2011年中考数学压轴题精选2答案
2011中考数学压轴题(含答案)

(1)矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(-2,0),直线AB交x轴于点A(1,0).(1)求直线AB的解析式;(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,是的S△PAG= S△PEH,若存在,求点P 的坐标;若不存在,请说明理由.解答:解:(1)设经过A(1,0),B(0,3)的直线AB的解析式为y=kx+3;设k+3=0,解得k=-3.∴直线AB的解析式为y=-3x+3.(2)进过A、B、C三点的抛物线的解析式为y=ax2+bx+3∵D(-2,0),B(0,3)是矩形OBCD的顶点,∴C(-2,3);则解得∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,∴顶点E(-1,4).(3)存在.解法1:∵EH∥x轴,直线AB交EH于点F.∴将y=4代入y=-3x+3得F(- ,4)∴EF=有平移性质可知FH=AG=2∴EH=EF+FH= +2=设点P的纵坐标为y p①当点P在x轴上方时,有S△PAG= S△PEH得×2×y p= ×××(4-y p)解得y p=2∴-x2-2x+3=2解得x1=-1+ ,x2=-1-∴存在点P1(-1+ ,2),点P2(-1- ,2)②当点P在x轴下方时由S△PAG= S△PEH得×2×(-y p)=∴-y p=4-y p∴y p不存在,∴点P不能在x轴下方.综上所述,存在点,使得S△PAG= S△PEH.解法2:∵EH∥x轴,直线AB交BH于点F.∴将y=4代入y=-3x+3得F(- ,4),∴EF= .由平移性质可知FH=AC=2.∴EH=EF+FH= +2=设点P到EH和AG的距离分别为h1和h2由S△PAG= S△PEH得∴h1=h2显然,点P只能在x轴上方,∴点P的纵坐标为2∴-x2-2x+3=2解得,∴存在点,点使得S△PAG= S△PEH.(2)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.解答:解:(1)由等腰梯形的性质得:BE=EF=FC=2,∴S M=S△BPE+S△QFC+S梯形QFEP= BE•x FC•y+ •EF= ×2x+ ×2y+ ×2=2(x+y),把S M=10,x=3代入上式,解得y=2.(2)由等腰梯形的性质得:BE=EF=FC=2,∵S△BEP+S梯形PEFQ+S△FCQ=S梯形M,∴×2x+ (x+y)×2+ ×2y=10,∴y=-x+5,由,得1≤x≤4.(3)若图形M为等腰梯形(如图1),则EP=FQ,即x=-x+5,解得x= .∴当x= 时,图形M为等腰梯形.若图形M为等腰三角形,分两种情形:①当点P、Q、C在一条直线上时(如图2),EP是△BPC的高,∴BC•EP=10,即×6x=10,解得x= ;②当点B、P、Q在一条直线上时(如图3),FQ是△BQC的高,∴BC•F Q=10,即×6×(-x+5)=10,解得x= ;∴当x= 或时,图形M为三角形.(4)线段PQ扫过的部分是两个全等的三角形,且都是以x最小时AP的长为底,AD的长为高,在(2)中已经求得x的取值范围为1≤x≤4,所以此时AP=AE-x min=3,那么线段PQ扫过的面积即为:2S=2××3×1=3cm2;评分说明:(4)中不写单位不扣分,线段PQ在运动过程中所能扫过的区域为图4中阴影部分.(3)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.解答:解:(1)同意,连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴GF=DF;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2 x,∴;(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n•DF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2∴y=2x ,∴或.(4)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),则有解得,∴抛物线的解析式为y= x2+x-4.(2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n),则AD=m+4,MD=-n,n= m2+m-4,∴S=S△AMD+S梯形DMBQ-S△ABO==-2n-2m-8=-2×=-m2-4m(-4<m<0);∴S最大值=4.(3)设P(x,x2+x-4).①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=-x,则Q(x,-x).由PQ=OB,得|-x-(x2+x-4)|=4,解得x=0,-4,-2±2 .x=0不合题意,舍去.由此可得Q(-4,4)或(-2+2 ,2-2 )或(-2-2 ,2+2 );②如图2,当BO为对角线时,易知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).故满足题意的Q点的坐标有四个,分别是(-4,4),(-2+2 ,2-2 ),(-2-2 ,2+2 ),(4,-4),.(5)(2010•三明)如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.(1)求该抛物线的函数关系式和对称轴;(2)试判断△AMN的形状,并说明理由;(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l 平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.解答:解:(1)设抛物线的函数关系式为y=ax2+bx+c;∵抛物线过点C(0,-12),∴c=-12;(1分)又∵它过点A(12,0)和点B(-4,0),∴,解得;∴抛物线的函数关系式为y= x2-2x-12,(3分)抛物线的对称轴为x=4.(5分)(2)解法一:∵在y=kx-4中,当x=0时,y=-4,∴y=kx-4与y轴的交点N(0,-4);(6分)∵y= x2-2x-12= (x-4)2-16,∴顶点M(4,-16);(7分)∵AM2=(12-4)2+162=320,AN2=122+42=160,MN2=42+(16-4)2=160,∴AN2+MN2=160+160=320=AM2,AN=MN;(9分)∴△AMN是等腰直角三角形.(10分)解法二:过点M作MF⊥y轴于点F,则有MF=4,NF=16-4=12,OA=12,ON=4;(6分)∴MF=ON,NF=OA,(7分)又∵∠AON=∠MFN=90°,∴△AON≌△NFM;(8分)∴∠MNF=∠NAO,AN=MN;(9分)∵∠NAO+∠ANO=90°,即∠MNF+∠ANO=90°,∴∠MNA=90;∴△AMN是等腰直角三角形.(10分)(3)存在,点P的坐标分别为:(4,-16),(4,-8),(4,-3),(4,6)(14分)参考解答如下:∵y=kx-4过点A(12,0),∴k= ;直线l与y= x-4平行,设直线l的解析式为y= x+b;则它与x轴的交点D(-3b,0),与y轴交点E(0,b);∴OD=3OE;设对称轴与x轴的交点为K;(Ⅰ)以点E为直角顶点如图;①根据题意,点M(4,-16)符合要求;②过P作PQ⊥y轴,当△PDE为等腰直角三角形时,有Rt△ODE≌Rt△QEP,∴OE=PQ=4,QE=OD;∵在Rt△ODE中,OD=3OE,∴OD=12,QE=12,∴OQ=8,∴点P的坐标为(4,-8);(Ⅱ)以点D为直角顶点;同理在图①中得到P(4,6),在图②中可得P(4,-3);综上所得:满足条件的P的坐标为:(4,-16),(4,-8),(4,-3),(4,6).(6)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①<π>= (π为圆周率);②如果<2x-1>=3,则实数x的取值范围为(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= 的所有非负实数x的值;(4)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<>=n的所有整数k的个数记为b.求证:a=b=2n解答:解:(1)①3;②由题意得:2.5≤2x-1<3.5,解得:;(2)①证明:设<x>=n,则为非负整数;又,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(3)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(4)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2-n+1,n2-n+2,n2-n+3,…,n2-n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.(7)如图,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.解答:解:(1)将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:,解之得:b=4,c=0;所以抛物线的表达式为:y=-x2+4x,将抛物线的表达式配方得:y=-x2+4x=-(x-2)2+4,所以对称轴为x=2,顶点坐标为(2,4);(2)点p(m,n)关于直线x=2的对称点坐标为点E(4-m,n),则点E关于y轴对称点为点F坐标为(m-4,n),则FP=OA=4,即FP、OA平行且相等,所以四边形OAPF是平行四边形;S=OA•|n|=20,即|n|=5;因为点P为第四象限的点,所以n<0,所以n=-5;代入抛物线方程得m=-1(舍去)或m=5,故m=5,n=-5.(8)25、如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若,设CE=x,△ABC的周长为y,求y关于x的函数关系式.分析:(1)当∠B=30°时,∠A=60°,此时△ADE是等边三角形,则∠PEC=∠AED=60°,由此可证得∠P=∠B=30°;若△AEP与△BDP相似,那么∠EAP=∠EPA=∠B=∠P=30°,此时EP=EA=1,即可在Rt △PEC中求得CE的长;(2)若BD=BC,可在Rt△ABC中,由勾股定理求得BD、BC的长;过C作CF∥DP交AB于F,易证得△ADE∽△AFC,根据得到的比例线段可求出DF的长;进而可通过证△BCF∽△BPD,根据相似三角形的对应边成比例求得BP、BC的比例关系,进而求出BP、CP的长;在Rt△CEP中,根据求得的CP 的长及已知的CE的长即可得到∠BPD的正切值;(3)过点D作DQ⊥AC于Q,可用未知数表示出QE的长,根据∠BPD(即∠EDQ)的正切值即可求出DQ的长;在Rt△ADQ中,可用QE表示出AQ的长,由勾股定理即可求得EQ、DQ、AQ的长;易证得△ADQ∽△ABC,根据得到的比例线段可求出BD、BC的表达式,进而可根据三角形周长的计算方法得到y、x的函数关系式.解答:(1)解:∵∠B=30°,∠ACB=90°,∴∠BAC=60°.∵AD=AE,∴∠AED=60°=∠CEP,∴∠EPC=30°.∴三角形BDP为等腰三角形.∵△AEP与△BDP相似,∴∠EPA=∠DPB=30°,∴AE=EP=1.∴在Rt△ECP中,EC= EP= ;(2)设BD=BC=x.在Rt△ABC中,由勾股定理,得:(x+1)2=x2+(2+1)2,解之得x=4,即BC=4.过点C作CF∥DP.∴△ADE与△AFC相似,∴,即AF=AC,即DF=EC=2,∴BF=DF=2.∵△BFC与△BDP相似,∴,即:BC=CP=4.∴tan∠BPD= .(3)过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1-a.∴且,∴DQ=3(1-a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+[3(1-a)]2,解之得.∵△ADQ与△ABC相似,∴.∴.∴三角形ABC的周长,即:y=3+3x,其中x>0.。
2011中考数学压轴题精析

⑵当该矩形的长为 a 时,它的周长最小,最小值为 4 a . 【考点】画和分析函数的图象, 配方法求函数的最大(小)值. 【分析】⑴将 x 值代入函类数关系式求出 y 值, 描点作图即可. 然后分析函数图像.
2 ⑵仿⑴③ y 2( x ) = 2 ( x ) (
a x
a 2 ) x
四边形 AMNP
﹣S△PAM=S△DPN+S
梯形 NDAM
﹣S△PAM,即可求得关于 t 的二次函数,列方程
即可求得 t 的值; (3)根据图形,即可直接求得答案. 解答:解: (1)把 x=0,y=0 代入 y=x2+bx+c,得 c=0,
-1-
再把 x=t,y=0 代入 y=x2+ห้องสมุดไป่ตู้x,得 t2+bt=0, ∵t>0, ∴b=﹣t;
y x
1 ( x 0)的最小值为 2. x 1 1 2 1 1 1 2 = ( x) ( ) = ( x )2 ( )2 2 x 2 x x x x x x
③ y x
=( x
1 2 ) 2 x
当 x
1 1 =0,即 x 1 时,函数 y x ( x 0) 的最小值为 2. x x
如图 1,当 0 t 4 时, AP 4 3 3t,AQ 4 t.
S
1 1 3 2 AP· AQ 4 3 3t 4 t t 8 3 . 2 2 2
如图 2,当 t ≥ 4 时, AP 3t 4 3 , AQ 4 t ,
1 (x >0)的最小值. x
出
解决问题:⑵用上述方法解决“问题情境”中的问题,直接写 答案.
2011年各地中考数学压轴题精选11-20(解析版)(含详细解答)

2011年各地中考数学压轴题精选11-20解析版2011 福建三明22.解:∵抛物线y =ax 2-4ax +c 过A (0,-1),B (5,0)∴⎩⎨⎧c =-125a -20a +c =0 解得:⎩⎪⎨⎪⎧a =15c =-1(2)∵直线AB 经过A (0,-1),B (5,0) ∴直线AB 的解析式为y =15x -1由(1)知抛物线的解析式为:y =15x 2-45x -1∵点P 的横坐标为m ,点P 在抛物线上,点Q 在直线AB 上,PQ ⊥x 轴 ∴P (m ,15m 2-45m -1),Q (m ,15m -1) ∴S =PQ =(15m -1)-(15m 2-45m -1) 即S =-15m 2+m (0<m <5) (3)抛物线的对称轴l 为:x =2以PQ 为直径的圆与抛物线的对称轴l 的位置关系有: 相离、相切、相交三种关系相离时:0<m <15-1452或 -5+1052 <m <5; 相切时:m =15-1452 m =-5+1052; 相交时:15-1452<m <-5+10522011 福建三明23.解:(1)在矩形ABCD 中,∠A =∠D =90°,AP =1,CD =AB =2,则PB =5. ∴∠ABP +∠APB =90° 又∵∠BPC =90° ∴∠APB +∠DPC =90° ∴∠ABP =∠DPC ∴△APB ∽△DCP∴AP CD =PB PC 即 12 =5PC ∴PC =2 5(2)tan ∠PEF 的值不变(第23题 图①)理由:过F 作FG ⊥AD ,垂足为G , 则四边形ABFG 是矩形∴∠A =∠PFG =90°,GF =AB =2 ∴∠AEP +∠APE =90° 又∵∠EPF =90° ∴∠APE +∠GPF =90° ∴∠AEP =∠GPF ∴△APE ∽△GPF ∴PF PE =GF AP =21 =2∴Rt △EPF 中,tan ∠PEF =PFPE =2 ∴tan ∠PEF 的值不变(3)线段EF 的中点经过的路线长为 5(第23题 图④)(第23题 图③)O 2O 1FPCDB AE2011福建宁德 25.(满分13分)解:⑴小颖摆出如图1所示的“整数三角形”:…………3分小辉摆出如图2所示三个不同的等腰“整数三角形”:…………8分⑵①不能摆出等边“整数三角形”.理由如下: 设等边三角形的边长为a ,则等边三角形面积为243a . 因为,若边长a 为整数,那么面积243a 一定非整数. 所以不存在等边“整数三角形”.…………10分;②能摆出如图3所示一个非特殊“整数三角形”:…………13分2011福建宁德 26.(满分13分)解:⑴①直线6-=x y 与坐标轴交点坐标是A (6,0),B (0,-6);…………1分②如图1,四边形DCEF 即为四边形ABEF 沿EF 折叠后的图形;…………3分 ⑵∵四边形DCEF 与四边形ABEF 关于直线EF 对称, 又AB ∥EF , ∴CD ∥EF .∵OA =OB ,∠AOB =90°, ∴∠BAO =45°. ∵AB ∥EF , ∴∠AFE =135°. ∴∠DFE =∠AFE =135°.∴∠AFD =360°-2×135°=90°,即DF ⊥x 轴. ∴DF ∥EH ,5图14 46 6图24 5121513图3∴四边形DHEF 为平行四边形. …………5分 要使□DHEF 为菱形, 只需EF =DF ,∵AB ∥EF ,∠FAB =∠EBA , ∴FA =EB . ∴DF =FA =EB =t . 又∵OE =OF =6-t , ∴EF =()t -62. ∴()t -62=t . ∴2126+=t .∴当2126+=t 时,□DHEF 为菱形. …………7分⑶分两种情况讨论:①当0<t ≤3时,…………8分四边形DCEF 落在第一象限内的图形是△DFG ,∴S =221t . ∵S =221t ,在t >0时,S 随t 增大而增大,∴t =3时,S 最大=29;…………9分②当3<t <6时,…………10分四边形DCEF 落在第一象限内的图形是四边形DHOF , ∴S 四边形DHOF =S △DGF —S △HGO . ∴S =()22622121--t t =1812232-+-t t =()64232+--t .∵a =23-<0,∴S 有最大值.∴当t =4时,S 最大=6.…………12分综上所述,当S =4时,S 最大值为6. …………13分2011 福建南平25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.考点:翻折变换(折叠问题);全等三角形的判定与性质;角平分线的性质;平行四边形的性质;矩形的性质。
2011上海数学中考24,25压轴题及答案

24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy ,一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y=x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.解:(1) 根据两点之间距离公式,设M (a ,23a )由| MO |=| MA |解得:a =1 则M (1,23),即AM =213。
(2) ∵A (0, 3)∴c =3,将点M 代入y =x 2+bx +3解得:b = -25即:y =x 2-25x +3。
(3) C (2, 2) 设B (0, m ) (m <3),C (n , n 2-25n +3),D (n ,43n +3), | AB |=3-m ,| DC |=y D -y C =43n +3-(n 2-25n +3)=413n -n 2,| AD |=22)3343()0(-+--n n =45n ,| AB |=| DC |⇒3-m =413n -n 2… ,| AB |=| AD |⇒3-m =45n … 。
解 , ,得n 1=0(舍去),或者n 2=2,将n =2代入C (n , n 2-25n +3),得C (2, 2)。
25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EM P ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) [解] (1) 由AE =40,BC =30,AB =50,⇒CP =24,又sin ∠EMP =1312⇒CM =26。
2011年全国各地中考数学压轴题专集 2一元二次方程

2011年全国各地中考数学压轴题专集:2一元二次方程1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.(1)当k为何值时,△ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.2.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.(1)求m的值;(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.3.已知关于x的方程x2-(m+n+1)x+m=0(n≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示m和n;(2)求证:α≤1≤β;(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(12,1),C(1,1),问是否存在点P,使m+n=54?若存在,求出点P的坐标;若不存在,请说明理由.4.请阅读下列材料:问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:___________________;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.5.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).(1)证明这个方程的一个根比2大,另一个根比2小;(2)如果当a=1,2,3,…,2011时,对应的一元二次方程的两个根分别为α1、β1,α2、β2,α3、β3,…,α2011、β2011,求1α 1+1β 1+1α2+1β 2+1α3+1β 3+…+1α2011+1β2011的值.6.已知关于x的一元二次方程x2-(a+b+c)x+ab+bc+ca=0,且a>b>c>0.(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;(2)若方程有实数根x0,求证:b+c<x0<a;(3)若方程的实数根为6和9,求正整数a,b,c的值.7.已知方程x2+2ax+a-4=0有两个不同的实数根,方程x2+2ax+k=0也有两个不同的实数根,且其两根介于方程x2+2ax+a-4=0的两根之间,求k的取值范围.8.已知关于x的方程x2-4|x|+3=k.(1)当k为何值时,方程有4个互不相等的实数根?(2)当k为何值时,方程有3个互不相等的实数根?(3)当k为何值时,方程有2个互不相等的实数根?(4)是否存在实数k,使得方程只有1个实数根?若存在,求k的值和方程的根;若不存在,请说明理由.9.已知x1,x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两个非零实数根,则x1与x2能否同号?若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.10.已知α、β为关于x的方程x2-2mx+3m=0的两个实数根,且(α-β)2=16,如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在α和β之间,求m的值.11.已知a为实数,且关于x的二次方程ax2+(a2+1)x-a=0的两个实数根都小于1,求这两个实数根的最大值.12.求实数a的取值范围,使关于x的方程x2+2(a-1)x+2a+6=0(1)有两个实根x1、x2,且满足0<x1<1<x2<4;(2)至少有一个正根.13.已知x1、x2是方程x2-mx-1=0的两个实数根,满足x1<x2,且x2≥2.(1)求m的取值范围;(2)若x2+mx1-m+x1+mx2-m=2,求m的值.14.已知关于x的方程x2-(m-2)x-m24=0(m≠0)(1)求证:这个方程总有两个异号实根;(2)若这个方程的两个实根x1、x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.15.已知△ABC的一边长为5,另两边长恰是方程2x2-12x+m=0的两个根,求m的取值范围.16.已知:α,β(α>β)是一元二次方程x2-x-1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s2-s1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s1,s2的值;(2)猜想:当n≥3时,s n,s n-1,s n-2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,求(1+52)8+(1-52)8的值.17.已知方程(x-1)(x2-2x+m)=0的三个实数根恰好构成△ABC的三条边长.(1)求实数m的取值范围;(2)当△ABC为直角三角形时,求m的值和△ABC的面积.。
2011中考数学真题解析118_压轴题2(含答案)

=
由(1)知 ≥6.
由于当 ≥6时,随着 的增大, 也随着增大,
所以 =6时,线段AB长度的最小值为2 .
点评:本题是一道综合性的题目,考查了抛物线与x轴的交点问题以及二次函数的性质,是中考压轴题,难度较大.
42. (2011?郴州)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).
(2)首先(1)所得的结论,即可推出OC=BD=1,即可得B点的纵坐标,设出直线的函数关系式,把B,C两点的坐标代入,求出k、b,即可推出结论;
(3)首先根据二次函数表达式,求出抛物线的对称轴,然后分情况进行分析①以AC为直角边,A点为直角顶点,根据题意推出P1点为BC与抛物线的对称轴的交点,根据直线BC的解析式和抛物线的解析式,即可推出P1点的坐标,②以AC为直角边,C点为直角顶点,做AP2⊥BC,设与抛物线的对称轴交于P2点,确定点P2的位置,由OA=CD,即可推出A点的坐标,根据AP2∥BC,即可推出直线AP2的的解析式,结合抛物线对称轴的解析式,即可推出P2的坐标.
∴二次函数的对称轴为x=﹣ ,
①若以AC为直角边,C点为直角顶点,做CP1⊥AC,
∵BC⊥AC,
∴P1点为直线BC与对称轴直线x=﹣ 的交点,
∵直线BC所在直线的解析式为:y=﹣ x﹣ ,
∴ ,
∴解得 ,
∴P1点的坐标为(﹣ ,﹣ );
②若以AC为直角边,A点为直角顶点,对称轴上有一点P2,使AP2⊥AC,
∴BD=OC=1,
∴B点的纵坐标为1,
∵B点的横坐标为﹣3,
∴B点的坐标为(﹣3,1),
2011年全国各地中考数学题分类汇编 压轴题(含答案).doc

2011年全国各地数学中考题汇编——压轴题(黄冈市2011)24.(14分)如图所示,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0).⑴求b 的值. ⑵求x 1•x 2的值⑶分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.⑷对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.答案:24.解:⑴b =1⑵显然11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组2114y kx y x =+⎧⎪⎨=⎪⎩的两组解,解方程组消元得21104x kx --=,依据“根与系数关系”得12x x g =-4 ⑶△M 1FN 1是直角三角形是直角三角形,理由如下:由题知M 1的横坐标为x 1,N 1的横坐标为x 2,设M 1N 1交y 轴于F 1,则F 1M 1•F 1N 1=-x 1•x 2=4,而FF 1=2,所以F 1M 1•F 1N 1=F 1F 2,另有∠M 1F 1F =∠FF 1N 1=90°,易证Rt △M 1FF 1∽Rt △N 1FF 1,得∠M 1FF 1=∠FN 1F 1,故∠M 1FN 1=∠M 1FF 1+∠F 1FN 1=∠FN 1F 1+∠F 1FN 1=90°,所以△M 1FN 1是直角三角形.⑷存在,该直线为y =-1.理由如下: 直线y =-1即为直线M 1N 1. 如图,设N 点横坐标为m ,则(黄石市2011年)24.(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O在第22题图第22题解答用图⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
2011中考数学压轴题选精选

10.星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为 30 米的篱笆 围成 .已知墙长为 18 米(如图所示) ,设这个苗圃园垂直于墙的一边的长为 x 米. (1)若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值范围. 18 米 墙 苗圃园
a A O
20 40 80
t(h)
7.小华观察钟面(图 1) ,了解到钟面上的分针每小时旋转 360 度,时针毎小时旋转 30 度.他为了进一步 探究钟面上分针与时针的旋转规律,从下午 2 : 00 开始对钟面进行了一个小时的观察.为了探究方便,他 将分针与分针起始位置 OP(图 2)的夹角记为 y1,时针与 OP 的夹角记为 y2 度(夹角是指不大于平角的 角) ,旋转时间记为 t 分钟.观察结束后,利用获得的数据绘制成图象(图 3) ,并求出 y1 与 t 的函数关系 式:
少要留够 0.5 米宽的平直路面,以方便同学们参观学习.当(1)中 S 取得最值时,请问这个设计是否可 行?若可行,求出圆的半径;若不可行,请说明理由. 围墙 A O1 B O2 C D
14.王伟准备用一段长 30 米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为 a 米, 由于受地势限制,第二条边长只能是第一条边长的 2 倍多 2 米. (1)请用 a 表示第三条边长; (2)问第一条边长可以为 7 米吗?请说明理由,并求出 a 的取值范围; (3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说 明理由. 15.李明在小岛上的 A 处,上午 8 时测得在 A 的北偏东 60º的 D 处有一艘轮船,9 时 20 分测得该船航行 到北偏西 60º的 C 处,9 时 40 分测得该船到达位于 A 正西方 5 千米的港口 B 处,如果该船始终保持匀速 直线运动,求: 北 (1)A、C 之间的距离; (2)轮船的航行速度. D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考数学压轴题精选(11-20题)答案【011】解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG= FD .………1分 同理,在Rt △DEF 中,EG= FD .…………2分∴ CG=EG .…………………3分 (2)(1)中结论仍然成立,即EG=CG .…………………………4分证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点. 在△DAG 与△DCG 中,∵ AD=CD ,∠ADG=∠CDG ,DG=DG , ∴ △DAG ≌△DCG .∴ AG=CG .………………………5分在△DMG 与△FNG 中,∵ ∠DGM=∠FGN ,FG=DG ,∠MDG=∠NFG ,∴ △DMG ≌△FNG .∴ MG=NG 在矩形AENM 中,AM=EN . ……………6分 在Rt △AMG 与Rt △ENG 中,∵ AM=EN , MG=NG ,∴ △AMG ≌△ENG .∴ AG=EG .∴ EG=CG . ……………………………8分 证法二:延长CG 至M,使MG=CG ,连接MF ,ME ,EC , ……………………4分在△DCG 与△FMG 中,∵FG=DG ,∠MGF=∠CGD ,MG=CG , ∴△DCG ≌△FMG .∴MF=CD ,∠FMG =∠DCG .∴MF ∥CD ∥AB .………………………5分∴ 在Rt △MFE 与Rt △CBE 中,∵ MF=CB ,EF=BE ,∴△MFE ≌△CBE .∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°.∴ △MEC 为直角三角形.∵ MG = CG ,∴ EG= MC .………8分 (3)(1)中的结论仍然成立,即EG=CG .其他的结论还有:EG ⊥CG .……10分 【012】解:(1) 圆心O 在坐标原点,圆O 的半径为1,∴点A B C D 、、、的坐标分别为(10)(01)(10)(01)A B C D --,、,、,、, 抛物线与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C ,∴(11)(11)M N --,、,. 点D M N 、、在抛物线上,将(01)(11)(11)D M N --,、,、,的坐标代入2y ax bx c =++,得:111c a b c a b c =⎧⎪-=-+⎨⎪=++⎩解之,得:111a b c =-⎧⎪=⎨⎪=⎩∴抛物线的解析式为:21y x x =-++. 4分(2)2215124y x x x ⎛⎫=-++=--+⎪⎝⎭ ∴抛物线的对称轴为12x =,12OE DE ∴===,. 6分连结90BF BFD ∠=,°,BFD EOD ∴△∽△,DE OD DB FD ∴=,又12DE OD DB ===,,FD ∴=,5210EF FD DE ∴=-=-=.8分(3)点P 在抛物线上.9分设过D C 、点的直线为:y kx b =+,将点(10)(01)C D ,、,的坐标代入y kx b =+,得:11k b =-=,, ∴直线DC 为:1y x =-+. 10分过点B 作圆O 的切线BP 与x 轴平行,P 点的纵坐标为1y =-, 将1y =-代入1y x =-+,得:2x =.∴P 点的坐标为(21)-,,当2x =时,2212211y x x =-++=-++=-, 所以,P 点在抛物线21y x x =-++上.12分【013】解:(1) 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入, 得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩, ∴此抛物线的解析式为215222y x x =-+-.(3分)(2)存在. (4分) 如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-,当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠= °,∴①当21AM AO PMOC ==时,APM ACO △∽△, 即21542222m m m ⎛⎫-=-+- ⎪⎝⎭. 解得1224m m ==,(舍去),(21)P ∴,. (6分) ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-.解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. (7分) 类似地可求出当4m >时,(52)P -,. (8分) 当1m <时,(314)P --,. 综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-.过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为122y x =-. (10分)E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,.2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. (11分) 22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△. ∴当2t =时,DAC △面积最大.(21)D ∴,. (13分) 【014】(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒. ∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =. 又∵O A O =,OAM OCN∠=∠,∴OAM OCN∆≅∆.∴AOM CON∠=∠.∴1(90452AOM ∠=︒-︒)=22.5︒.∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45︒-22.5︒=22.5︒.……………………………………………8分(3)答:p 值无变化. 证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠,000904545CON AOM AOM∠=--∠=-∠,∴A O E C ∠=∠.又∵O A O =,0001809090OAE OCN ∠=-==∠.∴OAE OCN ∆≅∆.∴,OE ON AE CN ==.又∵045MOE MON ∠=∠=,OM OM =, ∴OME∆≅∆∴MN ME AM AE ==+.∴MN AM CN =+,∴p MN BN BM AM CN BN BM AB BC =++=+++=+∴在旋转正方形OABC 的过程中,p 值无变化. (12)【015】⑴设二次函数的解析式为:y=a(x-h)2+k ∵顶点C 的横坐标为4,且过点(0,397)∴y=a(x-4)2+k k a +=16397………………①又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6 ∴A(1,0),B(7,0)∴0=9a+k ………………②由①②解得a=93,k=3-∴二次函数的解析式为:y=93(x-4)2-3⑵∵点A 、B 关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD ≥DB ∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P设直线x=4与x 轴交于点M ∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO ∴△BPM ∽△BDO ∴BO BM DO PM = ∴3373397=⨯=PM ∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=33,∴∠ACM=60o ,∵AC=BC ,∴∠ACB=120o①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N 如果AB=BQ ,由△ABC ∽△ABQ 有 BQ=6,∠ABQ=120o ,则∠QBN=60o ∴QN=33,BN=3,ON=10,此时点Q(10,33), 如果AB=AQ ,由对称性知Q(-2,33)(第26x②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-), 经检验,点(10,33)与(-2,33)都在抛物线上 综上所述,存在这样的点Q ,使△QAB ∽△ABC 点Q 的坐标为(10,33)或(-2,33)或(4,3-).【016】解:(1)设正比例函数的解析式为11(0)y k x k =≠,因为1y k x =的图象过点(33)A ,,所以133k =,解得11k =.这个正比例函数的解析式为y x =. (1分)设反比例函数的解析式为22(0)k y k x =≠.因为2ky x =的图象过点(33)A ,,所以 233k =,解得29k =.这个反比例函数的解析式为9y x =.(2分)(2)因为点(6)B m ,在9y x =的图象上,所以9362m ==,则点362B ⎛⎫ ⎪⎝⎭,. (3分) 设一次函数解析式为33(0)y k x b k =+≠.因为3y k x b =+的图象是由y x =平移得到的,所以31k =,即y x b =+.又因为y x b =+的图象过点362B ⎛⎫⎪⎝⎭,,所以 362b =+,解得92b =-,∴一次函数的解析式为92y x =-. (4分) (3)因为92y x =-的图象交y 轴于点D ,所以D 的坐标为902⎛⎫- ⎪⎝⎭,. 设二次函数的解析式为2(0)y ax bx c a =++≠. 因为2y ax bx c =++的图象过点(33)A ,、362B ⎛⎫⎪⎝⎭,、和D902⎛⎫- ⎪⎝⎭,,所以933336629.2a b c a b c c ⎧⎪++=⎪⎪++=⎨⎪⎪=-⎪⎩,, (5分) 解得1249.2a b c ⎧=-⎪⎪=⎨⎪⎪=-⎩,,这个二次函数的解析式为219422y x x =-+-. (6分) (4)92y x =-交x 轴于点C ,∴点C 的坐标是902⎛⎫ ⎪⎝⎭,, 如图所示,15113166633322222S =⨯-⨯⨯-⨯⨯-⨯⨯99451842=---814=.假设存在点00()E x y ,,使12812273432S S ==⨯=. 四边形CDOE 的顶点E 只能在x 轴上方,∴00y >, 1OCD OCE S S S ∴=+△△01991922222y =⨯⨯+⨯ 081984y =+.081927842y ∴+=,032y ∴=.00()E x y ,在二次函数的图象上,2001934222x x ∴-+-=.解得02x =或06x =.当06x =时,点362E ⎛⎫⎪⎝⎭,与点B 重合,这时CDOE 不是四边形,故06x =舍去, ∴点E 的坐标为322⎛⎫ ⎪⎝⎭,. (8分)【017】解:(1)已知抛物线2y x bx c =++经过(10)(02)A B ,,,,01200b c c =++⎧∴⎨=++⎩ 解得32b c =-⎧⎨=⎩∴所求抛物线的解析式为232y x x =-+. 2分 (2)(10)A ,,(02)B ,,12OA OB ∴==, 可得旋转后C 点的坐标为(31), 3分 当3x =时,由232y x x =-+得2y =, 可知抛物线232y x x =-+过点(32), ∴将原抛物线沿y 轴向下平移1个单位后过点C .∴平移后的抛物线解析式为:231y x x =-+. 5分(3) 点N 在231y x x =-+上,可设N 点坐标为2000(31)x x x -+, 将231y x x =-+配方得23524y x ⎛⎫=-- ⎪⎝⎭,∴其对称轴为32x =. 6分 ①当0302x <<时,如图①,112NBB NDD S S = △△ 00113121222x x ⎛⎫∴⨯⨯=⨯⨯⨯- ⎪⎝⎭01x = 此时200311x x -+=-N ∴点的坐标为(11)-,. 8分 ②当032x >时,如图②同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭ 03x ∴=此时200311x x -+=∴点N 的坐标为(31),. 综上,点N 的坐标为(11)-,或(31),. 10分图①图②【018】解:(1) 抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩, 解得13.a b =-⎧⎨=⎩,∴抛物线的解析式为234y x x =-++.(2) 点(1)D m m +,在抛物线上,2134m m m ∴+=-++,即2230m m --=,1m ∴=-或3m =.点D 在第一象限,∴点D 的坐标为(34),. 由(1)知45OA OB CBA =∴∠=,°. 设点D 关于直线BC 的对称点为点E .(04)C ,,CD AB ∴∥,且3CD =, 45ECB DCB ∴∠=∠=°, E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. 即点D 关于直线BC 对称的点的坐标为(0,1). (3)方法一:作PF AB ⊥于F ,DE BC ⊥于E .由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠ °,.(04)(34)C D ,,,,CD OB ∴∥且3CD =. 45DCE CBO ∴∠=∠=°,DE CE ∴==.4OB OC ==,BC ∴=BE BC CE ∴=-=,3tan tan 5DE PBF CBD BE ∴∠=∠==.设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,. P 点在抛物线上,∴23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴- ⎪⎝⎭,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作QG DH ⊥于G .45PBD QD DB ∠=∴= °,. QDG BDH ∴∠+∠90=°,又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==. 由(2)知(34)D ,,(13)Q ∴-,. (40)B ,,∴直线BP 的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,.【019】(1)EO >EC ,理由如下:由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC …2分 (2)m 为定值∵S 四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO ―EC)=CO ·(EO ―EC) S 四边形CMNO=CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO∴1==CMNOCFGHS S m 四边形四边形 ……………………………………………………4分(3)∵CO=1,3231==QF CE , ∴EF=EO=QF==-32311∴cos ∠FEC=21∴∠FEC=60°, ∴︒=∠∠=︒=︒-︒=∠3060260180EAO OEA FEA ,∴△EFQ 为等边三角形,32=EQ …………………………………………5分作QI ⊥EO 于I ,EI=3121=EQ ,IQ=3323=EQ ∴IO=313132=- ∴Q 点坐标为)31,33( ……………………………………6分∵抛物线y=mx2+bx+c 过点C(0,1), Q)31,33(,m=1 ∴可求得3-=b ,c=1∴抛物线解析式为132+-=x x y ……………………………………7分 (4)由(3),3323==EO AO当332=x 时,3113323)332(2=+⨯-=y <AB ∴P 点坐标为)31,332( …………………8分 ∴BP=32311=-AO方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况如下: ①3323232=BK时,932=BK ∴K 点坐标为)1,934(或)1,938(②3232332=BK时,332=BK∴K 点坐标为)1,334(或)1,0(…………10分故直线KP 与y 轴交点T 的坐标为11 )1,0()31,0()37,0()35,0(或或或-- …………………………………………12分方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°①当∠RTP=30°时,23332=⨯=RT②当∠RTP=60°时,323332=÷=RT ∴)1,0()31,0()35,0()37,0(4321T T T T ,,,-- ……………………………12分【020】解:(1)①CF ⊥BD ,CF=BD②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF又 BA=CA ,AD=AF ∴△BAD ≌△CAF ∴CF=BD ∠ACF=∠ACB=45°∴∠BCF=90° ∴CF ⊥BD ……(1分)(2)当∠ACB=45°时可得CF ⊥BC ,理由如下:如图:过点A 作AC 的垂线与CB 所在直线交于G则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45°∵AG=AC AD=AF ………(1分)∴△GAD ≌△CAF (SAS ) ∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90° ∴CF ⊥BC …………(2分)(3)如图:作AQBC 于Q∵∠ACB=45° AC=42 ∴CQ=AQ=4∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°∴△ADQ ∽△DPC …(1分) ∴DQ PC =AQ CD设CD 为x (0<x <3)则DQ=CQ -CD=4-x 则x PC -4=4x…………(1分)∴PC=41(-x2+4x)=-41(x -2)2+1≥1当x=2时,PC 最长,此时PC=1 ………(1分)。