4膜分离技术
《四节膜分离》

一、膜分离法的分类及原理
透术、气体渗透、渗透蒸发
精选课件
分离范围
精选课件
精选课件
1、透析
利用具有一定孔径大小、高
分子溶质不能透过的亲水膜
将含有高分子溶质和其他小
分子溶质的溶液(左侧)与 纯水或缓冲液(右侧)分隔,
小分子
由于膜两侧的溶质浓度不同,
在浓差的作用下,左侧高分
大分子
子溶液中的小分子溶质透向
右侧,右侧中的水透向左侧,
这就是透析
精选课件
透析原理
透析膜 水
2、超滤和微滤:
超滤和微滤都是利用膜的筛分性质,以压差微传质推动力, 用于截留高分子溶质或固体微粒。
超滤:处理不含固形成分的料液,它是根据高分子溶质间 或高分子与小分子溶质之间相对分子质量的差别机械分离 的方法
单纯迁移:溶解度 和扩散度不同
促进迁移:和溶质 发生反应
精选课件
二、膜的种类及特性
1、膜的种类
选择膜应考虑的因素:分离能力;分离速度;抵抗化学、细
菌和机械力的稳定性;膜材料的成本
(1)均质膜或致密膜
(2)微孔膜
(3)非对称膜
(4)复合膜
(5)离子交换膜
精选课件
2、膜的结构特性
精选课件
五、膜的污染与清洗
1、膜污染的原因 (1)凝胶极化引起的凝胶层 (2)溶质在膜表面的吸附层 (3)膜孔堵塞 (4)膜孔内的溶质吸附 2、常用的清洗剂 水、盐溶液、稀酸、稀碱、表面活性剂、络合剂、氧化剂、
酶液
精选课件
六、应用举例
超滤用于除去葡萄酒中热变性蛋白质、 微滤除去葡萄汁中的细菌和各种固体颗粒
(1)孔道结构:不对称膜(表面活性层和惰性层) (2)膜的孔道特性:孔径、孔径分布、空隙率 (3)水通量:在一定条件下(一般压力为0.1MPa,温度
膜分离技术简介

14
目前,实用的有机高分子膜材料有:纤维素酯 类、聚砜类、聚酰胺类及其他材料。从品种来说, 已有成百种以上的膜被制备出来,其中约40多种已 被用于工业和实验室中。据粗略统计,纤维素酯类 膜占53%,聚砜膜占33.3%,聚酰胺膜占11.7%,其 他材料的膜占2%,可见纤维素酯类材料在膜材料中 占主要地位。
氯有较高要求。
23
常见材料的最高允许使用温度
名称
CA 聚酰胺 聚苯并咪唑 聚苯并咪唑酮 磺化聚苯醚 磺化聚砜 聚醚砜酮
温度
40 35 90 70 70 120 160
24
无机膜多以金属及其氧化物、多孔玻璃、陶瓷为 材料。从结构上可分为致密膜、多孔膜和复合非 对称修正膜三种。
25
1.6 膜的保存
37
38
各种膜组件的传质特性和综合性能的比较分别见下表。
39
3、 浓差极化、污染现象和控制
40
浓差极化定义
在膜分离操作中,所有溶质均被透过液传送到 膜表面上,不能完全透过膜的溶质受到膜的截留作 用,在膜表面附近浓度升高。这种在膜表面附近浓 度高于主体浓度的现象称为浓度极化或浓差极化 (concentration polarization)。
27
2 膜分离装置
28
膜组件(Membrane Module)
将膜、固定膜的支撑材料、间隔物或管式外壳等组装 成的一个单元称为膜组件。膜组件的结构及型式取决 于膜的形状,工业上应用的膜组件主要有中空纤维式、 管式、螺旋卷式、板框式等四种型式。管式和中空纤 维式组件也可以分为内压式和外压式两种。
29
均相膜、复 合膜,非对 称膜
渗透蒸发 压力差 选择传递
液膜分离
浓度差
膜分离技术在水处理中的研究热点与进展

膜分离技术在水处理中的研究热点与进展膜分离技术是一种基于膜作为过滤媒介的分离方法,随着近年来环境保护和水资源管理的重要性不断提升,膜分离技术在水处理中的研究热点与进展也越来越受到关注。
本文将从膜分离技术的基本原理、膜材料的研究与发展、膜分离技术在水处理中的应用等方面进行深入探讨。
1. 膜分离技术的基本原理膜分离技术是一种通过膜的选择性通透性,将混合物中的溶质分离出来的方法。
基本原理是利用膜的微孔、多孔或半透膜特性,通过溶质在膜上的分配差异,使溶质实现传递或吸附从而分离出来。
膜的通透性决定了它能够与哪些溶质有效交互,因此膜材料的研究与发展是膜分离技术进展的基础。
2. 膜材料的研究与发展膜材料的选择对膜分离技术的性能至关重要。
目前主要有有机膜、无机膜和复合膜三种类型的膜材料。
有机膜分为聚合物膜、纤维素膜、磺化膜等;无机膜分为陶瓷膜、金属膜和无机有机复合膜等。
近年来,多孔材料、纳米材料和功能化材料等新材料引起了研究人员的极大关注。
(1)多孔材料:多孔材料具有良好的通透性和高选择性,可以通过调节孔隙的大小和形状来实现对不同溶质的有效分离,如炭材料、炭纳米管等。
多孔材料的发展有助于提高膜的通透性、分离效率和抗污染性能。
(2)纳米材料:纳米材料具有独特的大小效应和表面效应,可以调控溶质在膜上的传递和吸附行为,提高分离的效果和选择性。
研究者正在研究纳米孔道膜、纳米复合膜等新型纳米材料的制备方法和性能。
(3)功能化材料:功能化材料通过改性和修饰膜材料表面,增强膜的亲水性、抗污染性和抗菌性能。
例如,添加活性炭、纳米银等抗菌材料可以抑制膜表面的生物污染。
3. 膜分离技术在水处理中的应用膜分离技术在水处理中具有广泛的应用前景,主要包括反渗透、超滤、微滤和气体分离等。
在反渗透技术中,通过膜的选择性通透性将溶质和溶剂分离开来,可以有效去除水中的无机盐、有机物和微生物。
在超滤和微滤技术中,通过调节膜的孔径,可以去除水中的悬浮物、胶体和大分子有机物。
膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。
膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。
本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。
通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。
二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。
根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。
微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。
其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。
超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。
超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。
纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。
纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。
反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。
反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。
电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。
膜分离技术

乳状液膜示意图
支撑液膜示意图
3.2
膜蒸馏
膜蒸馏是一种采用疏水微孔膜以膜两侧蒸汽压力差为 传质驱动力的膜分离过程,基本原理如下图:
优点:(1)常压下进行,设备简单、操作方便 (2)只有水蒸汽能透过膜孔,所以蒸馏液十分纯净(3)可以处理极高浓度 的水溶液,是目前唯一能从溶液中直接分离出结晶产物的膜过程; (4)无需把溶液加热到沸点,只要膜两侧维持适当的温差,就可以进行, 有可能利用太阳能、地热、温泉、工厂的余热和温热的工业废水等廉价能源。
2.1
应用
微滤
(1)水的高度净化:除菌和微粒 (2)食品、饮料、酒类、酱油醋等悬浮物、
微生物和异味杂质
(3)药液的过滤除菌 (4)发酵工业的空气净化和除菌。
2.2
超滤
行分离的筛分过程,其截断分子量一般在6000到50万, 如多糖、蛋白质、酶、胶体等。 孔径为几十nm,操作压0.2-1MPa
定义:以压力差为动力,利用超滤膜不同孔径对液体中溶质进
剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透 压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧 得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。
2.4
反渗透
特点:所分离物质分子量一般小于500,操作压2-100MPa
膜结构:反渗透膜通常使用非对称膜和复合膜,孔径小于0.5nm
3
新型膜分离技术
液膜萃取 亲和膜分离 渗透蒸发 气体分离 膜蒸馏
膜反应器
泡沫分离
3.1
液膜萃取
原理:液膜萃取技术是一种以液膜为分离介质,利用液膜 的选择透过性,以浓度差为推动力的一种新型膜分离方法, 结合了固体膜分离法和溶剂萃取法的特点
膜分离技术的应用及发展趋势

膜分离技术的应用及发展趋势一、本文概述膜分离技术,作为现代化工领域中的一种重要分离技术,已经在多个领域展现出其独特的优势和应用潜力。
本文旨在全面探讨膜分离技术的实际应用以及未来的发展趋势。
我们将从膜分离技术的基本原理出发,深入剖析其在水处理、生物医药、食品加工、能源工业等多个领域中的实际应用案例,以及在这些领域中取得的成效和面临的挑战。
我们还将关注膜分离技术的最新研究进展,展望其未来的发展方向和应用前景。
通过本文的阐述,我们希望能够为相关领域的研究人员和企业决策者提供有价值的参考信息,推动膜分离技术的进一步发展和应用。
二、膜分离技术的基本原理和分类膜分离技术是一种基于膜的选择性透过性质,将混合物中的不同组分进行分离、提纯或浓缩的技术。
其基本原理在于,当混合物在膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,混合物中的组分通过膜的选择性透过,从而实现不同组分的分离。
膜分离技术可以根据其操作原理和应用领域的不同,大致分为以下几类:微滤(Microfiltration, MF):微滤主要用于分离悬浮物、颗粒物和细菌等。
微滤膜的孔径通常在1~10μm之间,可以有效截留大于膜孔径的微粒。
超滤(Ultrafiltration, UF):超滤主要用于分离溶液中的大分子物质、胶体、蛋白质等。
超滤膜的孔径在1~100nm之间,允许小分子物质和溶剂通过,而截留大分子物质。
纳滤(Nanofiltration, NF):纳滤膜的孔径介于超滤和反渗透之间,一般为1~100nm。
纳滤主要用于分离分子量较小的有机物、无机盐和多糖等。
反渗透(Reverse Osmosis, RO):反渗透是膜分离技术中应用最广泛的一种。
反渗透膜的孔径极小,通常在1~1nm之间,能够截留几乎所有的溶解性盐类、有机物和微生物,从而实现水的净化。
电渗析(Electrodialysis, ED):电渗析是利用电场力推动离子通过离子交换膜进行分离的过程。
膜分离技术

膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。
它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。
本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。
一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。
根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。
膜的孔径大小、膜的材质和压力差均会影响分离效果。
该技术主要包括超滤、逆渗透和微滤等。
超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。
逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。
微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。
2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。
例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。
3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。
例如气体分离、液体浓缩和溶液析出等。
二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。
纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。
2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。
超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。
第4章-膜分离技术-李永新-江苏师范大学

膜过程的分离范围
膜过程的现状与发展趋势
• D一透析;
• MF一微滤;
• UF一超滤;
• RO一反渗透; ED一电渗析; CR一控制释放; GS一气体分离;
• PV一渗透汽化; MD一膜蒸馏; LM一液膜; MR一膜反应器; NF一纳滤;
• GM一闸膜;
• AT~主动传递
二、膜分离特点
(1)无需外加物质,可实现高纯度的分离; (2)过程不发生相变化,能耗较低; (3)在常温下进行,适合处理热敏性物料; (4)设备没有运动的部件,可靠性高,操作、
(4)经济性 分离膜的价格要合理。价格取决于材料和 制造工艺两方面。不少高聚物很具特色, 但价格太贵,无法作为商品。
分离膜要求:具有分离作用的膜越薄越好, (30nm);膜如果属于多孔性的,则膜上的 孔要求越多越好,孔径相差不大,只有这 样,膜的透过量才能大,分离物的纯度才 高。
“谁掌握了膜技术,谁 就掌握了21世纪的未 来”
当料液的pH值等于某蛋白质的等电点时, 溶质的截留率高于其他pH下的截留率。
截留率的影响因素
(4)料液流速
提高料液流速,可有效减轻膜表面的浓差 极化。但流速也不能太快,否则会产生过大 的压力降,并加速膜分离性能的衰退。
(5)操作压力
在一定的范围内,膜通量随操作压力的增 加而增大,但当压力增加至某一临界值时, 膜通量将趋于恒定。但操作压力也不能过高, 否则膜可能被压密。
• 具有分离选择性的人造液膜是马丁(Martin)在60 年代初研究反渗透时发现的,这种液膜是覆盖在固体 膜之上的,为支撑液膜。
• 60年代中期,美籍华人黎念之博士发现含有表面活 性剂的水和油能形成界面膜,从而发明了不带有固体 膜支撑的新型液膜,并于1968年获得纯粹液膜的第一 项专利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4膜分离技术1.1 基本概念膜(Membrane)是什么?有何特性?所谓的膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。
膜的特性: 不管膜多薄, 它必须有两个界面。
这两个界面分别与两侧的流体相接触 膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。
膜分离过程原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。
通常膜原料侧称为膜上游,透过侧称为膜下游。
1.2 膜分离技术发展简史高分子膜的分离功能很早就已发现。
1748年,耐克特(A. Nelkt )发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。
1861年,施密特(A. Schmidt )首先提出了超过滤的概念。
他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。
这种过滤可称为超过滤。
按现代观点看,这种过滤应称为微孔过滤。
然而,真正意义上的分离膜出现在20世纪60年代。
1961年,米切利斯(A. S. Michealis )等人用各种比例的酸性和碱性的高分子电介质混合物以水—丙酮—溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。
美国Amicon 公司首先将这种膜商品化。
50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。
1967年,DuPont 公司研制成功了以尼龙—66为主要组分的中空纤维反渗透膜组件。
同一时期,丹麦DDS 公司研制成功平板式反渗透膜组件。
反渗透膜开始工业化。
自上世纪60年代中期以来,膜分离技术真正实 现了工业化。
首先出现的分离膜是超过滤膜(简称UF 膜)、微孔过滤膜(简称MF 膜)和反渗透膜(简称RO 膜)。
以后又开发了许多其它类型的分离膜。
在此期间,除上述三大膜外,其他类型的膜也获得很大的发展。
80年代气体分离膜的研制成功,使功能膜的地位又得到了进—步提高。
具有分离选择性的人造液膜是马丁(Martin )在60年代初研究反渗透时发现的,这种液膜是覆盖在固体膜之上的,为支撑液膜。
60年代中期,美籍华人黎念之博士发现含有表面活性剂的水和油能形成界面膜,从而发明了不带有固体膜支撑的新型液膜,并于1968年获得纯粹液膜的第一项专利。
70年代初,卡斯勒(Cussler )又研制成功含流动载体的液膜,使液膜分离技术具有更高的选择性。
1.3膜的分类1.按膜的材料分类2. 按膜的分离原理及适用范围分类根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜等。
3. 按膜的形态分类按膜的形状分为平板膜(Flat Membrane)、管式膜(Tubular Membrane)和中空纤维膜(Hollow Fiber)。
4. 按膜的结构分类按膜的结构分为:对称膜(Symmetric Membrane)非对称膜(Asymmetric Membrane)复合膜(Composite Membrane)1.4 膜过滤的基础理论• 通透量理论:一种基于粒子悬浊液在毛细管内流动的毛细管理论。
• 水通量(Jw )和截留率(R )τ⋅=A WJ w 121c c c R -=•W—透水量,A—膜的有效面积,τ—时间•c1—料液中溶质浓度,c2—透过液中溶质浓度1.5 膜分离过程的类型分离膜的基本功能是从物质群中有选择地透过或输送特定的物质,如颗粒、分子、离子等。
或者说,物质的分离是通过膜的选择性透过实现的。
几种主要的膜分离过程及其传递机理如表2所示。
1.6膜材料用作分离膜的材料包括广泛的天然的和人工合成的有机高分子材料和无机材料。
原则上讲,凡能成膜的高分子材料和无机材料均可用于制备分离膜。
但实际上,真正成为工业化膜的膜材料并不多。
这主要决定于膜的一些特定要求,如分离效率、分离速度等。
此外,也取决于膜的制备技术。
目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。
从品种来说,已有成百种以上的膜被制备出来,其中约40多种已被用于工业和实验室中。
以日本为例,纤维素酯类膜占53%,聚砜膜占33.3%,聚酰胺膜占11.7%,其他材料的膜占2%,可见纤维素酯类材料在膜材料中占主要地位。
1. 纤维素酯类膜材料纤维素是由几千个椅式构型的葡萄糖基通过1, 4—β—甙链连接起来的天然线性高分子化合物,其结构式为:醋酸纤维素是当今最重要的膜材料之一。
醋酸纤维素性能稳定,但在高温和酸、碱存在下易发生水解。
纤维素醋类材料易受微生物侵蚀,pH值适应范围较窄,不耐高温和某些有机溶剂或无机溶剂。
因此发展了非纤维素酯类(合成高分子类)膜。
2. 非纤维素酯类膜材料常用于制备分离膜的合成高分子材料有聚砜、聚酰胺、芳香杂环聚合物和离子聚合物等。
聚砜类树脂具有良好的化学、热学和水解稳定性,强度也很高,pH值适应范围为1~13,最高使用温度达120℃,抗氧化性和抗氯性都十分优良。
因此已成为重要的膜材料之一。
早期使用的聚酰胺是脂肪族聚酰胺,如尼龙—4、尼龙—66等制成的中空纤维膜。
这类产品对盐水的分离率在80%~90%之间,但透水率很低,仅0.076 ml/cm2·h。
以后发展了芳香族聚酰胺,用它们制成的分离膜,pH适用范围为3~11,分离率可达99.5%(对盐水),透水速率为0.6 ml/cm2·h。
长期使用稳定性好。
由于酰胺基团易与氯反应,故这种膜对水中的游离氯有较高要求。
聚酰亚胺具有很好的热稳定性和耐有机溶剂能力,因此是一类较好的膜材料。
例如,下列结构的聚酰亚胺膜对分离氢气有很高的效率。
离子性聚合物可用于制备离子交换膜。
与离子交换树脂相同,离子交换膜也可分为强酸型阳离子膜、弱酸型阳离子膜、强碱型阴离子膜和弱碱型阴离子膜等。
在淡化海水的应用中,主要使用的是强酸型阳离子交换膜。
磺化聚苯醚膜和磺化聚砜膜是最常用的两种离子聚合物膜。
用作膜材料的乙烯基聚合物包括聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙烯、聚丙烯酰胺等。
共聚物包括:聚丙烯醇/苯乙烯磺酸、聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲基丙烯酸酯、聚乙烯/乙烯醇等。
聚乙烯醇/丙烯腈接枝共聚物也可用作膜材料。
无机膜多以金属及其氧化物、多孔玻璃、陶瓷为材料。
从结构上可分为致密膜、多孔膜和复合非对称修正膜三种。
1.7膜的制备1. 分离膜制备工艺类型膜的制备工艺对分离膜的性能十分重要。
同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。
合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。
目前,国内外的制膜方法很多,其中最实用的是相转化法(流涎法和纺丝法)和复合膜化法。
2. 相转化制膜工艺相转化是指将均质的制膜液通过溶剂的挥发或向溶液加入非溶剂或加热制膜液,使液相转变为固相的过程。
相转化制膜工艺中最重要的方法是L—S型制膜法。
它是由加拿大人劳勃(S. Leob)和索里拉金(S. Sourirajan)发明的,并首先用于制造醋酸纤维素膜。
将制膜材料用溶剂形成均相制膜液,在模具中流涎成薄层,然后控制温度和湿度,使溶液缓缓蒸发,经过相转化就形成了由液相转化为固相的膜,其工艺框图可表示如下:3. 复合制膜工艺由L—S法制的膜,起分离作用的仅是接触空气的极薄一层,称为表面致密层。
它的厚度约0.25~1μm,相当于总厚度的1/100左右。
理论研究表明可知,膜的透过速率与膜的厚度成反比。
而用L—S法制备表面层小于0.1μm的膜极为困难。
为此,发展了复合制膜工艺,其方框图如图3所示。
1.8膜的保存分离膜的保存对其性能极为重要。
主要应防止微生物、水解、冷冻对膜的破坏和膜的收缩变形。
微生物的破坏主要发生在醋酸纤维素膜;而水解和冷冻破坏则对任何膜都可能发生。
温度、pH值不适当和水中游离氧的存在均会造成膜的水解。
冷冻会使膜膨胀而破坏膜的结构。
膜的收缩主要发生在湿态保存时的失水。
收缩变形使膜孔径大幅度下降,孔径分布不均匀,严重时还会造成膜的破裂。
当膜与高浓度溶液接触时,由于膜中水分急剧地向溶液中扩散而失水,也会造成膜的变形收缩。
2 膜分离装置膜组件(Membrane Module)将膜、固定膜的支撑材料、间隔物或管式外壳等组装成的一个单元称为膜组件。
膜组件的结构及型式取决于膜的形状,工业上应用的膜组件主要有中空纤维式、管式、螺旋卷式、板框式等四种型式。
管式和中空纤维式组件也可以分为内压式和外压式两种。
(1)、板框式(Plate-and-Frame)膜组件板框式是最早使用的一种膜组件。
其设计类似于常规的板框过滤装置, 膜被放置在可垫有滤纸的多孔的支撑板上,两块多孔的支撑板叠压在一起形成的料液流道空间,组成一个膜单元,单元与单元之间可并联或串联连接。
不同的板框式设计的主要差别在于料液流道的结构上。
(2)、管式(Tubular)膜组件管式膜组件有外压式和内压式两种。
对内压式膜组件,膜被直接浇铸在多孔的不锈钢管内或用玻璃纤维增强的塑料管内。
加压的料液流从管内流过,透过膜的渗透溶液在管外侧被收集。
对外压式膜组件,膜则被浇铸在多孔支撑管外侧面。
加压的料液流从管外侧流过,渗透溶液则由管外侧渗透通过膜进入多孔支撑管内。
无论是内压式还是外压式,都可以根据需要设计成串联或并联装置。
(3)、螺旋卷式(Spiral Wound)膜组件目前,螺旋卷式膜组件被广泛地应用于多种膜分离过程。
膜、料液通道网、以及多孔的膜支撑体等通过适当的方式被组合在一起,然后将其装人能承受压力的外壳中制成膜组件。
通过改变料液和过滤液流动通道的形式,这类膜组件的内部结构也可被设计成多种不同的形式。
(4)、中空纤维(Hollow Fiber)膜组件中空纤维膜组件的最大特点是单位装填膜面积比所有其他组件大, 最高可达到30000m2/m3。
中空纤维膜组件也分为外压式和内压式。
将大量的中空纤维安装在一个管状容器内,中空纤维的一端以环氧树脂与管外壳壁固封制成膜组件。
料液从中空纤维组件的一端流人, 沿纤维外侧平行于纤维束流动,透过液则渗透通过中空纤维壁进入内腔,然后从纤维在环氧树脂的固封头的开端引出,原液则从膜组件的另一端流出。
3 浓差极化、污染现象和控制浓差极化定义:在膜分离操作中,所有溶质均被透过液传送到膜表面上,不能完全透过膜的溶质受到膜的截留作用,在膜表面附近浓度升高。
这种在膜表面附近浓度高于主体浓度的现象称为浓度极化或浓差极化(concentration polarization)。
浓差极化特性:它是一个可逆过程。
只有在膜过程运行中产生存在,停止运行,浓差极化逐渐消失。