导数的几何意义
高中数学知识点总结_导数的定义及几何意义

高中数学知识点总结_导数的定义及几何意义导数的定义及几何意义1.f/0imf0f00叫函数f在0处的导数,记作|0。
/注:①函数应在点0的附近有定义,否则导数不存在。
②在定义导数的极限式中,趋近于0可正、可负、但不为0,而可能为0。
③是函数f对自变量在范围内的平均变化率,它的几何意义是过曲线f上点(0,f0)及点(0,/f00)的割线斜率。
④导数f0imf0f0是函数f在0点0的处瞬时变化率,它反映的函数f在0点处变化的快慢程度,它的几何意义是f0f0曲线f上点(0,f0)处的切线的斜率。
⑤若极限im不0存在,则称函数f在点0处不可导。
⑥如果函数f在开区间a,b内每一点都有导数,则称函数f在开区间a,b内可导;此时对于每一个∈a,b,都对应着一个确定的导数f/,从而构成了一个新的函数f/,称这个函数f/为函数简称导数;导数与导函数都称为导数,这要加以区分:f在开区间a,b内的导函数,求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。
/[举例1]若f02,则imf0f02等于:0A-1B-2C1D1/2/解析:∵f02,即imf[0]f0n0=2imf0f02n1=-1。
0[举例2]已知a0,n为正整数设a,证明"nan解析:本题可以对a展开后“逐项”求导证明;这里用导数的定义证明:/imaan1n1nn0=0imaCnaCna2n2Cna2nnn=0imnan1Cna2n2Cn2nnn1=nn10im[naCna2n2Cna3n3Cnt1t22]=nan1。
2[巩固1]一质点作曲线运动,它的位移S与时间t的关系为:S定义求t=3时的速度。
2t,试用导数的[巩固2]设C是成本,q是产量,成本与产量的函数关系式为C=C(q),当产量为q0时,产量变化q对成本的影响可用增量比CqCq0qCq0无限趋近于0时,Cq无限趋近于常数A,0时,增加单位产量需付出成本A(这是实际付出成本的一个近似值)。
导数的几何意义是什么

导数的几何意义是什么导数作为微积分中的重要概念,不仅在数学理论研究中有着重要地位,还在实际问题的求解中起到了至关重要的作用。
导数的几何意义是指在几何上,导数代表了函数曲线在某一点处的切线斜率。
它使我们能够通过函数图像来理解函数的变化规律及其在特定点的切线性质。
本文将重点论述导数的几何意义以及相应的应用。
一、导数的定义及计算在开始讨论导数的几何意义之前,我们首先来回顾一下导数的定义及计算方法。
对于函数y=f(x),在点x处的导数可以通过下式计算得出:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]根据这一定义,我们可以求得函数在任意一点处的导数值。
导数的计算可以采用一些常用的方法,如基本函数求导法则、链式法则、乘积法则和商法则等。
二、导数的几何意义1. 切线斜率导数的最直观的几何意义就是切线斜率。
当我们计算出函数在某一点的导数后,这个导数值便代表了函数曲线在该点处的切线斜率。
对于一个凸函数而言,导数可以告诉我们曲线在该点是上升还是下降,以及上升或下降的速度有多快。
2. 极值点导数在几何中还有一个重要的意义是寻找函数的极值点。
当函数在某一点的导数为0时,这一点可能是函数的极大值点或极小值点。
通过求导,我们可以找到函数在哪些点处可能存在极值,并进一步帮助我们寻找函数图像上的极值点,从而得出函数的极值。
3. 凹凸性函数图像的凹凸性也可以通过导数来判断。
当函数的导数在某一区间内始终大于0时,函数图像在该区间内是上凸的;而当导数在某一区间内始终小于0时,函数图像在该区间内是下凸的。
这种通过导数判断凹凸性的方法在优化问题中具有重要应用。
三、导数的应用导数的几何意义不仅在数学理论研究中起到关键作用,也在实际问题的求解中发挥了巨大的作用。
1. 最优化问题在经济学、物理学等领域中,最优化问题是非常常见的。
通过求解函数的导数,我们可以确定函数的最大值和最小值,从而帮助解决各种最优化问题。
导数的几何意义

导数的几何意义导数是微积分中的一个重要概念,它表示了函数的变化率。
导数的几何意义可以从两个方面来理解:一是导数代表的是函数曲线在其中一点的切线斜率,二是导数代表的是函数曲线在其中一点的局部线性逼近。
首先,我们来看导数代表的是函数曲线在其中一点的切线斜率。
对于一条曲线上的任意一点P(x,y),求该点处的导数,即可得到曲线在该点的切线斜率。
具体来说,如果一个函数f(x)在特定点x0处可导,那么它在该点的导数f'(x0)就是该点处曲线的切线斜率。
换言之,导数给出了函数在任意一点的变化速率。
对于单调递增的函数而言,导数始终为正;而对于单调递减的函数而言,导数始终为负。
当导数为零时,函数在该点处可能存在极值。
其次,导数代表的是函数曲线在其中一点的局部线性逼近。
这可以通过导数定义中的极限来理解。
如果在其中一点x0处,函数f(x)的导数存在,那么可以用一个线性函数y=kx+b来近似描述原函数在该点的附近情况。
其中k为导数f'(x0),b为函数曲线在该点处的切线与y轴的交点(截距)。
这个线性函数就称为原函数在x0附近的局部线性逼近。
这种线性逼近的好处是使得函数在其中一点的局部性质更加直观可见。
通过这两个几何意义的理解,我们可以得出导数在几何上的重要性。
首先,导数可以帮助我们了解函数在特定点的斜率,从而判断函数局部的增减变化规律,甚至找到函数的极值点,这对于解决很多实际问题具有重要意义。
其次,导数能够提供函数在其中一点附近的线性逼近,使得我们能够直观地了解函数的局部情况,进而推断函数在整个定义域上的特性。
这对于研究函数的全局性质也是至关重要的。
除了以上的几何意义,导数还有一些重要的应用。
例如,在物理学中,速度的导数就是加速度,加速度的导数就是速度的变化率。
在经济学中,导数可以表示商品的边际效用,即单位商品消费增加所带来的满足感的变化。
在工程学中,导数可以用来优化控制系统设计,通过最小化出错率来提高系统的性能。
导数的概念及其几何意义(高三理)

导数的概念及其几何意义【考点精讲】(一)导数的概念:1.导函数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即xx f x x f x y x ∆-∆+='→∆)()(lim )(0000。
(二)导数的几何意义:1. 导数的几何意义:设函数()y f x =如图,AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线,由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率。
当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即:000()()limx f x x f x x∆→+∆-=∆切线AD 的斜率,曲线()y f x =过点00(,())x f x 切线的斜率等于0()f x '。
2.切线的方程:函数()f x 在0x x =处的导数就是曲线()y f x =在点P 00(,())x f x 处的切线的斜率。
由此,求曲线在一点处的切线的一般步骤: ①求出P 点的坐标; ②求点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆得曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程(三)常见函数的导数:(高等数学中有证明过程)(1) (2) (3)(4) (5) (6)()ln (0,1)x x a a a a a '=>≠ (7) (8)1()2x x '=(9)a x x a ln 1)(log ='(四)导函数的四则运算法则:()'''u v u v +=+,()'''uv u v uv =+ ,2''()'u u v uv v v -= (五)复合函数的导数:设函数在点处有导数,函数在点的对应点处有导数,则在点处有导数.).)((0'0x x x f y y -=-)(0为常数C C =')(1Q n nx x n n ∈='-)(x x cos )(sin ='x x sin )(cos -='xx 1)(ln ='xx e e =')()(x u ψ=x )(x u x ψ'=')(u f y =x u )(u f y u '='f y =)]([x ψx x u x u y y '⋅'='(六)如何求函数的导数:(1)由导数的定义求函数)(x f y =的导数的一般方法:①求函数的变量)()(f x f x x f -∆+=∆; ②求平均变化率xx f x x f x∆-∆+=∆∆)()(f ;③求导数=xx ∆∆→∆f lim 0。
1.1.3导数的几何意义

时, 割线 PPn的 变 化 趋势 是 什么?
P
O
P3
T
P4 P
T
x
O
x
3
4
图1.1 2
y
y f (x)
相交
o
P
x
再来一次
此处切线定义与以前学过的切线定义有什么不同?
y
y=f(x)
Pn
割 线
T 切线
P
o
当点Pn沿着曲线无限接近点P即Δ x→0 x 时,割线PPn趋近于确定的位置,这个确 定位置的直线PT称为点P处的切线.
x = x
表示“平均变化率”
其几何意义是 表示曲线上两点连线(就是曲线 的割线)的斜率。
我们知道, 导数 f
'
x0 表示函数 f x
在 x x0 处的瞬时变化率 , 反映了函 么, 导数 f
'
数 f x 在 x x0 附近的变化情况. 那
x0 的几何意义是什么呢 ?
y
观 察 如图 1 .1 2 ,当点 Pn xn , f xn
y f x
y
y f x
P1
P2
T P
O
T
n 1, 2, 3, 4
沿着曲线 P x0 , f x0 f x 趋近于点
x
O
x
1
y
y f x
2
y
y f x
通过逼近的方法,将
割线趋于的确定位置的
l2
直线定义为切线(交点
x
B
可能不惟一)适用于各 种曲线。所以,这种定 义才真正反映了切线的 直观本质。
C
导数的几何意义解析与归纳

导数的几何意义解析与归纳导数是微积分中的重要概念,它描述了函数在某一点的变化率。
导数不仅在数学领域有着广泛的应用,而且在几何学中也有着重要的几何意义。
本文将对导数的几何意义进行解析与归纳,以帮助读者更好地理解这一概念。
1. 导数的定义与几何意义首先,我们来回顾一下导数的定义。
对于函数f(x),在点x处的导数可以通过以下极限来定义:f'(x) = lim(h->0) [f(x+h)-f(x)]/h直观上,这个定义可以理解为函数f(x)在点x处的切线的斜率。
这意味着导数可以描述函数在某一点的变化趋势。
2. 导数与函数的递增与递减性根据导数的定义,我们可以得出以下结论:如果函数f(x)在某个区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,那么函数是递减的。
这是因为导数描述了函数的变化率,正值表示函数在该点上升,负值表示函数在该点下降。
3. 导数与函数的极值点导数还可以帮助我们找到函数的极值点。
如果函数f(x)在某一点x处的导数为零,那么这个点可能是一个极值点。
具体而言,如果导数由正变负,那么这个点是极大值点;如果导数由负变正,那么这个点是极小值点。
这是因为导数为零表示函数的变化率为零,也就是函数在该点存在水平切线,可能对应着极值点。
4. 导数与函数的拐点除了极值点,导数还能帮助我们找到函数的拐点。
拐点是函数曲线由凸变凹或由凹变凸的点。
我们可以通过导数的变化来判断函数的拐点。
如果函数f(x)在某一点x处的导数由正变负或由负变正,那么这个点可能是一个拐点。
5. 导数与函数的图像在坐标平面上,函数的导数可以帮助我们画出函数的图像。
我们可以通过导数的正负性来确定函数曲线的大致形状。
例如,如果导数在某一区间内始终为正,则函数在该区间上是递增的,曲线会向上凸起;如果导数在某一区间内始终为负,则函数在该区间上是递减的,曲线会向下凸起。
同样地,我们还可以根据导数为零或无定义的点来确定函数图像的特殊点,如极值点、拐点等。
导数的几何意义

课前训练
1. 已知函数 y = 2x ,则 f ′(1)=__________; ;
2
已知位移s和时间 有如下的函数关系: 和时间t有如下的函数关系 2. 已知位移 和时间 有如下的函数关系: s(t)=-t2+8t,则出发后第 秒的瞬时速度为 - 秒的瞬时速度为____; ,则出发后第3秒的瞬时速度为 ;
y
y=f(xk = f ′(x 0 )
y=f(x)在点 故曲线y=f(x)在点P(x0 ,f(x0)) 曲线y=f(x)在点P(x 处的切线方程是: 处的切线方程是:
y f ( x0 ) = f ′( x 0 )( x x0 )
例 1
求曲线f(x)=x +1在点P(1,2)处的切线的斜率及 在点P(1,2) 求曲线f(x)=x2+1在点P(1,2)处的切线的斜率及 切线的方程. 切线的方程. 1 3 8 变式练习1: 变式练习 已知曲线 y = x 上一点P ( 2, ) , 求: 3 3 (1)点 处的切线的斜率; (1)点P处的切线的斜率; (2)点 处的切线方程. (2)点P处的切线方程. 变式练习2: 已知曲线C 求曲线C 变式练习 已知曲线C:y=x3.求曲线C上在横坐标 为1处的切线方程。 处的切线方程。
/
相应训练题: 相应训练题
已知函数y=5x2,求该函数的导函数 /. 求该函数的导函数y 已知函数
1、 已知曲线C:y= x3+x.求曲线C上在横坐标 、 已知曲线C +x.求曲线 求曲线C 为1处的切线方程。 处的切线方程。 2 求该函数的导函数y 2、已知函数y= x ,求该函数的导函数 /. 、已知函数
步骤: 步骤
(1)求函数的增量 f = f ( x0 + x) f ( x0 ) ; )求函数的增量:
导数的几何意义ppt

导数的物理意义
80%
速度
导数可以用来描述物理量随时间 的变化速率,例如速度是位移对 时间的导数。
100%
斜率
在物理量中,导数可以表示斜率 ,例如加速度是速度对时间的导 数。
80%
变化率
导数可以用来描述物理量的变化 率,例如电流强度是电荷对时间 的导数。
02
导数与切线斜率
切线的定义
பைடு நூலகம்01
切线是过曲线上某一点的直线, 该点称为切点。
导数在经济问题中的应用
边际分析与决策
导数可以用来描述边际成本、边际收益和边际利润等概念,帮助 企业做出最优的决策。
供需关系
导数可以用来分析市场的供需关系,例如通过分析需求函数和供给 函数的导数,可以了解市场均衡点的变化趋势。
经济增长与人口变化
导数可以用来描述经济增长和人口变化的趋势,例如通过分析GDP 和人口增长率的导数,可以了解经济和人口的发展趋势。
04
导数在实际问题中的应用
导数在物理问题中的应用
速度与加速度
导数可以用来描述物体运动的速度和加速度,通过分析导 数可以了解物体的运动状态和变化趋势。
斜率与曲线
导数可以用来描述曲线的斜率,例如在分析弹性、阻力和 引力等物理现象时,导数可以帮助我们理解物体在曲线上 的运动状态。
能量与功率
在物理中,导数可以用来描述能量和功率的变化,例如在 分析电路、热传导和流体动力学等问题时,导数可以帮助 我们建立数学模型并求解。
导数与函数极值
总结词
导数可以用来确定函数的极值点。
详细描述
函数的极值点出现在导数为零或变号的点上。在极值点处,函数值可能达到最大或最小。因此,通过求函数的导 数并找到导数为零的点,可以确定函数的极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
导数的几何意义 课型 新授课 课时 1课时 学习
目标 1了解平均变化率与割线斜率之间的关系; 2理解曲线的切线的概念;
3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题
教学过程与内容
新课预习阅读课本第76-79页;回答下列问题:
1.切线的新定义: _____
2.设函数f (x )在x 0处的切线斜率为k ,则k 是函数f (x )在x 0处的 ______
则k= ________ = _______________________
3、导函数:函数f(x)在x 处的导数)('x f ,是x 的一个函数,我们称它为f (x )的 ___
简称 ____。
记做 _________
即 ___________= ___________= _________________________________
预习自测
1、 设函数2()1f x x =-,
(1)求函数在(1,)P b 处的平均变化率并说明其几何意义
(2)求函数在该点处的导数。
2、求曲线x x x f y +==2
)(在点)2,1(P 处的切线方程.
新课导学
例1:如下图,它表示跳水运动中高度随时间变化的函数105.69.4)(2++-=t t t h 的图象。
1.导数值的正负,反映该点附近的曲线有何变化趋势?
2.请描述、比较曲线)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况。
在43,t t 附近呢?
练习:求曲线3y x =在点(1,1)M 和(2,8)N 处的导数分别为(1)3,(2)12f f ''==,说明函数在这两点附近的增减和增减快慢的情况。
例2.求函数3()f x x =在点(1,1)P 处的切线方程.
练习1:求函数2
x y =在点(1,1)处的切线方程.
t O 3t 4t 0t 1t 2
t h
练习2:求过点P (1,0)与函数3y x =的图像相切的切线方程.
课堂检测
1. 物体的运动方程是22s t =,求物体在3t =时的瞬时速度。
2. 曲线3y x =上有一点(1,1)M ,求函数在该点处导数及切线方程。
3.(1)如图是函数()f x 的图象,请在图中作
出曲线在4,2,1x =--处的切线;
(2)根据切线变化情况,运用以直代曲的思
想描述函数在这些点附近的增减情况.
4.已知函数()f x 满足(1)5,'(1)1f f =-=-;
(1)在坐标系中画出对应的函数图象上的点;
(2)根据导数的几何意义在图中作出曲线在
该点处的切线;
(3)根据切线与该点处曲线的关系,画函数
图象在该点附近的大致形状.
x o y。