

以顺时针方向旋转为例,我们可以根据以下公式计算得到旋转后的新坐标:x' = x*cosθ + y*sinθy' = -x*sinθ + y*cosθ在图像旋转中,我们需要考虑的是如何确定旋转中心的位置以及旋转后图像的大小。

二、最近邻插值法最近邻插值法是一种常用的图像缩放和旋转方法。

其原理相对简单,即将旋转后的图像中每个像素点的值设置为最邻近像素点的值。

举个例子,在图像中选择一个点进行旋转时,我们可以根据该点与旋转中心之间的距离和旋转角度,计算得到新的坐标值,并将该坐标的像素赋值给旋转后的图像。

最近邻插值法的实现简单,效率较高,但其缺点是会导致图像出现锯齿状的边缘效果,因此适用于图像缩小操作,不适用于精度要求较高的图像旋转。

三、双线性插值法双线性插值法是一种常见的图像插值方法,其原理是在旋转后的图像中对每个像素点进行位置插值,以得到其对应像素的值。

具体来说,我们可以根据旋转后的坐标位置,找到其在原图像中最邻近的四个像素点,然后根据这四个像素点之间的加权平均值,计算出旋转后该位置的像素值。

相较于最近邻插值法,双线性插值法能够更好地处理边缘效果,但其缺点是会导致图像出现模糊的效果,因此需要根据实际情况选择使用。

四、双立方插值法双立方插值法与双线性插值法类似,但其加权平均值的计算方式不同。

它不仅考虑了最邻近的四个像素点,还同时考虑了它们周围的16个像素点。

笛卡尔坐标旋转变换

笛卡尔坐标旋转变换

笛卡尔坐标旋转变换笛卡尔坐标旋转变换笛卡尔坐标旋转变换是一种常见的数学变换,它可以将一个坐标系绕着某个点旋转一定的角度,从而得到一个新的坐标系。

这种变换在计算机图形学、机器人学、航空航天等领域都有广泛的应用。

旋转变换的基本原理是将一个点绕着某个轴旋转一定的角度,从而得到一个新的点。

在笛卡尔坐标系中,我们可以通过矩阵乘法来实现旋转变换。

具体来说,我们可以将一个点的坐标表示为一个列向量,然后将旋转矩阵与该列向量相乘,从而得到旋转后的新坐标。

旋转矩阵的构造方法有很多种,其中最常用的是绕着某个坐标轴旋转的方法。

例如,我们可以将一个点绕着x轴旋转θ度,其旋转矩阵为:cosθ -sinθ 0sinθ cosθ 00 0 1同样地,我们也可以将一个点绕着y轴或z轴旋转,其旋转矩阵分别为:cosθ 0 sinθ0 1 0-sinθ 0 cosθcosθ -sinθ 0sinθ cosθ 00 0 1cosθ -sinθ 0sinθcosθ 00 0 1需要注意的是,旋转矩阵是一个正交矩阵,即其转置矩阵等于其逆矩阵。

这意味着旋转变换不会改变向量的长度和方向,只会改变其在坐标系中的位置。

除了绕着坐标轴旋转外,我们还可以通过欧拉角来描述旋转变换。

欧拉角是一组三个角度,分别表示绕着x轴、y轴和z轴旋转的角度。

通过欧拉角,我们可以将旋转变换分解为三个绕轴旋转的变换,从而更加灵活地控制旋转变换。

总之,笛卡尔坐标旋转变换是一种非常重要的数学变换,它可以将一个坐标系绕着某个点旋转一定的角度,从而得到一个新的坐标系。

在计算机图形学、机器人学、航空航天等领域,旋转变换都有广泛的应用。

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。

2、旋转的性质(1)对应点到旋转中心的距离相等。

(旋转中心就是各对应点所连线段的垂直平分线的交点。

)(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全等。

3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。

4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。

5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

一次函数旋转规律口诀

一次函数旋转规律口诀

一次函数旋转规律口诀1.引言1.1 概述一次函数旋转规律是数学中一个重要的概念,特指一次函数旋转后的图像和性质的变化规律。

一次函数,也称为线性函数,是指函数的表达式为f(x) = ax + b,其中a和b为常数,且a不等于0。

在研究一次函数旋转规律之前,我们先了解一次函数的基本定义和特点。

一次函数的图像在坐标平面上呈现为一条直线,具有以下几个特点:1. 斜率:一次函数的斜率表示函数图像的倾斜程度,斜率的绝对值越大,图像离纵轴的距离变化越快。

斜率可以用来表示一次函数的变化速率,它等于函数定义中的系数a。

2. 截距:一次函数的截距表示函数图像与纵轴的交点位置,即x轴截距和y轴截距。

x轴截距为函数定义中的常数b除以系数a的相反数,y 轴截距为常数b。

3. 单调性:一次函数的图像在整个定义域上是单调递增或单调递减的。

当斜率a大于0时,函数图像递增;当斜率a小于0时,函数图像递减。

了解了一次函数的定义和特点后,我们可以进一步研究一次函数的旋转规律。

一次函数的旋转规律指的是当一次函数的图像沿着一定规律进行旋转后,新的图像所呈现的变化规律。

在这篇文章中,我们将详细探讨一次函数旋转规律的性质和应用实例。

通过深入研究这一规律,我们可以更好地理解和应用一次函数的概念,并在解决实际问题时能够灵活运用相关知识。

接下来,我们将首先介绍一次函数的定义和特点,然后详细讨论一次函数的图像和性质,最后总结一次函数的旋转规律,并给出一些实际应用的例子。

通过阅读本文,读者将能够全面了解一次函数旋转规律的重要性和实际应用的意义,为进一步深入学习数学奠定坚实的基础。

1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构本文分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个方面内容。

概述部分简要介绍了本文要讨论的主题——一次函数旋转规律,以及该主题的重要性;文章结构部分介绍了本文的整体结构,包括引言、正文和结论,并指出各部分内容的主要目标;目的部分明确了本文要达到的目标,即通过介绍一次函数旋转规律,帮助读者更好地理解和掌握一次函数的性质和图像变化规律。

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。

初中数学最新版《旋转的概念与性质 》精品导学案(2022年版)

初中数学最新版《旋转的概念与性质 》精品导学案(2022年版)

第二十三章 旋转一、新课导入第 1 课时 旋转的概念与性质1.导入课题: 运用课件欣赏日常生活中一些物体的旋转现象,观察旋转的过程,引入新课.2.学习目标: 〔1〕了解生活中广泛存在的旋转现象,知道旋转是继平移、对称之后的又一种根本变换. 〔2〕能结合图形指出什么是旋转中心、旋转角和对应点. 〔3〕体会旋转的形成过程,并探究旋转的性质. 3.学习重、难点: 重点:旋转的有关概念和性质. 难点:探究旋转的性质. 二、分层学习 1.自学指导: 〔1〕自学内容:教材第 59 页的内容. 〔2〕自学时间:5 分钟. 〔3〕自学方法:观察生活中物体的旋转现象,体会旋转过程,形成旋转概念的感性认 识. 〔4〕自学参考提纲: ①把一个平面图形 绕着平面内某一点 O 转动一个角度 ,叫做图形的旋转. ②从课文中的思考实例可以看出:图形的旋转三要素是 旋转中心 , 旋转方向 , 旋转角 . ③如右图,点 P 是正方形 ABCD 内一点,将△ABP 绕 B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是 点 B ,旋转角度为 90° ,点 A、 B、P 的对应点分别为 C、B、P′ .2.自学:学生可参考自学指导进行自学. 3.助学: 〔1〕师助生: ①明了学情:观察学生能否抓住旋转的要素.②差异指导:根据学情进行相应指导. 〔2〕生助生:小组内相互交流、改正. 4.强化: (1)旋转的三要素. (2)指出课本中风车的旋转中心、旋转角、旋转方向. (3)练习: ①时钟的时针在不停地旋转,从上午 6 时到上午 9 时,时针旋转的角度是多少?从上午 9 时到上午 10 时呢? 解:从上午 6 时到上午 9 时,时针旋转的角度为 90°,从上午 9 时到上午 10 时,时针 旋转的角度是 30°. ②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点 O ,旋转角是 ∠AOA′ , 点 A 的对应点是点 A′ . 1.自学指导: 〔1〕自学内容:教材第 60 页的“探究〞——旋转的性质. 〔2〕自学时间:6 分钟. 〔3〕自学方法:准备一块硬纸板、小刀和一张白纸,小组合作,通过操作、研讨,再 总结归纳. 〔4〕探究参考提纲: ①按以下要求动手画图: 在硬纸板上先挖一个三角形洞,再在三角形洞外挖一个小洞 O〔作 为旋转中心〕,把挖好洞的硬纸板放在白纸上,在白纸上描出挖掉的三角 形图案〔△ABC〕,围绕旋转中心转动硬纸板,再描出挖掉的三角形图案 〔△A′B′C′〕,移开硬纸板,用虚线连接 OA、OA′、OB、OB′、OC、OC′. ②OA 与 OA′、OB 与 OB′、OC 与 OC′分别有何关系? 分别相等 . ③∠AOA′、∠BOB′、∠COC′之间有何关系? ∠AOA′=∠BOB′=∠COC′ . ④△ABC 与△A′B′C′有何关系? △ABC≌△A′B′C′ . ⑤观察你画的图形,还有不同的发现吗? AB=A′B′,BC=B′C′,AC=A′C′. 2.自学:学生可参考自学指导进行自学探究. 3.助学:〔1〕师助生: ①明了学情:看学生是否能在探究提纲的指导下,动手操作、实验,并归纳出相应结论. ②差异指导:根据学情进行个别指导或分类指导. 〔2〕生助生:小组内相互交流、协作,共同探讨、归纳. 4.强化: 〔1〕归纳旋转的性质. 〔2〕完成以下练习: ①如图 1,小明坐在秋千上,秋千旋转了 80°.请在图中小明身上任意选一点 P,利用旋转 的性质,标出点 P 的对应点. ②如图 2,用左面的三角形经过怎样的旋转,可以得到右面的图形? 解:分别绕点 O 顺时针旋转 120°,240°. ③找出图 3 中扳手拧螺母时的旋转中心和旋转角. 解:点 O 就是旋转中心,旋转角就是∠POP′. 三、评价 1.学生的自我评价〔围绕三维目标〕:这节课你学到了哪些知识?自我感知有何缺乏? 2.教师对学生的评价: 〔1〕表现性评价:点评学生的主动参与情况、小组协作交流情况、学习效果及缺乏之 处等. 〔2〕纸笔评价:课堂评价检测. 3.教师的自我评价〔教学反思〕:积极创设情境,激发学生学习的好奇心和求知欲.以“丰 富的生活中的旋转〞作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了 学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激 发学生主动参与探究新知的兴趣.此外,本节课需要注意的地方:①教师在提问时需给学生 充分思考的时间,帮助学生养成良好的思考、分析习惯;②如何将“创设情境〞与教学有机 地结合起来,更有效地为教学效劳.问题情境的创设不能流于形式,而应更多地考虑学生的 年龄特征、兴趣爱好,多从学生的角度来设计、创造.〔时间:12 分钟总分值:100 分〕 一、根底稳固〔70 分〕1.(10 分) 以下现象中属于旋转的有〔D〕 ①火车行驶;②荡秋千运动;③方向盘的转动;④钟摆的运动;⑤圆规画圆.A.1 个B.2 个C.3 个D.4 个2.(10 分) 如图,点 A、B、C、D 都在方格纸的格点上,假设△AOB 绕点 O 按逆时针方向旋转到△COD 的位置,那么旋转的角度为〔C〕A.30°B.45°C.90°D.135°第 2 题图第 3 题图3.(20 分) 如图,四边形 ABCD 是边长为 4 的正方形,且 DE=1,△ABF 是△ 点 A ,旋转了 90 度,AF 的长度是 17 ,连接 EF,那么△AEF 的形状是 等腰直角三角形 .4.(10 分) 如图,右边的小鸡是由左边的小鸡经过旋转得到的,旋转中心是点 O.从图中量一量旋转角是多少度.解:旋转角为 85°.5.(20 分)下面两组图形分别是用左边的图形经过怎样的旋转得到右边的图形的?解:(1)绕中心顺时针旋转 60°,120°,180°,240°,300°得到;(2)绕中心顺时针旋转 90°,180°,270°得到.二、综合应用〔20 分〕6.(10 分) 如图,该图形围绕自己的旋转中心,按以下角度旋转后,不能与自身重合的是〔B〕A.72° B.108° C.144° D.216°第 6 题图第 7 题图7.(10 分)把图中的五角星图案,绕着它的中心点 O 旋转,旋转角为多少度时,旋转后的五角星能与自身重合?解:旋转角为 72°或 144°或 216°或 288°时,旋转后的五角星能与自身重合.三、拓展延伸〔10 分〕8.(10 分)如图,△ABD、△AEC 都是等边三角形,BE 与 DC 有什么关系?你能用旋转的性质说明上述关系成立的理由吗?解:BE=DC.理由:因为 AB 是由 AD 绕中心点 A 逆时针旋转 60°得到,AE 是由 AC 绕中心点 A 逆时针旋转 60°得到,所以△ABE 可看成是由△△ADC≌△24.2.1 点和圆的位置关系教学目标 (一)教学知识点 了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)能力训练要求 1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力. 2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题 的策略. (三)情感与价值观要求 1.形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新 精神. 2.学会与人合作,并能与他人交流思维的过程和结果. 教学重点 1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论. 2.掌握过不在同一条直线上的三个点作圆的方法. 3.了解三角形的外接圆、三角形的外心等概念. 教学难点 经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的 三个点作圆. 教学方法 教师指导学生自主探索交流法. 教具准备 投影片三张 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点 能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索. Ⅱ.新课讲解 1.回忆及思考 投影片(§3.4A)1.线段垂直平分线的性质及作法. 2.作圆的关键是什么?[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.作法:如以以下图,分别以 A、B 为圆心,以大于 1 AB 长为半径画弧,在 AB 的两侧 2找出两交点 C、D,作直线 CD,那么直线 CD 就是线段 AB 的垂直平分线,直线 CD 上的 任一点到 A 与 B 的距离相等.[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做 圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆 心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片§3.4B)(1)作圆,使它经过点 A,你能作出几个这样的圆?(2)作圆,使它经过点 A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布 有什么特点?与线段 AB 有什么关系?为什么?(3)作圆,使它经过点 A、B、C(A、B、C 三点不在同一条直线上).你是如何作的?你 能作出几个这样的圆?[师]根据刚刚我们的分析,作圆的关键是确定圆心和半径,下面请大家互相交换意见并 作出解答.[生](1)因为作圆实质上是确定圆心和半径,要经过点 A 作圆,只要圆心确定下来,半 径就随之确定了下来.所以以点 A 以外的任意一点为圆心,以这一点与点 A 所连的线段为 半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)点 A、B 都在圆上,它们到圆心的距离都等于半径.因此圆心到 A、B 的距离相等.根 据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距 离相等,那么圆心应在线段 AB 的垂直平分线上.在 AB 的垂直平分线上任意取一点,都能 满足到 A、B 两点的距离相等,所以在 AB 的垂直平分线上任取一点都可以作为圆心,这点 到 A 的距离即为半径.圆就确定下来了.由于线段 AB 的垂直平分线上有无数点,因此有无 数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过 A、B、C 三点,就是要确定一个点作为圆心,使它到三点的距离 相等.因为到 A、B 两点距离相等的点的集合是线段 AB 的垂直平分线,到 B、C 两点距离 相等的点的集合是线段 BC 的垂直平分线,这两条垂直平分线的交点满足到 A、B、C 三点 的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆. [师]大家的分析很有道理,究竟应该怎样找圆心呢? 3.过不在同一条直线上的三点作圆. 投影片(§3.4C)作法图示1.连结 AB、BC2.分别作 AB、BC 的垂直 平分线 DE 和 FG,DE 和 FG 相交于点 O3.以 O 为圆心,OA 为半径作 圆 ⊙O 就是所要求作的圆他作的圆符合要求吗?与同伴交流. [生]符合要求. 因为连结 AB,作 AB 的垂直平分线 ED,那么 ED 上任意一点到 A、B 的距离相等; 连结 BC,作 BC 的垂直平分线 FG,那么 FG 上的任一点到 B、C 的距离相等.ED 与 FG 的满足条件. [师]由上可知,过一点可作无数个圆.过两点也可作无数个圆,过不在同一条直线上的 三点可以作一个圆,并且只能作一个圆. 不在同一直线上的三个点确定一个圆. 4.有关定义 由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆 (circumcircle of triangle),这个三角形叫这个圆的内接三角形. 外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter). Ⅲ.课堂练习 锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有 怎样的特点? 解:如以以下图. O 为外接圆的圆心,即外心. 锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心 在三角形的外部. Ⅳ.课时小结 本节课所学内容如下: 1.经历不在同一条直线上的三个点确定一个圆的探索过程. 方法. 3.了解三角形的外接圆,三角形的外心等概念. Ⅴ.课后作业 习题 3.6 Ⅵ.活动与探究 如以以下图,CD 所在的直线垂直平分线段 AB.怎样使用这样的工具找到圆形工件的 圆心? 解:因为 A、B 两点在圆上,所以圆心必与 A、B 两点的距离相等,又因为和一条线段 的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在 CD 所在的直线上.因此 使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.。

旋转坐标轴的坐标变换公式

旋转坐标轴的坐标变换公式

旋转坐标轴的坐标变换公式
在平面直角坐标系中,如果将坐标轴绕原点旋转一个角度θ,新的坐标轴(x',y')与原坐标轴(x,y)之间的关系可以用下面的公式表示:
x' = x * cos(θ) - y * sin(θ)
y' = x * sin(θ) + y * cos(θ)
反过来,如果已知点在新坐标系(x',y')下的坐标,想要求出它在原坐标系(x,y)下的坐标,可以使用以下公式:
x = x' * cos(θ) + y' * sin(θ)
y = -x' * sin(θ) + y' * cos(θ)
其中,θ是坐标轴旋转的角度,方向按照从x轴到y轴的方向为正。

这些公式广泛应用于分析旋转问题、极坐标与直角坐标的相互转换等场合。

需要注意的是,这里假设旋转是围绕原点进行的,如果是围绕其他点旋转,则需要先将坐标系原点平移到该点,进行旋转,然后再平移回来。

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

旋转性质的综合应用课教材背景分析和教学安排说明:本节课是人教版数学九年级上册第二十三章《旋转》第7课时,是一节综合应用课;在此之前学生已经学完了旋转的单元知识,本节课主要目的是培养学生综合运用能力,锻炼学生的分析问题,解决问题的能力。

本节课的教学我以实例为切入点,以探究活动为主线设计了5个环节,让学生通过具体实例进一步学习旋转,动手进行数学实验探索,经历旋转现象的观察分析,证明过程,引导学生用旋转的思想解决有关问题。

近几年,有关旋转知识,在广州中考中所占分值统计表246810121416分值旋转已成为广州中考的重点与热点内容之一,当图形的形状不规则,难以直接应用数学知识求解或是条件比较分散,难以发现其内在联系时,可通过旋转使不规则图形转化为规则图形,使分散的条件发生“转移”,变得相对集中,从而使待求问题明朗化,这种解决问题的思想就是旋转变换思想.教学任务分析 教 学 目 标 知识与技能 建立旋转及相关性质的知识框架,掌握旋转的性质并能运用有关知识进行推理和计算。

过程与方法 在探究的过程中经历操作——猜想——验证的过程,发展学生分析、归纳、抽象概括的思维能力,积累数学经验。

情感态度 价值观学生经历图形旋转的操作,进一步发展空间观念,培养运动几何的观点。

让学生通过独立思考,自主探究,合作交流进一步体会旋转的数学内涵,获得知识,体验成功。

增强学习的积极性。

教学重点 旋转的基本性质的运用,解决旋转问题的一般方法。

教学方法采用以学生的合作探究为主,教师的适时引导为辅的教学方式。

活动流程图 时间安排 环节l 知识再现 4分钟 环节2 例题讲解 8分钟 环节3 探索一 15分钟 环节4 当堂训练10分钟环节5小结,布置作业 3分钟环节6 教学反思课后教师完成教学过程设计问题与情境师生行为设计意图「环节1」:知识再现(1)如图正方形ABCD,点E是CD上的任意一点,将ΔADE绕着点A顺时针旋转900后到达ΔABF的位置,连接EF,则①旋转中心是②指出旋转角③BF和DE有何关系是(2).ΔABC是等边三角形,将ΔADB绕点A逆时针旋转到ΔAEC,连结DE,则ΔADE的形状是(3)如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C′ C′
O A′ A′
旋转的基本性质
B′ B′ C C
◆对应点到旋转中心的距离相等。
AA
B B
◆每一对对应点与旋转中心所连 线段的夹角等于旋转角。 ◆旋转前、后的图形全等(对应 线段相等、对应角相等)。
四边形ABCD是正方形,△DCE顺时针旋转后与 △DAF重合,那么 (1)旋转中心是______ 点D ∠CDA (2)旋转角是_____ _和 ∠EDF 度数是
P 旋转三要素: 旋转中心 旋转角 旋转方向
动态演示
O
120
P′
1.下列现象中属于旋转的有( A )个. ①地下水位逐年下降; ②传送带的移动;③方向盘的转动; ④风车的转动; A.2 B.3 C.4 D.1 2.时钟的时针在不停地转动,从上 午6时到上午7时,时针旋转的旋转 角是( 30 )° ;从上午7时到上午10 时是(90)°
A
△BPF是( 等边)三角形,
PF=( 4 ),FC=( 3 ), △PFC是(直角 )三角形,3 NhomakorabeaP
4
F
5
C
∠BFC=( 150 )°
∠BPA=( 150 )°
B
平移、翻折和旋转的异同:
1、相同: 都是一种运 动;运动前后图形的 形状和大小不改变, 位置变化。 2、不同
运动方向 平移 直线 翻折 直线 运动量的衡量 移动一定距离 翻折180°
90o
点A ,点E的对应点是____ 点F (3)点C的对应点是____ ∠ ADF (4)∠CDE的对应角是 ____ (5)连结EF后,△DEF是 ________ 三角形 等腰直角
F A D C
E
B
1.如图在等腰直角△ABC中∠B=90°将△ABC绕顶点A逆时 针旋转60°后得到△ADE,则∠BAE=( B ) A 60° B 105° C 120° D 135° 2.在10分钟的时间内分针转过的角度是( A 15° B 30° C 45° D 60°
摩天轮
宇宙中的星球运动
秋千
(1)上面情景中的转动现象,有什么 共同的特征? (2)钟表的指针、风车在转动过程中, 其形状、大小、位置是否发生变化呢?
把一个平面图形绕着某一定点O转动 一个角度的图形变换叫做旋转.这个定点 O叫旋转中心,转动的角叫做旋转角. 如图,图形上的点P经过旋转变为点P′, 那么这两个点P和P′叫做这个旋转的对应点.
3、如图,杠杆绕支点转动撬起重物, 杠杆的旋转中心在哪里?旋转角是 哪个角?
点0
∠AOA′
∠BOB′
如图△OAB逆时针旋转到△ODC,在 点O 这个过程中, 旋转中心是____ 旋转角是∠AOD 或∠ ______ BOC
D
点B 点C的对应点是____ 点A 与点D对应 ____
O
C
B
A
△ABC旋转到 △A′B′C′ OA=OA′ 1.线段OA与OA′有什么关系? 2. ∠AOA′与∠BOB′有什么关系? ∠AOA′=∠BOB′ 3. △ABC与△A′B′C′ △ABC≌△A′B′C′ 形状和大小有什么关系?
5、如图,△ABC中,∠BAC=90°,将△ABP绕点A 逆时针旋转一定角度后能与△ACD重合,若AP=2, 则PD=( 2√2 ) △APD的面积为( 2 )
A
A D P
D
E B C B
C
△ABC是等边三角形,P是△ABC内一点,且 PA=3,PB=4,PC=5,将△APB绕点B顺时针旋 转,则BA与BC重合,则 旋转角为(60)°
D

3.如图, △ABC绕点C旋转30°得△DEC, DE交AC于点F,若∠DFC= 80°则∠A=( 70 )°
A
B E D C
第1题图
AF
D
E
B
第3题图
C
4、如图,△ABC与△BDE都是等边三角形, AB﹥BD,若△ABC不动,将△ABE绕点B旋转,则此 过程中,AE与CD的大小关系为( ) A A AE=CD B AE>CD C AE<CD D 不确定
旋转 顺时针 逆时针
转动一定的角度
学习目标
1 认识图形的旋转 2 知道旋转和旋转角的概念 3 理解旋转的基本性质,并能进行 熟练计算
相关文档
最新文档