2019届高考数学二轮复习第二部分专项一4第4练计数原理与二项式定理学案
第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。
二轮复习排列组合、二项式定理

排列组合二项式定理教学过程一、考纲解读该部分在高考试卷中一般是1到2个小题,分值在5-10分。
主要考查两个基本原理、排列组合的基础知识和方法,考查二项式定理的基础知识及其简单应用.在复习中要在解一些常规题型上下功夫,需要掌握基本的解题方法.在平时的复习中要能够体会计数原理在概率分布中的应用,特别是用排列组合解决的大题.对于二项式定理,重点考查二项式定理的通项.以及二项式系数和项的系数.二、复习预习(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.三、知识讲解考点1 分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.考点2 排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.考点3 二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.四、例题精析例1 [2014全国1卷] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 ( )A .18B .38C .58D .78【规范解答】解法1.选D (直接法)4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有22426C C =种,则周六、周日都有同学参加公益活动的概率为867168+=; 解法2.选D (间接法)4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.【总结与反思】 (1)本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.是一道基础题。
(江苏专用)高考数学二轮复习课时达标训练(二十五)计数原理与二项式定理

(江苏专用)高考数学二轮复习课时达标训练(二十五)计数原理与二项式定理A 组——大题保分练1.(2019·南京盐城一模)已知数列{a n }满足a 1=1,a 2=3,且对任意n ∈N *,都有a 1C 0n +a 2C 1n +a 3C 2n +…+a n +1C n n =(a n +2-1)·2n -1成立. (1)求a 3的值;(2)证明:数列{a n }是等差数列.解:(1)在a 1C 0n +a 2C 1n +a 3C 2n +…+a n +1C n n =(a n +2-1)·2n -1中,令n =1,则a 1C 01+a 2C 11=a 3-1,由a 1=1,a 2=3,解得a 3=5.(2)证明:若a 1,a 2,a 3,…,a n 是等差数列,则a n =2n -1. ①当n =3时,由(1)知a 3=5,此时结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立,则a k =2k -1. 由a 1C 0k -1+a 2C 1k -1+a 3C 2k -1+…+a k C k -1k -1=(a k +1-1)2k -2,k ≥3, 对该式倒序相加,得(a 1+a k )2k -1=2(a k +1-1)·2k -2,所以a k +1-a k =a 1+1=2,即a k +1=2k -1+2=2(k +1)-1, 所以当n =k +1时,结论成立. 根据①②,可知数列{a n }是等差数列.2.(2019·南师附中等四校联考)设集合M ={1,2,3,…,m },集合A ,B 是M 的两个不同子集,记|A ∩B |表示集合A ∩B 的元素个数.若|A ∩B |=n ,其中1≤n ≤m -1,则称(A ,B )是M 的一组n 阶关联子集对((A ,B )与(B ,A )看作同一组关联子集对),并记集合M 的所有n 阶关联子集对的组数为a n .(1)当m =3时,求a 1,a 2;(2)当m =2 019时,求{a n }的通项公式,并求数列{a n }的最大项. 解:(1)当m =3时,易知a 1=3×4=12,a 2=3.(2)a n =C n 2 019×12×[C 02 019-n (22 019-n -1)+C 12 019-n ·22 018-n +…+C k 2 019-n ·22 019-k -n+…+C2 018-n 2 019-n·21+C2 019-n 2 019-n·20]=C n2 01932 019-n2,a n +1a n=C n +12 01932 018-n-12C n2 01932 019-n -12=(2 019-n )(32 018-n-1)(n +1)(32 019-n-1)>1, 化简,得(1 008-2n )·32 018-n>1 009-n ,(*)当n ≤503时,(*)式成立;当504≤n ≤1 008时,(*)式不成立; 当n ≥1 009时,不成立; 所以a 1<a 2<a 3<…<a 503<a 504,a 504>a 505>a 506>…>a 2 018,所以a 1<a 2<a 3<…<a 503<a 504>a 505>…>a 2 018, 所以数列{a n }的最大项为a 504=C5042 01931 515-12. 3.(2018·南京、盐城一模)已知n ∈N *,nf (n )=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn . (1)求f (1),f (2),f (3)的值;(2)试猜想f (n )的表达式(用一个组合数表示),并证明你的猜想. 解:(1)由条件,nf (n )=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn ,① 在①中令n =1,得f (1)=C 01C 11=1.在①中令n =2,得2f (2)=C 02C 12+2C 12C 22=6,得f (2)=3.在①中令n =3,得3f (3)=C 03C 13+2C 13C 23+3C 23C 33=30,得f (3)=10. (2)猜想f (n )=C n 2n -1(或f (n )=C n -12n -1).欲证猜想成立,只要证等式n C n2n -1=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn 成立. 法一:(直接法)当n =1时,等式显然成立. 当n ≥2时,因为r C rn =r ×n !r !(n -r )!=n !(r -1)!(n -r )!=n ×(n -1)!(r -1)!(n -r )!=n C r -1n -1,故r C r -1n C rn =(r C rn )C r -1n =n C r -1n -1C r -1n .故只需证明n C n 2n -1=n C 0n -1C 0n +n C 1n -1C 1n +…+n C r -1n -1·C r -1n +…+n C n -1n -1C n -1n . 即证C n2n -1=C 0n -1C 0n + C 1n -1C 1n +…+ C r -1n -1C r -1n +…+ C n -1n -1C n -1n . 而C r -1n =C n -r +1n,故即证C n 2n -1=C 0n -1C n n + C 1n -1C n -1n +…+ C r -1n -1C n -r +1n+…+ C n -1n -1C 1n .②由等式(1+x )2n -1=(1+x )n -1(1+x )n可得,左边x n的系数为C n2n -1.而右边(1+x )n -1(1+x )n=(C 0n -1+C 1n -1x +C 2n -1x 2+…+C n -1n -1xn -1)(C 0n +C 1n x +C 2n x 2+…+C nnx n ),所以x n 的系数为C 0n -1C n n + C 1n -1C n -1n +…+ C r -1n -1·C n -r +1n +…+ C n -1n -1C 1n .由(1+x )2n -1=(1+x )n -1(1+x )n恒成立可得②成立.综上,f (n )=C n2n -1成立.法二:(构造模型)构造一个组合模型,一个袋中装有(2n -1)个小球,其中n 个是编号为1,2,…,n 的白球,其余(n -1)个是编号为1,2,…,n -1的黑球.现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球((n -r )个白球)的n 个小球的组合的个数为C rn -1·C n -rn ,0≤r ≤n -1,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为C 0n -1C n n + C 1n -1C n -1n +…+ C r -1n -1C n -r +1n+…+ C n -1n -1C 1n .另一方面,从袋中(2n -1)个小球中任意摸出n 个小球的组合的个数为C n2n -1. 故C n 2n -1=C 0n -1C n n + C 1n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n ,余下同法一.法三:(利用导数)由二项式定理, 得(1+x )n=C 0n +C 1n x +C 2n x 2+…+C n n x n.③ 两边求导,得n (1+x )n -1=C 1n +2C 2n x +…+r C r n xr -1+…+n C n n xn -1.④③×④,得n (1+x )2n -1=(C 0n +C 1n x +C 2n x 2+…+C n n x n )·(C 1n +2C 2n x +…+r C r n xr -1+…+n C nnx n -1).⑤左边x n 的系数为n C n2n -1.右边x n 的系数为C 1n C n n +2C 2n C n -1n +…+r C r n C n -r +1n+…+n C n n C 1n =C 1n C 0n +2C 2n C 1n +…+r C r n C r -1n+…+n C n n C n -1n =C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn .由⑤恒成立,得n C n 2n -1=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn . 故f (n )=C n2n -1成立.法四:(构造模型)由nf (n )=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn ,得nf (n )=n C n -1n C n n +(n -1)C n -2n C n -1n +…+C 0n C 1n =n C 0n C 1n +(n -1)C 1n C 2n +…+C n -1n C nn , 所以2nf (n )=(n +1)(C 0n C 1n +C 1n C 2n +…+C n -1n C n n ) =(n +1)(C n n C 1n +C n -1n C 2n +…+C 1n C nn ), 构造一个组合模型,从2n 个元素中选取(n +1)个元素,则有C n +12n 种选法,现将2n 个元素分成两个部分n ,n ,若(n +1)个元素中,从第一部分中取n 个,第二部分中取1个,则有C n n C 1n 种选法,若从第一部分中取(n -1)个,第二部分中取2个,则有C n -1n C 2n 种选法,…,由分类计数原理可知C n +12n =C n n C 1n +C n -1n C 2n +…+C 1n C nn .故2nf (n )=(n +1)C n +12n , 所以f (n )=n +12n ·(2n )!(n +1)!(n -1)!=(2n -1)!n !(n -1)!=C n2n -1. 4.(2018·苏锡常镇调研(二))已知函数f (x )=(x +5)2n +1(n ∈N *,x ∈R ).(1)当n =2时,若f (2)+f (-2)=5A ,求实数A 的值; (2)若f (2)=m +α(m ∈N *,0<α<1),求证:α(m +α)=1. 解:(1)当n =2时,f (x )=(x +5)5=C 05x 5+C 15x 45+C 25x 3(5)2+C 35x 2(5)3+C 45x (5)4+C 55(5)5,所以f (2)+f (-2)=(2+5)5+(-2+5)5=2[C 15(5)124+C 35(5)322+C 55(5)5]=2(5×165+10×4×55+255)=6105,所以A =610.(2)证明:因为f (x )=(x +5)2n +1=C 02n +1x2n +1+C 12n +1x2n5+C 22n +1x2n -1(5)2+…+C 2n +12n +1(5)2n +1,所以f (2)=C 02n +122n +1+C 12n +122n5+C 22n +122n -1(5)2+…+C 2n +12n +1(5)2n +1,由题意知,f (2)=(5+2)2n +1=m +α(m ∈N *,0<α<1),首先证明对于固定的n ∈N *,满足条件的m ,α是唯一的. 假设f (2)=(2+5)2n +1=m 1+α1=m 2+α2(m 1,m 2∈N *,0<α1<1,0<α2<1,m 1≠m 2,α1≠α2),则m 1-m 2=α2-α1≠0,而m 1-m 2∈Z ,α2-α1∈(-1,0)∪(0,1),矛盾. 所以满足条件的m ,α是唯一的. 下面我们求m 及α的值: 因为f (2)-f (-2)=(2+5)2n +1-(-2+5)2n +1=(2+5)2n +1+(2-5)2n +1=2[C 02n +122n +1+C 22n +1·22n -1(5)2+C 42n +122n -3(5)4+…+C 2n2n +121(5)2n],显然f (2)-f (-2)∈N *.又因为5-2∈(0,1),故(5-2)2n +1∈(0,1), 即f (-2)=(-2+5)2n +1=(5-2)2n +1∈(0,1).所以令m =2[C 02n +122n +1+C 22n +122n -1(5)2+C 42n +1·22n -3(5)4+…+C 2n 2n +121(5)2n],α=(-2+5)2n +1,则m =f (2)-f (-2),α=f (-2),又m +α=f (2), 所以α(m +α)=f (-2)·f (2)=(2+5)2n +1·(-2+5)2n +1=(5-4)2n +1=1.B 组——大题增分练1.(2019·南通、泰州等七市三模)设P n =∑i =0 2n (-1)i C i 2n ,Q n =∑j =1 2n (-1)j ·jC j2n. (1)求2P 2-Q 2的值; (2)化简nP n -Q n .解:(1)P 2=1C 04-1C 14+1C 24-1C 34+1C 44=53,Q 2=-1C 14+2C 24-3C 34+4C 44=103,所以2P 2-Q 2=0. (2)设T =nP n -Q n , 则T =⎝⎛⎭⎪⎫nC 02n -n C 12n +n C 22n-…+n C 2n 2n-⎝ ⎛⎭⎪⎫-1C 12n +2C 22n -3C 32n +…+2n C 2n 2n=nC2n-n -1C12n+n -2C22n-n -3C32n+…+-n C 2n 2n①因为C k 2n =C 2n -k2n ,所以T =n C 2n 2n -n -1C 2n -12n +n -2C 2n -22n -n -3C 2n -32n +…+-nC 02n=-n C 02n -1-n C 12n +2-n C 22n -3-n C 32n +…+n C 2n 2n② ①+②得,2T =0,即T =nP n -Q n =0, 所以nP n -Q n =0.2.(2019·南京盐城二模)平面上有2n (n ≥3,n ∈N *)个点,将每一个点染上红色或蓝色.从这2n 个点中任取3个点,记这3个点颜色相同的所有不同取法的总数为T .(1)若n =3,求T 的最小值; (2)若n ≥4,求证:T ≥2C 3n . 解:(1)当n =3时,共有6个点.若染红色的点的个数为0个或6个,则T =C 36=20; 若染红色的点的个数为1个或5个,则T =C 35=10; 若染红色的点的个数为2个或4个,则T =C 34=4; 若染红色的点的个数为3个,则T =C 33+C 33=2. 因此T 的最小值为2.(2)证明:因为对任意的n ,k ∈N *,n ≥k ,都有C k n +1-C k n =C k -1n >0,所以C k n +1>C kn . 设2n 个点中含有p (p ∈N ,p ≤2n )个染红色的点, ①当p ∈{0,1,2}时,T =C 32n -p ≥C 32n -2=(2n -2)(2n -3)(2n -4)6=4×(n -1)(n -2)(2n -3)6.因为n ≥4,所以2n -3>n , 于是T >4×n (n -1)(n -2)6=4C 3n >2C 3n .②当p ∈{2n -2,2n -1,2n }时,T =C 3p ≥C 32n -2,同理可得T >2C 3n . ③当3≤p ≤2n -3时,T =C 3p +C 32n -p ,设f (p )=C 3p +C 32n -p ,3≤p ≤2n -3, 当3≤p ≤2n -4时,f (p +1)-f (p )=C 3p +1+C 32n -p -1-C 3p -C 32n -p =C 2p -C 22n -p -1,显然p ≠2n -p -1,当p >2n -p -1,即n ≤p ≤2n -4时,f (p +1)>f (p ),当p <2n -p -1,即3≤p ≤n -1时,f (p +1)<f (p ), 即f (n )<f (n +1)<…<f (2n -3),f (3)>f (4)>…>f (n ). 因此f (p )≥f (n )=2C 3n ,即T ≥2C 3n . 综上,当n ≥4时,T ≥2C 3n .3.(2019·苏锡常镇一模)已知f (n )=C 24C 36+C 36C 48+C 48C 510+…+C n 2n C n +12n +2,g (n )=C 44C 36+C 56C 48+C 68C 510+…+C n +22n C n +12n +2,其中n ∈N *,n ≥2. (1)求f (2),f (3),g (2),g (3)的值;(2)记h (n )=f (n )-g (n ),求证:对任意的m ∈N *,m ≥2,总有h (2m)>m -12.解:(1)f (2)=C 24C 36=310,f (3)=C 24C 36+C 36C 48=4170,g (2)=C 44C 36=120,g (3)=C 44C 36+C 56C 48=19140.(2)证明:∵C k 2k -C k +22kC k +12k +2=(2k )!k !·k !-(2k )!(k -2)!·(k +2)!(2k +2)!(k +1)!·(k +1)!=(k +1)2(k +2)-(k +1)k (k -1)(2k +2)(2k +1)(k +2)=(k +1)(4k +2)(2k +2)(2k +1)(k +2)=1k +2, ∴h (n )=f (n )-g (n )=∑n,k =2 C k2k -C k +22k C k +12k +2= k =2n1k +2.下面用数学归纳法证:对任意的m ∈N *,m ≥2,总有h (2m)>m -12.当m =2时,h (4)=14+15+16=3760>12,结论成立;当m =3时,h (8)=3760+17+18+19+110>3760+410=3760+2460>1,结论成立.假设当m =t (t ≥3)时,结论成立,即h (2t)>t -12;则当m =t +1时,h (2t +1)=h (2t)+12t+3+12t +4+…+12t +1+2>t -12+12t +3+12t +4+12t +5+12t +6+…+12t +1+2, ∵t ≥3,∴12t +3+12t +4-32t +1+2=(2t-3)2t-22(2t +3)(2t +4)(2t +1+2)>0, ∴12t+3+12t +4>32t +1+2. 又12t +5+12t +6+…+12t +1+2>12t +1+2+12t +1+2+…+12t +1+2=2t-22t +1+2, ∴h (2t +1)>t -12+32t +1+2+2t-22t +1+2=t2,∴当m =t +1时,结论成立.综上,对任意的m ∈N *,m ≥2,总有h (2m)>m -12.4.(2018·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x )2n=(1+x )n (1+x )n (n ∈N *),左边x n 的系数为C n2n ,而右边(1+x )n (1+x )n =(C 0n +C 1n x +…+C n n x n )(C 0n +C 1n x +…+C n n x n ),x n 的系数为C 0n C n n + C 1n C n -1n +…+C n n C 0n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2,因此可得到组合恒等式C n 2n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2.(1)根据恒等式(1+x )m +n=(1+x )m (1+x )n (m ,n ∈N *),两边x k(其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:∑k =0⎣⎢⎡⎦⎥⎤n 2 C 2k n 2n -2k C k 2k =C n2n ,其中⎣⎢⎡⎦⎥⎤n 2是指不超过n2的最大整数. 解:(1)C km +n =C 0m C kn +C 1m C k -1n +…+C k m C 0n .(2)证明:考察等式⎝⎛⎭⎪⎫2+x +1x n=(x +1)2n x n,等式右边的常数项为:C n 2n x nx n =C n2n , 因为⎝ ⎛⎭⎪⎫2+x +1x n =∑r =0n C r n ·2n -r ⎝ ⎛⎭⎪⎫x +1x r =∑r =0n C r n ·2n -r ⎣⎢⎢⎡⎦⎥⎥⎤∑r =0n C k r x r -k ⎝ ⎛⎭⎪⎫1x k , 当且仅当r =2k 时,x r -k⎝ ⎛⎭⎪⎫1x k为常数,等式左边的常数项为:∑k =0⎣⎢⎡⎦⎥⎤n 2 C 2k n 2n -2k C k2k,。
2019年高考数学(理)热点题型和提分秘籍专题44二项式定理(教学案)含解析

1.本部分在高考中经常考查,主要有求二项展开式中的某一特定项、特定项的系数、已知某项的值求参数值、赋值法求值、利用二项展开式作不等放缩或近似计算等2.命题形式多种多样,主要以选择题、填空题的形式出现,有时涉及函数与方程的思想方法热点题型一 求展开式中的指定项或特定项 例1、(2018年浙江卷)二项式的展开式的常数项是___________.【答案】7【变式探究】已知在(3x -123x )n 的展开式中,第6项为常数项。
(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项。
【解析】(1)通项为T r +1=C r nx n -r 3⎝⎛⎭⎫-12r x -r3 =C r n⎝⎛⎭⎫-12r x n -2r 3,因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10。
(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2, ∴所求的系数为C 210⎝⎛⎭⎫-122=454。
【提分秘籍】解此类问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项。
【举一反三】⎝⎛⎭⎫x +a x 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1 B.12C .1D .2【答案】D【解析】由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,令5-2r =3,得r =1,由C 15·a =10,解得a =2。
热点题型二 二项式系数或项系数的和问题 例2、(2018年全国Ⅲ卷理数)的展开式中的系数为A. 10B. 20C. 40D. 80 【答案】C 【解析】由题可得令,则,所以,故选C. 【变式探究】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|。
最新高考数学二轮复习学案:计数原理与二项式定理 含解析

第4练计数原理与二项式定理两个计数原理应用两个计数原理解题的方法(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.(2)对于复杂的两个原理综合应用的问题,可恰当列出示意图或表格,使问题形象化、直观化.[考法全练]1.(2018·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C.①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得所有满足条件的四位数共有24+24=48(个),故选C.2.如果一个三位正整数“a1a2a3”满足a1<a2且a3<a2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为()A.240 B.204C.729 D.920解析:选A.分8类,当中间数为2时,有1×2=2(个);当中间数为3时,有2×3=6(个);当中间数为4时,有3×4=12(个);当中间数为5时,有4×5=20(个);当中间数为6时,有5×6=30(个);当中间数为7时,有6×7=42(个);当中间数为8时,有7×8=56(个);当中间数为9时,有8×9=72(个).故共有2+6+12+20+30+42+56+72=240(个).3.(2018·合肥质量检测)某社区新建了一个休闲小公园,几条小径将公园分成5块区域,如图.社区准备从4种颜色不同的花卉中选择若干种种植在各块区域,要求每个区域种植一种颜色的花卉,且相邻区域(有公共边的)所选花卉颜色不能相同,则不同种植方法的种数为()A.96 B.114C.168 D.240解析:选C.先在a中种植,有4种不同方法,再在b中种植,有3种不同方法,再在c 中种植,若c与b同色,则d有3种不同方法,若c与b不同色,c有2种不同方法,d有2种不同方法,再在e中种植,有2种不同方法,所以共有4×3×1×3×2+4×3×2×2×2=168(种),故选C.4.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是________.解析:按分步来完成此事.第1张有10种分法,第2张有9种分法,第3张有8种分法,故共有10×9×8=720种分法.答案:7205.在学校举行的田径运动会上,8名男运动员参加100米决赛,其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步,安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以安排方式有4×3×2=24(种);第二步,安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).所以安排这8名运动员的方式共有24×120=2 880(种).答案:2 880排列、组合的应用排列、组合应用问题的8种常见解法(1)特殊元素(特殊位置)优先安排法.(2)相邻问题捆绑法.(3)不相邻问题插空法.(4)定序问题缩倍法.(5)多排问题一排法.(6)“小集团”问题先整体后局部法.(7)构造模型法.(8)正难则反,等价转化法.[考法全练]1.(2018·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年龄尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B.若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参加任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案,故选B.2.(2018·甘肃第二次诊断检测)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有() A.18种B.24种C.36种D.48种解析:选C.若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A 22A 23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A 22A 23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A 22C 23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A 23=6种,根据分类加法计数原理可得,共有36种情况,故选C.3.(一题多解)(2018·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有( )A .120种B .156种C .188种D .240种解析:选A.法一:记演出顺序为1~6号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法分别为A 22A 33,A 22A 33,C 12A 22A 33,C 13A 22A 33,C 13A 22A 33,故总编排方案有A 22A 33+A 22A 33+C 12A 22A 33+C 13A 22A 33+C 13A 22A 33=120种.法二:记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C 14A 22A 33=48种;②当甲在2号位置时,丙、丁相邻的情况有3种,共有C 13A 22A 33=36种;③当甲在3号位置时,丙、丁相邻的情况有3种,共有C 13A 22A 33=36种.所以编排方案共有48+36+36=120种.4.现有红色、蓝色和白色的运动鞋各一双,把三双鞋排列在鞋架上,仅有一双鞋相邻的排法总数是( )A .72B .144C .240D .288解析:选D.首先,选一双运动鞋,捆绑在一起看作一个整体,有C 13A 22=6种排列方法,则现在共有5个位置,若这双鞋在左数第一个位置,共有C 12A 22A 22=8种情况,若这双鞋在左数第二个位置,则共有C 14C 12=8种情况,若这双鞋在中间位置,则共有A 22A 22A 22A 22=16种情况,左数第四个位置和第二个位置的情况一样,第五个位置和第一个位置的情况一样.所以把三双鞋排列在鞋架上,仅有一双鞋相邻的排法总数是6×(2×8+2×8+16)=288.故选D.5.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有________种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150二项式定理通项与二项式系数(a +b )n 的展开式的通项T k +1=C k n a n -k b k(k =0,1,2,…,n ),其中C k n 叫做二项式系数.[注意] T k +1是展开式中的第k +1项,而不是第k 项. 各二项式系数之和(1)C 0n +C 1n +C 2n +…+C n n =2n . (2)C 1n +C 3n +…=C 0n +C 2n +…=2n -1.[考法全练]1.(2018·高考全国卷Ⅲ)(x 2+2x )5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:选C.T r +1=C r 5(x 2)5-r⎝⎛⎭⎫2x r=C r52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.2.(2018·郑州第一次质量预测)在⎝⎛⎭⎫x +3x n的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120解析:选C.令x =1,则⎝⎛⎭⎫x +3x n=4n,所以⎝⎛⎭⎫x +3x n的展开式中,各项系数和为4n ,又二项式系数和为2n,所以4n 2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫3x r=C r 53rx 5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90,故选C. 3.(2018·武汉模拟)若(3x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=( )A .80B .120C .180D .240解析:选D.由(3x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5两边求导,可得15(3x -1)4=a 1+2a 2x +3a 3x 2+…+5a 5x 4,令x =1得,15×(3-1)4=a 1+2a 2+3a 3+…+5a 5,即a 1+2a 2+3a 3+4a 4+5a 5=240,故选D.4.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10B .20C .30D .60解析:选C.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.5.(2018·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.解析:(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a=25. 答案:25一、选择题1.(2018·福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,则不同的安排方案共有( )A .90种B .180种C .270种D .360种解析:选B.可分两步:第一步,甲、乙两个展区各安排一个人,有A 26种不同的安排方案;第二步,剩下两个展区各两个人,有C 24C 22种不同的安排方案,根据分步乘法计数原理,不同的安排方案的种数为A 26C 24C 22=180.故选B.2.(2018·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( )A .-3 2B .3 2C .6D .-6解析:选D.通项T r +1=C r 3⎝⎛⎭⎫2x 23-r(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A .560 B .-560 C .280D .-280解析:选 A.取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r=C r 7·(-2)r ·x14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560,故选A.4.⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:选C.(1+x )6的展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.5.设(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,则a 1等于( ) A .80 B .-80 C .-160D .-240解析:选D.因为(x 2-3x +2)5=(x -1)5(x -2)5,所以二项展开式中含x 项的系数为C 45×(-1)4×C 55×(-2)5+C 55×(-1)5×C 45×(-2)4=-160-80=-240,故选D.6.(2018·沈阳教学质量监测(一))若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有( )A .4种B .8种C .12种D .24种解析:选B.将4个人重排,恰有1个人站在自己原来的位置,有C 14种站法,剩下3人不站原来位置有2种站法,所以共有C 14×2=8种站法,故选B.7.(2018·柳州模拟)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个数相邻,则不同的选法种数是( )A .72B .70C .66D .64解析:选D.从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C 12·C 17+C 17·C 16=56种选法,三个数相邻共有C 18=8种选法,故至少有两个数相邻共有56+8=64种选法,故选D.8.(2018·惠州第二次调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为( )A .24B .18C .16D .10解析:选D.分两种情况,第一种:最后体验甲景区,则有A 33种可选的路线;第二种:不在最后体验甲景区,则有C 12·A 22种可选的路线.所以小李可选的旅游路线数为A 33+C 12·A 22=10.故选D.9.已知(x+2)9=a0+a1x+a2x2+…+a9x9,则(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2的值为()A.39B.310C.311D.312解析:选D.对(x+2)9=a0+a1x+a2x2+…+a9x9两边同时求导,得9(x+2)8=a1+2a2x +3a3x2+…+8a8x7+9a9x8,令x=1,得a1+2a2+3a3+…+8a8+9a9=310,令x=-1,得a1-2a2+3a3-…-8a8+9a9=32.所以(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2=(a1+2a2+3a3+…+8a8+9a9)(a1-2a2+3a3-…-8a8+9a9)=312,故选D.10.(2018·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B.根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,故选B.11.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是()A.100 B.150C.30 D.300解析:选D.第一步,1=1+0,1=0+1,共2种组合方式;第二步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第三步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第四步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理知,值为 1 942的“简单的”有序对的个数是2×10×5×3=300.故选D.12.(2018·郑州第二次质量预测)《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成A,B,C,D,E,F六项任务,并对任务的顺序提出了如下要求,重点任务A必须排在前三位,且任务E,F必须排在一起,则这六项任务完成顺序的不同安排方案共有() A.240种B.188种C.156种D.120种解析:选D.因为任务A 必须排在前三位,任务E ,F 必须排在一起,所以可把A 的位置固定,E ,F 捆绑后分类讨论.当A 在第一位时,有A 44A 22=48种;当A 在第二位时,第一位只能是B ,C ,D 中的一个,E ,F 只能在A 的后面,故有C 13A 33A 22=36种;当A 在第三位时,分两种情况:①E ,F 在A 之前,此时应有A 22A 33种,②E ,F 在A 之后,此时应有A 23A 22A 22种,故而A 在第三位时有A 22A 33+A 23A 22A 22=36种.综上,共有48+36+36=120种不同的安排方案.故选D. 二、填空题13.(一题多解)(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 12C 24=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C 36=20(种),从6人中任选3人都是男生,不同的选法有C 34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).答案:1614.(2018·武汉调研)在⎝⎛⎭⎫x +4x -45的展开式中,x 3的系数是________. 解析:⎝⎛⎭⎫x +4x -45的展开式的通项T r +1=C r 5(-4)5-r ·⎝⎛⎭⎫x +4x r,r =0,1,2,3,4,5,⎝⎛⎭⎫x +4x r的展开式的通项T k +1=C k r xr -k⎝⎛⎭⎫4x k=4k C krx r -2k ,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.所以x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180.答案:180.15.在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为________.解析:因为二项式(1+2x )6的展开式中含x 的项的系数为2C 16,二项式(1+y )5的展开式中含y 3的项的系数为C 35,所以在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为2C 16C 35=120.答案:12016.(2018·成都模拟)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若只有甲、乙其中一人参加,有C 12·C 46·A 55=3 600(种);若甲、乙两人都参加,有C 22·A 36·A 24=1 440(种).则不同的安排种数为3 600+1 440=5 040.答案:5 040。
2019届一轮复习人教A版 计数原理、二项式定理 学案

二项式定理 概 念 篇【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开.解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3+C 44(-2b )4=a 4-8a 3b +24a 2b 2-32ab 3+16b 4.说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略.【例2】展开(2x -223x )5. 分析一:直接用二项式定理展开式.解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-223x )3+ C 45 (2x )(-223x )4+C 55(-223x )5 =32x 5-120x 2+x 180-4135x +78405x -1032243x .分析二:对较繁杂的式子,先化简再用二项式定理展开.解法二:(2x -223x )5=105332)34(x x=10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5]=10321x(1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405x -1032243x .说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例3】在(x -3)10的展开式中,x 6的系数是 .解法一:根据二项式定理可知x 6的系数是C 410.解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10-r (-3)r .令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确.如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 410.说明:要注意区分二项式系数与指定某一项的系数的差异.二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项式无关,后者与二项式、二项式的指数及项数均有关.【例4】已知二项式(3x -x32)10, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.分析:直接用二项式定理展开式.解:(3x -x 32)10的展开式的通项是T r +1=C r10(3x )10-r (-x32)r (r =0,1,…,10).(1)展开式的第4项的二项式系数为C 310=120.(2)展开式的第4项的系数为C 31037(-32)3=-77760. (3)展开式的第4项为-77760(x )731x ,即-77760x .说明:注意把(3x -x 32)10写成[3x +(-x 32)]10,从而凑成二项式定理的形式. 【例5】求二项式(x 2+x21)10的展开式中的常数项.分析:展开式中第r +1项为C r10(x 2)10-r (x21)r ,要使得它是常数项,必须使“x ”的指数为零,依据是x 0=1,x ≠0.解:设第r +1项为常数项,则T r +1=C r10(x 2)10-r (x21)r=C r 10xr2520-(21)r (r =0,1,…,10),令20-25r =0,得r =8. ∴T 9=C 810(21)8=25645. ∴第9项为常数项,其值为25645. 说明:二项式的展开式的某一项为常数项,就是这项不含“变元”,一般采用令通项T r +1中的变元的指数为零的方法求得常数项.【例6】 (1)求(1+2x )7展开式中系数最大项; (2)求(1-2x )7展开式中系数最大项.分析:利用展开式的通项公式,可得系数的表达式,列出相邻两项系数之间关系的不等式,进而求出其最大值.解:(1)设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--,2C 2C ,2C 2C 11771177r r r r r r r r即⎪⎪⎩⎪⎪⎨⎧--+≥-+--≥---,2!)17(!)1(!72!)7(!!7,2!)17(!)1(!72!)7(!!711r r r r r r r r r r r r化简得⎪⎪⎩⎪⎪⎨⎧≥≤⎪⎪⎩⎪⎪⎨⎧+≥--≥.313,316.1271,812r r r r r r 解得又∵0≤r ≤7,∴r =5. ∴系数最大项为T 6=C 5725x 5=672x 5.(2)解:展开式中共有8项,系数最大项必为正项,即在第一、三、五、七这四项中取得.又因(1-2x )7括号内的两项中后两项系数的绝对值大于前项系数的绝对值,故系数最大值必在中间或偏右,故只需比较T 5和T 7两项系数的大小即可.667447)2(C )2(C --=1737C 4C >1,所以系数最大项为第五项,即T 5=560x 4.说明:本例中(1)的解法是求系数最大项的一般解法,(2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁.【例7】 (1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26,解得n =8. (1+2x )8的展开式中,二项式系数最大的项为T 5=C 4n (2x )4=1120x 4.设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--.2C 2C ,2C 2C 11771177r r r r r r r r∴5≤r ≤6.∴r =5或r =6.∴系数最大的项为T 6=1792x 5,T 7=1792x 6.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大;n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,再解不等式的方法求得.应 用 篇【例8】若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈ ),则b n 的值( ) A.一定是奇数 B.一定是偶数C.与b n 的奇偶性相反D.与a 有相同的奇偶性分析一:形如二项式定理可以展开后考查.解法一:由(2+1)n =2a n +b n ,知2a n +b n =(1+2)n=C 0n +C 1n2+C 2n (2)2+C 3n (2)3+ … +C nn (2)n .∴b n =1+C 2n (2)2+C 4n (2)4+ …∴b n 为奇数. 答案:A分析二:选择题的答案是唯一的,因此可以用特殊值法. 解法二:n ∈N *,取n =1时,(2+1)1=(2+1),有b 1=1为奇数. 取n =2时,(2+1)2=22+5,有b 2=5为奇数.答案:A【例9】若将(x +y + )10展开为多项式,经过合并同类项后它的项数为( ) A.11 B.33 C.55 D.66分析:(x +y + )10看作二项式10)(][z y x ++展开. 解:我们把x +y + 看成(x +y )+ ,按二项式将其展开,共有11“项”,即(x +y + )10=10)(][z y x ++=∑=1010Ck k(x +y )10-.这时,由于“和”中各项 的指数各不相同,因此再将各个二项式(x +y ) 10-展开,不同的乘积C k10(x +y )10-( =0,1,…,10)展开后,都不会出现同类项.下面,再分别考虑每一个乘积C k10(x +y )10-( =0,1,…,10).其中每一个乘积展开后的项数由(x +y )10-决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为11+10+9+…+1=66.答案:D说明:化三项式为二项式是解决三项式问题的常用方法.【例10】求(|x |+||1x -2)3展开式中的常数项.分析:把原式变形为二项式定理标准形状. 解:∵(|x |+||1x -2)3=(||x -||1x )6, ∴展开式的通项是T r +1=C r6(||x )6-r (-||1x )r =(-1)r C r6(||x )6-2r . 若T r +1为常数项,则6-2r =0,r =3.∴展开式的第4项为常数项,即T 4=-C 36=-20.说明:对某些不是二项式,但又可化为二项式的题目,可先化为二项式,再求解. 【例11】求(x -3x )9展开式中的有理项.分析:展开式中的有理项,就是通项公式中x 的指数为整数的项.解:∵T r +1=C r 9(x 21)9-r (-x 31)r =(-1)r C r9x 627r -.令627r -∈ ,即4+63r-∈ ,且r =0,1,2,…,9. ∴r =3或r =9.当r =3时,627r -=4,T 4=(-1)3C 39x 4=-84x 4. 当r =9时,627r -=3,T 10=(-1)9C 99x 3=-x 3.∴(x -3x )9的展开式中的有理项是第4项-84x 4,第10项-x 3. 说明:利用二项展开式的通项T r +1可求展开式中某些特定项. 【例12】若(3x -1)7=a 7x 7+a 6x 6+ … +a 1x +a 0,求 (1)a 1+a 2…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.分析:所求结果与各项系数有关可以考虑用“特殊值”法,整体解决. 解:(1)令x =0,则a 0=-1,令x =1,则a 7+a 6+ … +a 1+a 0=27=128.①∴a 1+a 2+…+a 7=129.(2)令x =-1,则a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=(-4)7.②由2)2()1(-得:a 1+a 3+a 5+a 7=21[128-(-4)7]=8256. (3)由2)2()1(+得a 0+a 2+a 4+a 6=21[128+(-4)7]=-8128.说明:(1)本解法根据问题恒等式特点来用“特殊值”法,这是一种重要的方法,它用于恒等式.(2)一般地,对于多项式g (x )=(px +q )n =a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,g (x )各项的系数和为g (1),g (x )的奇数项的系数和为21[g (1)+g (-1)],g (x )的偶数项的系数和为21[g (1)-g (-1)].【例13】证明下列各式(1)1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n ;(2)(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2; (3)C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 分析:(1)(2)与二项式定理的形式有相同之处可以用二项式定理,形如数列求和,因此可以研究它的通项寻求规律.证明:(1)在二项展开式(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+ … +C 1-n n ab n -1+C n n b n 中,令a =1,b =2,得(1+2)n =1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n ,即1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n .(2)(1+x )n (1+x )n =(1+x )2n ,∴(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )=(1+x )2n . 而C n n 2是(1+x )2n 的展开式中x n 的系数,由多项式的恒等定理,得C 0n C n n +C 1n C 1-n n + … +C 1n C 1-n n +C n n C 0n =C n n 2. ∵C m n =C m n n-,0≤m ≤n , ∴(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2.(3)证法一:令S =C 1n +2C 2n +3C 3n + … +n C n n .①令S =C 1n +2C 2n + … +(n -1)C 1-n n +n C nn =n C n n +(n -1)C 1-n n + … +2C 2n +C 1n =n C n n +(n -1)C 1n + … +2C 2-n n +C 1-n n .②由①+②得2S =n C 1n +n C 2n +n C 3n + … +n C n n =n (C n n +C 1n +C 2n +C 3n + … +C n n ) =n (C 0n +C 1n +C 2n +C 3n + … +C n n )=n 2n .∴S =n 2n -1,即C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 证法二:观察通项: C k n = 11C !)(!)1(!)1(!)(!--=---=-k n n k n k n n k n k n .∴原式=n C 01-n +n C 11-n +n C 21-n +n C 31-n + … +n C 11--n n =n (C 01-n +C 11-n +C 21-n +C 31-n +…+C 11--n n )=n 2n -1, 即C 1n +2C 2n +3C 3n + … +n C nn =n 2n -1. 说明:解法二中 C k n =n C 11--k n 可作为性质记住. 【例14】求1.9975精确到0.001的近似值.分析:准确使用二项式定理应把1.997拆成二项之和形式如1.997=2-0.003.解:1.9975=(2-0.003)5=25-C 15240.003+C 25230.0032-C 35220.0033+…≈32-0.24+0.00072≈31.761.说明:利用二项式定理进行近似计算,关键是确定展开式中的保留项,使其满足近似计算的精确度.【例15】求证:5151-1能被7整除.分析:为了在展开式中出现7的倍数,应把51拆成7的倍数与其他数的和(或差)的形式.证明:5151-1=(49+2)51-1=C 0514951+C 15149502+ … +C 505149·250+C 5151251-1, 易知除C 5151251-1以外各项都能被7整除.又251-1=(23)17-1=(7+1)17-1=C17717+C117716+ … +C16177+C1717-1=7(C 017716+C 117715+…+C 1617).显然能被7整除,所以5151-1能被7整除.说明:利用二项式定量证明有关多项式(数值)的整除问题,关键是将所给多项式通过恒等变形变为二项式形式,使其展开后的各项均含有除式.创 新 篇【例16】已知(x lg x +1)n 的展开式的最后三项系数之和为22,中间一项为20000.求x . 分析:本题看似较繁,但只要按二项式定理准确表达出来,不难求解!解:由已知C n n +C 1-n n +C 2-n n =22,即n 2+n -42=0. 又n ∈N *,∴n =6. T 4为中间一项,T 4=C 36 (x lg x )3=20000,即(x lg x )3=1000. x lg x =10.两边取常用对数,有lg 2x =1,lg x =±1,∴x =10或x =101.说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项公式,根据已知条件列出等式或不等式进行求解.【例17】设f (x )=(1+x )m +(1+x )n (m ,n ∈N *),若其展开式中关于x 的一次项的系数和为11,问m ,n 为何值时,含x 2项的系数取最小值?并求这个最小值.分析:根据已知条件得到x 2的系数是关于x 的二次表达式,然后利用二次函数性质探讨最小值问题.解:C 1m +C 1n =n +m =11. C 2m +C 2n=21(m 2-m +n 2-n )=21122-+n m , ∵n ∈N *,∴n =6或5,m =5或6时,x 2项系数最小,最小值为25. 说明:本题是一道关于二次函数与组合的综合题.【例18】若(x +x1-2)n 的展开式的常数项为-20,求n . 分析:题中x ≠0,当x >0时,把三项式(x +x 1-2)n 转化为(x -x1)2n;当x <0时,同理(x +x 1-2)n =(-1)n (x -x1)2n.然后写出通项,令含x 的幂指数为零,进而解出n .解:当x >0时,(x +x 1-2)n =(x -x1)2n,其通项为T r +1=C r n 2(x )2n -r (-x1)r =(-1)r C r n 2(x )2n -2r. 令2n -2r =0,得n =r ,∴展开式的常数项为(-1)r C n n 2; 当x <0时,(x +x 1-2)n =(-1)n (x -x1)2n.同理可得,展开式的常数项为(-1)r C n n 2. 无论哪一种情况,常数项均为(-1)r C n n 2.令(-1)r C n n 2=20.以n =1,2,3,…,逐个代入,得n =3. 说明:本题易忽略x <0的情况.【例19】利用二项式定理证明(32)n -1<12+n .分析:12+n 不易从二项展开式中得到,可以考虑其倒数21+n . 证明:欲证(32)n -1<12+n 成立,只需证(23)n -1<21+n 成立.而(23)n -1=(1+21)n -1=C 01-n +C 11-n 21+C 21-n (21)2+ … +C 11--n n (21)n -1 =1+21-n +C 21-n (21)2+ … +C 11--n n (21)n -1 >21+n .说明:本题目的证明过程中将(23)n -1转化为(1+21)n -1,然后利用二项式定理展开式是解决本问题的关键.【例20】求证:2≤(1+n1)n <3(n ∈N *).分析:(1+n1)n 与二项式定理结构相似,用二项式定理展开后分析.证明:当n =1时,(1+n1)n =2.当n ≥2时,(1+n 1)n =1+C 1n n 1+C 2n 21n + … +C n n (n 1)n =1+1+C 2n 21n+ … +C n n (n 1)n >2. 又C k n(n 1) =kn k k n n n !)1()1(+-- ≤!1k , 所以(1+n 1)n ≤2+!21+!31+ … +!1n <2+211⋅+321⋅+ … +n n ⋅-)1(1=2+(1-21)+(21-31)+ … +(11-n -n1) =3-n1<3. 综上有2≤(1+n1)n<3. 说明:在此不等式的证明中,利用二项式定理将二项式展开,再采用放缩法和其他有关知识,将不等式证明到底.【例21】求证:对于n ∈N *,(1+n 1)n <(1+11+n )n +1.分析:结构都是二项式的形式,因此研究二项展开式的通项是常用方法.证明:(1+n 1)n 展开式的通项T r +1=C r n r n1=r r n n r A !=!1r rn r n n n n )1()2)(1(+---=!1r (1-n 1)(1-n 2)…(1-nr 1-). (1+11+n )n +1展开式的通项T ′r +1=C r n 1+rn )1(1+=r r n n r )1(!A 1++ =!1r rn r n n n n )1()2)(1(+---=!1r (1-11+n )(1-12+n )…(1-11+-n r ). 由二项式展开式的通项可明显地看出T r +1<T ′r +1所以(1+n 1)n <(1+11+n )n +1说明:本题的两个二项式中的两项均为正项,且有一项相同.证明时,根据题设特点,采用比较通项大小的方法完成本题证明.【例22】设a 、b 、c 是互不相等的正数,且a 、b 、c 成等差数列,n ∈N *,求证:a n +c n>2b n .分析:题中虽未出现二项式定理的形式,但可以根据a 、b 、c 成等差数列创造条件使用二项式定理.证明:设公差为d ,则a =b -d ,c =b +d .a n +c n -2b n =(b -d )n +(b +d )n -2b n=[b n -C 1n b n -1d +C 2n b n -2d 2+ … +(-1)n d n ]+[b n +C 1n b n -1d +C 2n bn -2d 2+ … +d n ] =2(C 2n b n -2d 2+C 4n bn -4d 4…)>0.说明:由a 、b 、c 成等差,公差为d ,可得a =b -d ,c =b +d ,这就给利用二项式定理证明此问题创造了可能性.问题即变为(b -d )n +(b +d )n >2b n ,然后用作差法改证(b -d )n +(b +d )n -2b n >0.【例23】求(1+2x -3x 2)6的展开式中x 5项的系数.分析:先将1+2x -3x 2分解因式,把三项式化为两个二项式的积,即(1+2x -3x 2)6=(1+3x )6 (1-x )6.然后分别写出两个二项式展开式的通项,研究乘积项x 5的系数,问题可得到解决.解:原式=(1+3x )6(1-x )6,其中(1+3x )6展开式之通项为T +1=C k 63 x,(1-x )6展开式之通项为T r +1=C r 6(-x )r .原式=(1+3x )6(1-x )6展开式的通项为C k 6C r6(-1)r 3 x +r .现要使 +r =5,又∵ ∈{0,1,2,3,4,5,6},r ∈{0,1,2,3,4,5,6},必须⎩⎨⎧==5,0r k 或⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,51,42,33,24,1r k r k r k r k r k 或或或或 故x 5项系数为C 0630C 56(-1)5+C 1631C 46(-1)4+C 2632C 36(-1)3+C 3633C 26(-1)4+C 4634C 16 (-1)+C 5635C 06(-1)0=-168.说明:根据不同的结构特征灵活运用二项式定理是本题的关键.【例24】(2004年全国必修+选修1)(x -x 1)6展开式中的常数项为( ) A.15B.-15C.20D.-20解析:T r +1=(-1)rC r6(x )6-rx -r =(-1)rC r 6xr 233-,当r =2时,3-23r =0,T 3=(-1)2C 26=15.答案:A【例25】 (2004年江苏)(2x +x )4的展开式中x 3的系数是( ) A.6B.12C.24D.48解析:T r +1=(-1)rC r 4(x )4-r(2x )r=(-1)r 2rC r 4x 22r +,当r =2时,2+2r=3,T 3=(-2)2C 24=24.答案:C【例26】 (2004年福建理)若(1-2x )9展开式的第3项为288,则∞→n lim (x 1+21x + … +n x1)的值是( )A.2B.1C.21D.52解析:T r +1=(-1)r C r 9(2x )r =(-1)r C r 92xr ,当r =2时,T 3=(-1)2C 2922x=288.∴x =23. ∴∞→n lim (x 1+21x + … +n x 1)=32132-=2.答案:A【例27】 (2004年福建文)已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A.28B.38C.1或38D.1或28解析:T r +1=(-1)r C r 8x 8-r (xa )r =(-a )r C r 8x 8-2r ,当r =4时,T 3=(-a )4C 48=1120,∴a =±2. ∴有函数f (x )=(x -xa )8.令x =1,则f (1)=1或38. 答案:C【例28】 (2004年天津)若(1-2x )2004=a 0+a 1x +a 2x 2+…+a 2004x 2004(x ∈R ),则(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+ … +(a 0+a 2004)= .(用数字作答)解析:在函数f (x )=(1-2x )2004中,f (0)=a 0=1,f (1)=a 0+a 1+a 2+ … +a 2004=1, (a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2004) =2004a 0+a 1+a 2+ … +a 2004 =2003a 0+a 0+a 1+a 2+ … +a 2004 =2003f (0)+f (1) =2004.答案:2004。
(通用版)2019版高考数学二轮复习课件+训练:第一部分专题十四排列、组合、二项式定理讲义理(重点生,含解析)

3=6(种)种法;第二步,对于 D,E 区域,若 A,E 区域种的植物相同,则 D 区域有 1 种种法,
若 A,E 区域种的植物不同,则 E 区域有 1 种种法,D 区域有 2 种种法,则 D,E 区域共有 1+2=
高清试卷 下载可打印
3(种)不同的种法.故不同的种法共有 6×3=18(种). 答案:18 [系统方法]
两个计数原理
[题组全练]
1.从 0,1,2,3,4 中任选两个不同的数字组成一个两位数,其中偶数的个数是( )
A.6
B.8
C.10
D.12
高清试卷 下载可打印
高清试卷 下载可打印
解析:选 C 由题意,知末尾数字是 0,2,4 时为偶数.当末尾数字是 0 时,有 4 个偶数; 当末尾数字是 2 时,有 3 个偶数;当末尾数字是 4 时,有 3 个偶数.所以共有 4+3+3= 10(个)偶数.
号,2 和 3 号,3 和 4 号,4 和 5 号,5 和 6 号,其排法分别为 A2A3,A2A3,C12A2A3,C13A2A3,C
13A2A3,故总编排方案有 A2A3+A2A3+C12A2A3+C13A2A3+C13A2A3=120 种.
法二:记演出顺序为 1~6 号,按甲的编排进行分类,①当甲在 1 号位置时,丙、丁相
3.(2018·陕西质检)将 2 名教师、4 名学生分成 2 个小组,分别安排到甲、乙两地参
加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )
A.12 种
B.10 种
C.9 种
D.8 种
解析:选 A 安排人员去甲地可分为两步:第一步安排教师,有 C 12种方案;第二步安
邻的情况有 4 种,则有 C14A2A3=48 种;②当甲在 2 号位置时,丙、丁相邻的情况有 3 种,共
2019年高考数学第二轮专项专题排列、组合、二项式定理与概率统计复习及解析湖南师大附中共11页

高考数学二轮复习专项排列、组合、二项式定理与概率统计(含详解)1. 袋里装有30个球,每个球上都记有1到30的一个号码, 设号码为n 的球的重量为344342+-n n (克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出.(Ⅰ)如果任意取出1球, 求其号码是3的倍数的概率. (Ⅱ)如果任意取出1球, 求重量不大于号其码的概率; (Ⅲ)如果同时任意取出2球, 试求它们重量相同的概率.2. 从10个元件中(其中4个相同的甲品牌元件和6个相同的乙品牌元件)随机选出3个参加某种性能测试. 每个甲品牌元件能通过测试的概率均为54,每个乙品牌元件能通过测试的概率均为53.试求:(I )选出的3个元件中,至少有一个甲品牌元件的概率;(II )若选出的三个元件均为乙品牌元件,现对它们进行性能测试,求至少有两个乙品牌元件同时通过测试的概率.3. 设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不在放回,若以ξ和η分别表示取出次品和正品的个数。
(1)求ξ的分布列,期望及方差; (2)求η的分布列,期望及方差;4.(1)每天不超过20人排队结算的概率是多少?(2)一周7天中,若有三天以上(含三天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问,该商场是否需要增加结算窗口?5. 某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内: (1)只有丙柜面需要售货员照顾的概率;(2)三个柜面最多有一个需要售货员照顾的概率; (3)三个柜面至少有一个需要售货员照顾的概率.6. 某同学上楼梯的习惯每步走1阶或2阶,现有一个11阶的楼梯 ,该同学从第1阶到第11阶用7步走完。
(1)求该同学恰好有连着三步都走2阶的概率;(2)记该同学连走2阶的最多步数为ζ,求随机事件ζ的分布列及其期望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4练计数原理与二项式定理两个计数原理应用两个计数原理解题的方法(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.(2)对于复杂的两个原理综合应用的问题,可恰当列出示意图或表格,使问题形象化、直观化.[考法全练]1.(2018·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C.①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得所有满足条件的四位数共有24+24=48(个),故选C.2.如果一个三位正整数“a1a2a3”满足a1<a2且a3<a2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为()A.240 B.204C.729 D.920解析:选A.分8类,当中间数为2时,有1×2=2(个);当中间数为3时,有2×3=6(个);当中间数为4时,有3×4=12(个);当中间数为5时,有4×5=20(个);当中间数为6时,有5×6=30(个);当中间数为7时,有6×7=42(个);当中间数为8时,有7×8=56(个);当中间数为9时,有8×9=72(个).故共有2+6+12+20+30+42+56+72=240(个).3.(2018·合肥质量检测)某社区新建了一个休闲小公园,几条小径将公园分成5块区域,如图.社区准备从4种颜色不同的花卉中选择若干种种植在各块区域,要求每个区域种植一种颜色的花卉,且相邻区域(有公共边的)所选花卉颜色不能相同,则不同种植方法的种数为()A.96 B.114C.168 D.240解析:选C.先在a中种植,有4种不同方法,再在b中种植,有3种不同方法,再在c中种植,若c与b同色,则d有3种不同方法,若c与b不同色,c有2种不同方法,d有2种不同方法,再在e中种植,有2种不同方法,所以共有4×3×1×3×2+4×3×2×2×2=168(种),故选C.4.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是________.解析:按分步来完成此事.第1张有10种分法,第2张有9种分法,第3张有8种分法,故共有10×9×8=720种分法.答案:7205.在学校举行的田径运动会上,8名男运动员参加100米决赛,其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步,安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以安排方式有4×3×2=24(种);第二步,安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).所以安排这8名运动员的方式共有24×120=2 880(种).答案:2 880排列、组合的应用排列、组合应用问题的8种常见解法(1)特殊元素(特殊位置)优先安排法.(2)相邻问题捆绑法.(3)不相邻问题插空法.(4)定序问题缩倍法.(5)多排问题一排法.(6)“小集团”问题先整体后局部法.(7)构造模型法.(8)正难则反,等价转化法.[考法全练]1.(2018·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年龄尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B.若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参加任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案,故选B.2.(2018·甘肃第二次诊断检测)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种B.24种C.36种D.48种解析:选C.若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22C23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A23=6种,根据分类加法计数原理可得,共有36种情况,故选C.3.(一题多解)(2018·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有() A.120种B.156种C.188种D.240种解析:选A.法一:记演出顺序为1~6号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法分别为A22A33,A22A33,C12A22A33,C13A22A33,C13A22A33,故总编排方案有A22A33+A22A33+C12A22A33+C13A22A33+C13A22A33=120种.法二:记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48种;②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种;③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种.所以编排方案共有48+36+36=120种.4.现有红色、蓝色和白色的运动鞋各一双,把三双鞋排列在鞋架上,仅有一双鞋相邻的排法总数是( ) A .72 B .144 C .240D .288解析:选D.首先,选一双运动鞋,捆绑在一起看作一个整体,有C 13A 22=6种排列方法,则现在共有5个位置,若这双鞋在左数第一个位置,共有C 12A 22A 22=8种情况,若这双鞋在左数第二个位置,则共有C 14C 12=8种情况,若这双鞋在中间位置,则共有A 22A 22A 22A 22=16种情况,左数第四个位置和第二个位置的情况一样,第五个位置和第一个位置的情况一样.所以把三双鞋排列在鞋架上,仅有一双鞋相邻的排法总数是6×(2×8+2×8+16)=288.故选D.5.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有________种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种). 答案:150二项式定理通项与二项式系数(a +b )n 的展开式的通项T k +1=C k n a n -k b k(k =0,1,2,…,n ),其中C k n 叫做二项式系数.[注意] T k +1是展开式中的第k +1项,而不是第k 项. 各二项式系数之和(1)C 0n +C 1n +C 2n +…+C n n =2n . (2)C 1n +C 3n +…=C 0n +C 2n +…=2n -1.[考法全练]1.(2018·高考全国卷Ⅲ)(x 2+2x )5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:选C.T r +1=C r 5(x 2)5-r⎝⎛⎭⎫2x r=C r52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40. 2.(2018·郑州第一次质量预测)在⎝⎛⎭⎫x +3x n的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120解析:选C.令x =1,则⎝⎛⎭⎫x +3x n=4n ,所以⎝⎛⎭⎫x +3x n的展开式中,各项系数和为4n ,又二项式系数和为2n,所以4n 2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫3x r=C r 53rx 5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90,故选C.3.(2018·武汉模拟)若(3x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=( ) A .80 B .120 C .180D .240解析:选D.由(3x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5两边求导,可得15(3x -1)4=a 1+2a 2x +3a 3x 2+…+5a 5x 4,令x =1得,15×(3-1)4=a 1+2a 2+3a 3+…+5a 5,即a 1+2a 2+3a 3+4a 4+5a 5=240,故选D.4.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.5.(2018·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.解析:(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. 答案:25一、选择题1.(2018·福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,则不同的安排方案共有( )A .90种B .180种C .270种D .360种解析:选B.可分两步:第一步,甲、乙两个展区各安排一个人,有A 26种不同的安排方案;第二步,剩下两个展区各两个人,有C 24C 22种不同的安排方案,根据分步乘法计数原理,不同的安排方案的种数为A 26C 24C 22=180.故选B.2.(2018·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( )A .-3 2B .3 2C .6D .-6解析:选D.通项T r +1=C r 3⎝⎛⎭⎫2x 23-r(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( )A .560B .-560C .280D .-280解析:选A.取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r=C r7·(-2)r ·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560,故选A. 4.⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:选C.(1+x )6的展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.5.设(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,则a 1等于( ) A .80 B .-80 C .-160D .-240解析:选D.因为(x 2-3x +2)5=(x -1)5(x -2)5,所以二项展开式中含x 项的系数为C 45×(-1)4×C 55×(-2)5+C 55×(-1)5×C 45×(-2)4=-160-80=-240,故选D.6.(2018·沈阳教学质量监测(一))若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有( )A .4种B .8种C .12种D .24种解析:选B.将4个人重排,恰有1个人站在自己原来的位置,有C 14种站法,剩下3人不站原来位置有2种站法,所以共有C 14×2=8种站法,故选B.7.(2018·柳州模拟)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个数相邻,则不同的选法种数是( )A .72B .70C .66D .64解析:选D.从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C 12·C 17+C 17·C 16=56种选法,三个数相邻共有C 18=8种选法,故至少有两个数相邻共有56+8=64种选法,故选D.8.(2018·惠州第二次调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为( )A .24B .18C .16D .10解析:选D.分两种情况,第一种:最后体验甲景区,则有A 33种可选的路线;第二种:不在最后体验甲景区,则有C 12·A 22种可选的路线.所以小李可选的旅游路线数为A 33+C 12·A 22=10.故选D.9.已知(x+2)9=a0+a1x+a2x2+…+a9x9,则(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2的值为()A.39B.310C.311D.312解析:选D.对(x+2)9=a0+a1x+a2x2+…+a9x9两边同时求导,得9(x+2)8=a1+2a2x+3a3x2+…+8a8x7+9a9x8,令x=1,得a1+2a2+3a3+…+8a8+9a9=310,令x=-1,得a1-2a2+3a3-…-8a8+9a9=32.所以(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2=(a1+2a2+3a3+…+8a8+9a9)(a1-2a2+3a3-…-8a8+9a9)=312,故选D.10.(2018·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B.根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,故选B.11.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是() A.100 B.150C.30 D.300解析:选D.第一步,1=1+0,1=0+1,共2种组合方式;第二步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第三步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第四步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理知,值为1 942的“简单的”有序对的个数是2×10×5×3=300.故选D.12.(2018·郑州第二次质量预测)《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成A,B,C,D,E,F六项任务,并对任务的顺序提出了如下要求,重点任务A必须排在前三位,且任务E,F必须排在一起,则这六项任务完成顺序的不同安排方案共有()A.240种B.188种C.156种D.120种解析:选D.因为任务A必须排在前三位,任务E,F必须排在一起,所以可把A的位置固定,E,F捆绑后分类讨论.当A在第一位时,有A44A22=48种;当A在第二位时,第一位只能是B,C,D中的一个,E,F只能在A的后面,故有C13A33A22=36种;当A在第三位时,分两种情况:①E,F在A之前,此时应有A22A33种,②E,F在A之后,此时应有A23A22 A22种,故而A在第三位时有A22A33+A23A22A22=36种.综上,共有48+36+36=120种不同的安排方案.故选D. 二、填空题13.(一题多解)(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 12C 24=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C 36=20(种),从6人中任选3人都是男生,不同的选法有C 34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).答案:1614.(2018·武汉调研)在⎝⎛⎭⎫x +4x -45的展开式中,x 3的系数是________. 解析:⎝⎛⎭⎫x +4x -45的展开式的通项T r +1=C r 5(-4)5-r ·⎝⎛⎭⎫x +4x r ,r =0,1,2,3,4,5,⎝⎛⎭⎫x +4x r的展开式的通项T k +1=C k r xr -k⎝⎛⎭⎫4x k=4k C krx r -2k ,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.所以x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180.答案:180.15.在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为________.解析:因为二项式(1+2x )6的展开式中含x 的项的系数为2C 16,二项式(1+y )5的展开式中含y 3的项的系数为C 35,所以在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为2C 16C 35=120.答案:12016.(2018·成都模拟)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若只有甲、乙其中一人参加,有C 12·C 46·A 55=3 600(种);若甲、乙两人都参加,有C 22·A 36·A 24=1 440(种).则不同的安排种数为3 600+1 440=5 040. 答案:5 040。