连云港外国语学校九年级教学质量检测数学试卷(含答案及评分标准2017.12.25)

合集下载

连云港外国语学校九年级数学第二学期开学测试

连云港外国语学校九年级数学第二学期开学测试

连云港外国语学校九年级第二学期开学测试数学试卷(满分:100分 考试时间:60分钟)一、选择题(每题3分,共15分)1. 方程25x x =的解为( )A. 1B. 0或-5C. 0或5D. 1或52. 二次函数12+-=x x y 的图像与x 轴的交点个数是( )A. 0B. 1C. 2D. 不确定3. 在某个中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差( )选手1号 2号 3号 4号 5号 平均成绩 得分 90 95 89 88 91 A. 2 B. 6.8 C. 34 D. 934. 若P 是Rt △ABC 斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线有( )条A. 1B. 2C. 3D. 45. 快车和慢车同时从A 地出发,分别以速度)2(2121v v v v >、匀速向B 地行驶,快车到达B 地后停留了一段时间,沿原路仍以速度1v 匀速返回,在返回途中与慢车相遇。

在上述过程中,两车之间的距离y 与慢车行驶时间x 之间的函数图象大致是( )A. B.C. D.二、填空题(每题4分,共20分)6. 若关于x 的一元二次方程022=++n mx x 有一个根是2,则m+n=_________7. 二次函数)3)(1+--=x x y (的对称轴是直线__________ 8. 一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是_______9. 如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60∘,若BE =6cm ,DE =2cm ,则BC =___.△OAB 的面积为6,则k 的值是______.三、解答题(共6小题,共65分)11. (本题满分10分)化简、求值(1)241221-348+⨯÷ (2)的根是方程(032,1)11122=---÷-+x x x x x x12. (本题满分10分)甲口袋中有2个白球,1个红球,乙口袋有1个白球,1个红球,这些球除颜色外无其他差别,分别从每个口袋中随机摸出1个球(1)求摸出的2个球都是白球的概率(2)下列事件中,概率最大的是_________A. 摸出的2个球颜色相同B. 摸出的2个球颜色不相同C. 摸出的2个球中至少有一个红球D. 摸出的2个球中至少有一个白球13.(本题满分10分)如图1,小明将量角器和一块含30∘角的直角三角板ABC 紧靠着放在同一平面内,使直角边BC 与量角器的0∘线CD 在同一直线上(即点B. C. O 、D 在同一直线上),O 为量角器圆弧所在圆的圆心,∠ACB =90∘,∠CAB =30∘,BC =6cm .(1)判断AC 是不是O 的切线,并说明理由。

江苏省连云港市九年级上学期期末学业水平调研数学卷(含答案)

江苏省连云港市九年级上学期期末学业水平调研数学卷(含答案)

江苏省连云港市九年级上学期期末学业水平调研数学卷(含答案) 一、选择题 1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3- D .32.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( )A .5人B .6人C .4人D .8人3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 4.若x=2y ,则x y 的值为( ) A .2 B .1 C .12 D .135.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m6.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 7.方程x 2﹣3x =0的根是( ) A .x =0 B .x =3C .10x =,23x =-D .10x =,23x = 8.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++9.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.1110.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.511.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.112.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.3413.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③15.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1 B .3 C .4 D .6二、填空题 16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.18.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.19.若a b b -=23,则a b的值为________. 20.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.23.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.24.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)25.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EF BF的值为_____.26.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.27.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题31.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线;(2)若BD=3,AD=4,则DE=.32.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.33.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),34.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,533).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.35.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.四、压轴题36.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.37.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.38.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF⊥.(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题干可以明确得到p,q是方程2330x x-=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程2330x x-=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 5.A解析:A【解析】∵堤坝横断面迎水坡AB的坡比是1,∴BCAC,∵BC=50,∴,∴100==(m).故选A 6.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.10.C解析:C【解析】【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.12.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.13.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO , ∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.15.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.18.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.19.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.20.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可. 【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m≠【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 22.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.23.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.24.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB= 【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 25..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.26.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD =2, ∴S四边形ADOE =2S △ADO∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:33π)=﹣π ∵S△ABC =12∴纸片能接触到的最大面积为:=+π.故答案为.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.27.y =x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位, 得:y =(x +2−2)2−5,即y =x2−5解析:y =x 2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位, 得:y =(x +2−2)2−5,即y =x 2−5.故答案是:y =x 2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.28.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 29.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,=0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

连云港外国语中学九年级(上)期末数学试卷含答案

连云港外国语中学九年级(上)期末数学试卷含答案
24. 施工队要修建一个横断面为抛物线的公路隧道,其高度为 8 米,宽度 OM 为 16 米.现
以 O 点为原点,OM 所在直线为 x 轴建立直角坐标系(如图 1 所示). (1)求出这条抛物线的函数解析式,并写出自变量 x 的取值范围; (2)隧道下的公路是双向行车道(正中间是一条宽 1 米的隔离带),其中的一条行车 道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明; (3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使������.������点在抛物线 上.B、C 点在地面 OM 线上(如图 2 所示).为了筹备材料,需求出“脚手架”三根 木杆 AB、AD、DC 的长度之和的最大值是多少,请你帮施工队计算一下.
18. 已知两个数的和是 6,积是6.75,这两个数分别是多少?
19. 已知二次函数������ = ������2 +3������ + 2������−3的图象与 x 轴只有一个交点. (1)求 m 的值; (2)直接写出 x 满足什么条件时,y 随 x 的增大而减小.
20. 一个不透明的袋子中装有大小、质地完全相同的 3 只球,球上分别标有 2,3,5 三
15. 一位同学想利用树影测量树高(������������),他在某一时刻测得长 为 1m 的竹竿影长为1.2������,但当他马上测量树影时,因树靠 近一幢建筑物,影子不全落在地面上,有一部分影子在墙 上(������������),他先测得留在墙上的影高(������������)为1.5������,又测得地 面部分的影长(������������)为3.6������,求得树高应为______������.
13. 某种火箭向上发射时,它的高度ℎ(������)与时间������(������)的关系可以用公式ℎ = −5������2 +160������ + 10表示.经过______s,火箭到达它的最高点.

连云港外国语学校九年级(下)开学数学试卷含答案

连云港外国语学校九年级(下)开学数学试卷含答案

开学试卷一、选择题(本大题共8小题,共24.0分)1.下列各数中,比3大的数是()A. -B. |-3|C. πD. 22.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.下列计算正确的是()A. a•a2=a3B. (a3)2=a5C. a+a2=a3D. a6÷a2=a34.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A. 204×103B. 20.4×104C. 2.04×105D. 2.04×1065.下面四个几何体:其中,俯视图是四边形的几何体个数是()A. 1B. 2C. 3D. 46.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A. sinα=cosαB. tan C=2C. sinβ=cosβD. tanα=17.不等式组有3个整数解,则a的取值范围是()A. -6≤a<-5B. -6<a≤-5C. -6<a<-5D. -6≤a≤-58.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共10小题,共30.0分)9.因式分解:9a3b-ab=______.10.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是______.11.已知一组数据:3,3,4,4,5,5,则它的方差为______.12.若菱形的边长为1cm,其中一个内角为60°,则它的面积是______.13.如图,如果将半径为9cm的圆形纸片剪去一个圆周的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为______cm.14.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为______.15.观察下列等式:31-1=2,32-1=8,33-1=26,34-1=80,35-1=242,….通过观察,用你所发现的规律确定32008-1的个位数字是______.16.当m=______时,解分式方程=会出现增根.17.如图,△OAP、△ABQ均是等腰直角三角形,点P、Q在函数y=(x>0)的图象上,直角顶点A、B均在x轴上,则点B的坐标为______.18.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为______cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为______cm.三、计算题(本大题共2小题,共20.0分)19.计算与化简(1)计算:(2)先化简,再求值:的小数部分20.解不等式组,并写出x的所有整数解.四、解答题(本大题共7小题,共76.0分)21.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.22.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.25.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为______km/h,快车的速度为______km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C 的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).27.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.答案和解析1.【答案】C【解析】解:∵-<3,|-3|=3,π>3,2<3,∴各数中,比3大的数是π,故选:C.根据-<3,|-3|=3,π>3,2<3,即可得出比3大的数.本题主要考查了实数大小的比较,解题时注意:利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.根据轴对称图形与中心对称图形的概念解答.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6-2=a4,故本选项错误.故选:A.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.4.【答案】C【解析】解:204000米/分,这个数用科学记数法表示2.04×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:俯视图是四边形的几何体有正方体和三棱柱,故选:B.根据俯视图是分别从物体上面看,所得到的图形进行解答即可.本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.【答案】C【解析】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故A正确,tan C==2,故B正确,tanα=1,故D正确,∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选:C.观察图形可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【答案】A【解析】解:解不等式①得:x≤2-a,解不等式②得:x>4,∴不等式组的解集是4<x≤1-a,∵不等式组有3个整数解,∴3个整数解是5,6,7,∴7≤2-a<8,解得:-6≤a<-5,故选:A.先求出不等式组的解集,再根据不等式组有3个整数解得出关于a的不等式组,求出即可.本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能根据题意求出关于a的不等式组.8.【答案】A【解析】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6-x)=-x2+3x(2<x≤4),图象为:故选:A.分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.9.【答案】ab(3a+1)(3a-1)【解析】解:原式=ab(9a2-1)=ab(3a+1)(3a-1).故答案为:ab(3a+1)(3a-1)原式提取公因式后,利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【答案】40°【解析】解:如图,∵直线a∥b,∴∠4=∠1=75°,由三角形的外角性质得,∠3=∠4-∠2=75°-35°=40°.故答案为:40°.根据两直线平行,同位角相等可得∠4=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.11.【答案】【解析】解:这组数据的平均数是:(3+3+4+4+5+5)=4,则它的方差为[2(3-4)2+2(4-4)2+2(5-4)2]=;故答案为:.先求出这组数据的平均数,再代入方差公式进行计算即可.本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,2反之也成立.12.【答案】【解析】解:过点A作AE⊥BC于点E,∵四边形ABCD是菱形,AB=BC=1cm,∠B=60°,∴AE=AB•sin60°=,∴它的面积为:BC•AE=.故答案为:首先根据题意画出图形,由菱形的边长为1cm,其中一内角60°,即可求得此菱形的高,继而可求得它的面积.此题考查了菱形的性质以及三角函数的定义.此题难度不大,注意数形结合思想的应用.13.【答案】6【解析】解:设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=•2π•9=12π,∴2π•r=12π,∴r=6.故答案为:6.设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.14.【答案】-1【解析】解:把x=0代入方程得:a2-1=0,解得:a=±1,∵(a-1)x2+x+a2-1=0是关于x的一元二次方程,∴a-1≠0,即a≠1,∴a的值是-1.故答案为:-1.根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.15.【答案】0【解析】解:因为2008÷4=502,故32008的个位数字是1,故32008-1的个位数字是0.故答案为:0.观察3的正整数次幂,发现它的个位数字的特点,分别是3,9,7,1这四个数的循环,因为2008÷4商502,故32008的个位数字是1,进而得出32008-1的个位数字.本题考查了有理数的乘方.一个整数的正整数次幂的个位数字有规律,观察出3的正整数次幂的个位数字的特点,是解本题的关键.16.【答案】2【解析】解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.【答案】(1+,0)【解析】解:∵△OAP是等腰直角三角形,∴直线OP:y=x,联立y=(x>0)可得P(2,2);∴A(2,0),由于直线OP∥AQ,可设直线AQ:y=x+h,则有:2+h=0,h=-2;∴直线AQ:y=x-2;联立y=(x>0)可得Q(1+,-1),即B(1+,0).故答案为:(1+,0).若△OAP是等腰直角三角形,那么∠POA=45°,即直线OP:y=x,联立双曲线解析式可求得P(2,2),即A(2,0),然后结合直线OP的斜率求得直线AQ的解析式,联立反比例函数解析式即可得到点Q点坐标,由于B、Q的横坐标相同,即可得解.此题主要考查了等腰直角三角形的性质以及函数图象交点坐标的求法,难度适中.18.【答案】(1)30(2)10-10【解析】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30-20=10,在Rt△GB2D2中,GD2==10∴D1D2=10-10.故答案为30,10-10.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;本题考查垂径定理的应用、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.19.【答案】解:(1)=2-1+4-4×+2=2-1+4-2+2=5;(2)原式=÷=×=,∵a为的小数部分,∴a=-1,∴原式==.【解析】(1)先算绝对值、零指数幂、负整数指数幂、特殊角的三角函数值、二次根式的化简,再算加减法即可求解;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.同时考查了实数的运算,涉及绝对值、零指数幂、负整数指数幂、特殊角的三角函数值、二次根式的知识点.20.【答案】解:解不等式①,得:x≥-,解不等式②,得:x<3,则不等式组的解集为-≤x<3,∴不等式组的整数解为:-1、0、1、2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】解:符合条件的图形如图所示:【解析】利用数形结合的思想解决问题即可;本题考查作图-应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m-10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE-CE=70-10≈70-17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.【解析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD 得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE-CE.本题考查了解直角三角形-仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.【答案】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1 600+400=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100-2000)m+(1750-1600)(100-m)=-50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=-50m+15000,k=-50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:-50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【解析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.此题考查了一次函数的应用,分式方程的应用,以及一元一次不等式组的应用,弄清题意是解本题的关键.24.【答案】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BC tanB=4,根据勾股定理得:AB==4,∴OA=4-r,在Rt△ACD中,tan∠1=tan B=,∴CD=AC tan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4-r)2=r2+20,解得:r=.【解析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.25.【答案】(1)80 , 120 ;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6-3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720-500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【解析】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)见答案;(3)见答案.(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.【答案】解:(Ⅰ)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC-CD=1,∴D(1,3).(Ⅱ)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(Ⅰ)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=,∴BH=,∴H(,3).(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5-)=,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.综上所述,≤S≤.【解析】(Ⅰ)如图①,在Rt△ACD中求出CD即可解决问题;(Ⅱ)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.27.【答案】解:(1)当x=0时,y=x-5=-5,则C(0,-5),当y=0时,x-5=0,解得x=5,则B(5,0),把B(5,0),C(0,-5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=-x2+6x-5;(2)①解方程-x2+6x-5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,-5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,-m2+6m-5),则D(m,m-5),当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=-m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m-5-(-m2+6m-5)=m2-5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,-2),易得AC的解析式为y=5x-5,E点坐标为(,-),设直线EM1的解析式为y=-x+b,把E(,-)代入得-+b=-,解得b=-,∴直线EM1的解析式为y=-x-,解方程组得,则M1(,-);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),∵3=,∴x=,∴M2(,-),综上所述,点M的坐标为(,-)或(,-).【解析】(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC 上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),AC的解析式为y=5x-5,E点坐标为(,-),利用两直线垂直的问题可设直线EM1的解析式为y=-x+b,把E(,-)代入求出b得到直线EM1的解析式为y=-x-,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。

2017年江苏省连云港市中考数学试卷及答案解析(含答题卡)

2017年江苏省连云港市中考数学试卷及答案解析(含答题卡)

2017年江苏省连云港市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)计算a•a2的结果是()A.a B.a2C.2a2D.a33.(3分)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数4.(3分)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=5.(3分)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是37.(3分)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>08.(3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O 方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)分式有意义的x的取值范围为.10.(3分)计算(a﹣2)(a+2)=.11.(3分)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为.12.(3分)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.13.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=°.14.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.15.(3分)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是.16.(3分)如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:﹣(﹣1)﹣+(π﹣3.14)0.18.(6分)化简•.19.(6分)解不等式组.20.(8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC 上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.23.(10分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.24.(10分)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.(10分)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).26.(12分)如图,已知二次函数y=ax 2+bx +3(a ≠0)的图象经过点A (3,0),B (4,1),且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M ,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点A 1、B 1、C 1,△A 1B 1C 1的外接圆记为⊙M 1,是否存在某个位置,使⊙M 1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.(14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE=DG ,求证:2S 四边形EFGH =S 矩形ABCD .(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1. 如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S .如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩与S之间的数量关系,并说明理由.形ABCD迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已=11,HF=,求EG的长.知AH>BF,AE>DG,S四边形EFGH(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.2017年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)(2017•连云港)2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握正数的绝对值是它本身.2.(3分)(2017•连云港)计算a•a2的结果是()A.a B.a2C.2a2D.a3【分析】根据同底数幂的乘法,可得答案.【解答】解:a•a2=a3,故选:D.【点评】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.3.(3分)(2017•连云港)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)(2017•连云港)如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.=B.=C.=D.=【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC∽△DEF,∴=,A不一定成立;=1,B不成立;=,C不成立;=,D成立,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等、相似三角形(多边形)的周长的比等于相似比、相似三角形的面积的比等于相似比的平方是解题的关键.5.(3分)(2017•连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•连云港)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.(3分)(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【分析】依据抛物线的对称性可知:(2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵a>0,0<1<2,∴y2<y1.故选:C.【点评】本题主要考查的是二次函数的性质,熟练掌握二次函数的对称性和增减性是解题的关键.8.(3分)(2017•连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.2 C.2 D.0【分析】根据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…于是得到A2017与A1重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选A.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上.9.(3分)(2017•连云港)分式有意义的x的取值范围为x≠1.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(3分)(2017•连云港)计算(a﹣2)(a+2)=a2﹣4.【分析】根据平方差公式求出即可.【解答】解:(a﹣2)(a+2)=a2﹣4,故答案为:a2﹣4.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键.11.(3分)(2017•连云港)截至今年4月底,连云港市中哈物流合作基地累计完成货物进、出场量6800000吨,数据6800000用科学记数法可表示为 6.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将6800000用科学记数法表示为:6.8×106.故答案为:6.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是1.【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4m=0,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2x+m=0有两个相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m=0,解得:m=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.13.(3分)(2017•连云港)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°,则∠B=56°.【分析】根据四边形的内角和等于360°求出∠C,再根据平行四边形的邻角互补列式计算即可得解.【解答】解:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠C=360°﹣∠EAF﹣∠AEC﹣∠AFC=360°﹣56°﹣90°﹣90°=124°,在▱ABCD中,∠B=180°﹣∠C=180°﹣124°=56°.故答案为:56.【点评】本题考查了平行四边形的性质,四边形的内角和,熟记平行四边形的邻角互补是解题的关键.14.(3分)(2017•连云港)如图,线段AB与⊙O相切于点B,线段AO与⊙O 相交于点C,AB=12,AC=8,则⊙O的半径长为5.【分析】连接OB,根据切线的性质求出∠ABO=90°,在△ABO中,由勾股定理即可求出⊙O的半径长.【解答】解:连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO,主要培养了学生运用性质进行推理的能力.15.(3分)(2017•连云港)设函数y=与y=﹣2x﹣6的图象的交点坐标为(a,b),则+的值是﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b的值代入即可求出值.【解答】解:∵函数y=与y=﹣2x﹣6的图象的交点坐标是(a,b),∴将x=a,y=b代入反比例解析式得:b=,即ab=3,代入一次函数解析式得:b=﹣2a﹣6,即2a+b=﹣6,则+===﹣2,故答案为:﹣2.【点评】此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a与b的关系式是解本题的关键.16.(3分)(2017•连云港)如图,已知等边三角形OAB与反比例函数y=(k >0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线OM:y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解答】解:如图,过O作OM⊥AB于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数y=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°==,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=x,∴OB=x,∴=,∴BF=,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴==,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.三、解答题:本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(6分)(2017•连云港)计算:﹣(﹣1)﹣+(π﹣3.14)0.【分析】先去括号、开方、零指数幂,然后计算加减法.【解答】解:原式=1﹣2+1=0.【点评】本题考查了实数的运算,零指数幂,属于基础题,熟记实数运算法则即可解题.18.(6分)(2017•连云港)化简•.【分析】根据分式的乘法,可得答案.【解答】解:原式=•=.【点评】本题考查了分式的乘法,利用分式的乘法是解题关键.19.(6分)(2017•连云港)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣3x+1<4,得:x>﹣1,解不等式3x﹣2(x﹣1)≤6,得:x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2017•连云港)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为0.34;样本成绩的中位数落在分数段70≤x<80中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【分析】(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(3)总数乘以80分以上的频率即可.【解答】解:(1)本次调查的作品总数为18÷0.36=50(幅),则c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,其中位数为第25、26个数的平均数,∴中位数落在70≤x<80中,故答案为:0.34,70≤x<80;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅),答:估计全校被展评作品数量是180幅.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2017•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:,由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.22.(10分)(2017•连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E 分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.23.(10分)(2017•连云港)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x 轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【分析】(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B的运动路径长为:×2π×(﹣1+)=π.【点评】本题考查的是待定系数法求一次函数的解析式以及三角形面积公式和弧长计算,难度一般.24.(10分)(2017•连云港)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.【分析】(1)根据总销售收入=直接销售蓝莓的收入+加工销售的收入,即可得出y关于x的函数关系式;(2)由采摘量不小于加工量,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.【解答】解:(1)根据题意得:y=[70x﹣(20﹣x)×35]×40+(20﹣x)×35×130=﹣350x+63000.答:y与x的函数关系式为y=﹣350x+63000.(2)∵70x≥35(20﹣x),∴x≥.∵x为正整数,且x≤20,∴7≤x≤20.∵y=﹣350x+63000中k=﹣350<0,∴y的值随x的值增大而减小,∴当x=7时,y取最大值,最大值为﹣350×7+63000=60550.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.【点评】本题考查了一次函数的应用、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据数量关系,找出y与x的函数关系式;(2)根据一次函数的性质,解决最值问题.25.(10分)(2017•连云港)如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).【分析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;【解答】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,∴CE=AC•sin53.2°≈1000×0.8=800米.∴S=•AB•CE=×1400×800=560000平方米.△ABC(2)连接AD,作DF⊥AB于F.,则DF∥CE.∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=400米,∵AE=AC•cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=EB﹣AE=400米,在Rt△ADF中,AD==400=565.6米.【点评】本题考查解直角三角形﹣方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.26.(12分)(2017•连云港)如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【分析】(1)直接利用待定系数法求出a,b的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠OAC=45°,即可得出答案;(3)首先利用已知得出圆M平移的长度为:2﹣或2+,进而得出抛物线的平移规律,即可得出答案.【解答】解:(1)把点A(3,0),B(4,1)代入y=ax2+bx+3中,,解得:,所以所求函数关系式为:y=x2﹣x+3;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠OAC=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC==,OM=2,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:2﹣或2+;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移=个单位长度或=个单位长度,∵y=x2﹣x+3=(x﹣)2﹣,∴平移后抛物线的关系式为:y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣,或y=(x﹣+)2﹣﹣,即y=(x﹣)2﹣.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:y=(x﹣)2﹣或y=(x﹣)2﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移、等腰直角三角形的性质等知识,正确得出圆M的平移距离是解题关键.27.(14分)(2017•连云港)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求=S矩形ABCD.(S表示面积)证:2S四边形EFGH实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB 边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S=S矩形ABCD+S.四边形EFGH如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF=,求EG 的长.(2)如图5,在矩形ABCD 中,AB=3,AD=5,点E 、H 分别在边AB 、AD 上,BE=1,DH=2,点F 、G 分别是边BC 、CD 上的动点,且FG=,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.【分析】问题呈现:只要证明S △HGE =S 矩形AEGD ,同理S △EGF =S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =S 矩形BEGC ; 实验探究:结论:2S四边形EFGH =S 矩形ABCD ﹣.根据=,=,=,=,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题. 【解答】问题呈现:证明:如图1中,。

江苏省连云港外国语学校九年级上数学周测3

江苏省连云港外国语学校九年级上数学周测3

江苏省连云港外国语学校九年级上数学周测3时间:60分钟分数:100分一、选择题〔每题3分,共24分〕1.⊙O的直径为6cm,且点P在⊙O内,那么线段PO的长度( )A.大于6cmB.等于6cmC.等于3cmD.小于3cm2.☉O的半径是6,点O到直线l的距离为5,那么直线l与☉O的位置关系是( )A. 相离B. 相切C. 相交D. 无法判别3.以下说法正确的选项是( )A. 三点确定一个圆B. 一个三角形只要一个外接圆C. 和半径垂直的直线是圆的切线D. 三角形的内心到三角形三个顶点距离相等4.如图,AB是O的直径,点C在O上,过点C作O的切线交AB的延伸线于点D,衔接OC,AC.假定∠D=50∘,那么∠A的度数是( )A. 20∘B. 25∘C. 40∘D. 50∘5.如图,经过原点的⊙P与x,y轴区分交于A,B两点,点C是劣弧OB上一点,那么A、80°B、90∘C、100∘D、无法确定6.点P 到⊙O 上的点的最大距离是7 cm ,最小距离是 1 cm ,那么⊙O 的半径是________.7.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140∘,那么∠I为〔〕A. 135∘B. 130∘C. 125∘D. 120∘8.把一张圆形纸片按如下图方式折叠两次后展开,图中的虚线表示折痕,那么BCˆ的度数是()A.120∘B. 135∘C. 150∘D. 165∘二、填空题〔每题4分,共32分〕9.如图,在⊙O中,点C是ABˆ的中点,∠A=40°,那么∠BOC等于.10.在圆内接四边形ABCD中,那么∠A:∠B:∠C=2:3:4,那么∠D的度数是_________11.如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点区分为D,E,那么O的半径为___.第9题图第11题图第12题图第14题图12.如图,AB、CD是⊙O的直径,弦CE∥AB,弧CE的度数为40∘,求∠AOC的度数是________。

连云港外国语学校九年级调研考试数学试题

连云港外国语学校九年级调研考试数学试题

连云港外国语学校九年级调研考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.抛物线3)2(2+-=x y 的顶点坐标是 ( ) A .)3,2(-B .)3,2(C .)3,2(-D .)3,2(--2.若y x 32=,则yx的值为 ( ) A .32 B .23 C .35 D .52 3.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别是 ( ) A .3、29B .2、28C .2、27D .3、284.如图,⊙O 是△ABC 的外接圆,已知︒=∠40ABO ,则ACB ∠的大小为 ( ) A .︒40 B .︒30C .︒45D .︒505.与抛物线221x y -=的形状、大小、开口方向均相同,但位置不同的抛物线是 ( ) A .123412-+-=x x y B .123212-+-=x x yC .123212-+=x x yD .1232-+=x x y6.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是 ( ) A .21 B .31 C .32 D .52 7.如图,圆锥底面半径6=OB cm ,高8=OC cm ,则这个圆锥的侧面积是 ( ) A .30cm 2B .π30cm 2C .π60cm 2D .π48cm 28.二次函数bx ax y +=2的图象如图,若一元二次方程02=++m bx ax 有实数根,则m 的最大值为( ) A .3-B .3C .6-D .9(第7题图) (第4题图)(第8题图)二、填空题(本大题共8小题,每小题4分,共24分)9.一元二次方程0)2(=-x x 的解是_____________________.10.如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么=k ________. 11.如图,小明在校运动会上掷铅球时,铅球的运动路线是抛物线)7)(1(51-+-=x x y .铅球落在A 点,则OA 长为_______米.12.甲、乙两名学生在某次打靶游戏中各射击4次,两人的测试成绩如下(单位:环):甲:6、 7、 8、 9; 乙:6.5、 6.5、 8.5、 8.5.则测试成绩比较稳定的是_________(填“甲”或“乙”).13.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如表:x...1-0123...y...105212...则当5<y 时,x 的取值范围是_________________.14.如图,在⊙O 的内接五边形ABCDE 中,︒=∠35CAD ,则=∠+∠E B ________°.15.如图,四边形ABCD 是菱形,︒=∠60A ,2=AB ,扇形BEF 的半径为2,圆心角为︒60,则图中阴影部分的面积是______________.(结果保留根号和π)16.在平面直角坐标系中,已知点)04(,A ,)0,6(-B ,点C 是y 轴正半轴上的一个动点,当︒=∠45BCA 时,点C 的坐标为________________.(第11题图) (第14题图) (第15题图)三、解答题(本大题共9小题,共94分)17.(本小题满分10分)解方程:(1)0822=--x x (2)0152=--x x18.(本小题满分8分)在等腰△ABC 中,三边分别为c b a 、、,其中5=a ,若关于x 的方程06)2(2=-+++b x b x 有两个相等的实数根,求△ABC 的周长.19.(本小题满分12分)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点)2,6()4,4()40(--C B A 、、,,请在网格图中进行如下操作:(1)利用网格图确定该圆弧所在圆的圆心D 的位置(保留画图痕迹), 并写出D 点坐标为_______;(2)连接AD 、CD ,则⊙D 的半径长为_________ (结果保留根号),ADC ∠的度数为_______°; (3)若扇形DAC 是一个圆锥的侧面展开图, 求该圆锥的底面半径长.(结果保留根号)20.(本小题满分8分)如图所示的方格地面上,标有编号1、2和3的小方格地面是空地,另外6个小方形地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少?(用树状图或列表法求解)21.(本小题满分12分)已知二次函数342+-=x x y . (1)该函数图象的顶点坐标为____________,对称轴为_____________;(2)在右边的平面直角坐标系中画出该函数的图象;(3)在这个函数图象上有两点)()(2211y x B y x A ,,,,且121<<x x ,则21_____y y (填“<”或“>”);(4)将该函数图象沿x 轴方向平移,能使该函数的图象经过原点,直接写出平移后的函数表达式.22.(本小题满分10分)如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点)2,4(P 是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C . (1)证明:PA 是⊙O 的切线; (2)求直线AB 的一次函数表达式.23.(本小题满分8分)如图,用纸折出黄金分割点:裁一张正方形的纸片ABCD ,先折出BC 边的中点E ,再折出线段AE ,然后通过折叠使EB 落到线段EA 上,折出点B 的新位置'B ,因而EB EB =',类似地,在AB 上折出点''B 使'''AB AB =,这时''B 就是AB 的黄金分割点.请你证明这个结论.24.(本小题满分12分)某商场经营某种品牌玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(40>x ),请你分别用含x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?销售单价x (元) x 销售量y (件) 销售玩具获得利润w (元)25.(本小题满分14分)如图,抛物线c bx x y ++=221与x 轴交于点)01(,-A 、)0,3(B ,直线1+=kx y 与抛物线相交于点A 、C 两点. (1)求抛物线c bx x y ++=221和直线AC 的函数表达式; (2)以AC 为直径的圆与y 轴交于两点M 、N ,求M 、N 两点的坐标;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,直接写点P 的坐标,若不存在,请说明理由.。

江苏省连云港市海州区连云港外国语学校2021-2022学年九年级上学期12月月考数学试卷带讲解

江苏省连云港市海州区连云港外国语学校2021-2022学年九年级上学期12月月考数学试卷带讲解
【详解】解:∵y=(x-1)2-7
∴对称轴是x=1
故填空答案:x=1.
【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.
12.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.
【详解】试题分析:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为 ;故答案为 .
由题意知, 的周长,


故答案为: .【点睛】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.
18.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式是__.
【详解】解:当x=2时,y=4+2m-2m=4.
∴无论m取何值,该抛物线都经过定点H(2,4).
过点A作AB⊥PH于点B,过点B作DC⊥x轴于点C,过点H作HD⊥CD于点D.
∴∠ABH=∠ACB=∠BDH=90°.
∴∠ABC+∠DBH=∠ABC+∠BAC=90°.
∴∠BAC=∠DBH.
∵∠AHP=45°.
15.如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD 长是____.
【分析】根据题意在 中求出 ,利用垂径定理得出结果.
【详解】由题意,在 中, , ,
由垂径定理知 , ,
故答案为: .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连云港外国语学校九年级教学质量检测数学试卷满分值:150分 考试时间:120分钟请将选择题和填空题的答案写到答题纸的相应位置上。

一、选择题(每小题3分,共24分)1.下列方程中有实数根的是( ▲ ) A .x 2+2x +2=0 B .x 2﹣2x +3=0C .x 2﹣3x +1=0D .x 2+3x +4=02.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9环,方差依次为0.56、0.65、0.51、0.40,则成绩最稳定的是( ▲ ) A .甲 B .乙C .丙D .丁3.下列事件中,是必然事件的为( ▲ )A.3天内会下雨B.打开电视,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩 4.将二次函数212y x =的图象向左移1个单位,再向下移2个单位后所得函数的关系式 为: (▲)A .21+1-22y x =()B .21-1-22y x =()C .21+1+22y x =() D .21-1+22y x =()5.若△ABC ∽△A'B'C',∠A =40°,∠C =110°,则∠B '的度数为 ( ▲ ) A .30° B .50° C .40° D .70°6.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形 各边的距离都相等;④相等的弦所对的弧相等.其中正确的有( ▲ ) A .4个B .3个C .2个D .1个7.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过 圆心.若∠B =25°,则∠C 的大小等于( ▲ ) A .20°B .25°C .40°D .50°8.求一元二次方程x 2+3x -1=0的解,除了课本的方法外,我们也可以采用图像的方法:在平面直角坐标系中,画出直线y =x +3和双曲线y =1x 的图像,则两图像交点的横坐 标即该方程的解.类似地,我们可以判断方程x 3-x -1=0的解的个数有( ▲ )A.0个 B . 1个 C .2个 D .3个 二、填空题(每小题3分,共30分)9.在比例尺为1:8000的我市市区地图上,郁州南路的长度约为25 cm ,它的实际长度约 为 ▲ m .10.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .11.据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为__▲__℃(精确到1℃).12.如图,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是▲.13.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是▲。

14.已知关于x的一元二次方程033)1(22=--+-+aaxxa有一根是1.则a= ▲。

15.如图,∠1=∠2,添加一个条件▲使得△ADE∽△ACB.16.如图,正六边形ABCDEF内接于半径为4的圆,则劣弧AB的长度为__▲__;17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①c<0,②b>0,③4a+2b+c>0,④(a+c)2<b2.其中正确结论的序号是▲。

18.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了▲s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.(第15题)12ADEB(第12题图)(第17题图)(第18题图)(第16题图)连云港外国语学校九年级教学质量检测数学试卷答题纸9. ;10. ;11. ;12. ; 13. ;14. ;15. ;16. . 17. ;18. .三、解答题:(共96分)19.(本题满分10分)解方程:(1)01522=--x x ; (2)()()03432=-+-x x x20.(本题满分10分)已知二次函数y =x 2-2x -3的 图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A 、B 、C 、D 的坐标,(2)在直角坐标系中画出该二次函数的大致图象;21.(本题满分10分)如图,要利用一面墙(墙长为25m )建羊圈,用100m 的围栏围成总面积为400m 2的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少m ?22.(本题满分10分)为了倡导“节约用水,从我做起”,某市政府决定对市直机关600户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量 (单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计该市直机关600户家庭中月平均用水量不超过12吨的约有多少户?23.(本题满分10分)如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE =8,⊙O 的半径为5,求DE 的长.24.(本题满分10分)如图,均匀的正四面体的各面依次标有1、2、3、4四个数字.小()计算上述试验中朝下的频率是 ;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13”的说法正确吗? (3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.(第23题)25.(本题满分12分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?26.(本题满分12分)阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点.如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,∠A =∠B =∠DEC =55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由.(2)如图2,在矩形ABCD 中,AB =5,BC =2,且A 、B 、C 、D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个..强相似点E .拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.27. (本题满分12分)如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x 轴交于A、B两点(点A在点B左侧),与y轴交于点C。

(1)点A、B、C的坐标分别为、、。

(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD 相切,若存在,请求出点P的坐标;若不存在,请说明理由。

数学试卷参考答案9. 2000 ;10. 2 ;11. 23 ;12. 2;13. 15πcm 2 ;14. 3 ;15. ∠D=∠C 等 ;16. 3.17. ①②④ ;18. 8.三、解答题:(共96分)19.(1)4335;433521-=+=x x (2) 53;321==x x 20.(1)A (-1,0),B (3,0),C (0,-3)……3分(每个1分),D (1,-4)……2分;(2)画图……5分;21.解:设AB 的长度为xm ,则BC 的长度为(100﹣4x )m .根据题意得 (100﹣4x )x =400,……4分,解得 x 1=20,x 2=5.……4分则100﹣4x =20或100﹣4x =80.∵80>25,∴x 2=5舍去.即AB =20,BC =20.……1分 答:羊圈的边长AB ,BC 分别是20米、20米.……1分 22.解:(1)如图所示:……2分(2)平均数为:(20×10+40×11+12×10+13×20+10×14)÷100 =11.6(吨),……4分根据11出现次数最多,故众数为:11吨,……2分 根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11吨;……2分 23.(1)直线DE 与⊙O 相切,……1分,理由略5分;(2)DE=4,…,4分 24. 解:(1)16……2分; (2)这种说法是错误的.因为60次试验太少,只能得到“2朝下”的频率为13,不能就此说明 “2朝下”这一事件发生的概率为13……3分; (3)随机投掷正四面体两次,所有可能出现的结果如下:……3分;∴P (朝下数字之和大于4)==168.……2分;12答:玩具销售单价为50元或80元时,可获得10000元销售利润,……4分; (3)根据题意得1000-1054044x x ≥⎧⎨≥⎩,解之得:44≤x≤46,w=﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤46时,w 随x 增大而增大.∴当x=46时,W 最大值=8640(元). 答:商场销售该品牌玩具获得的最大利润为8640元.……4分;26. (1)点E 是四边形ABCD 的边AB 上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC . ∵∠A=∠B ,∴△ADE ∽△BEC .∴点E 是四边形ABCD 的AB 边上的相似点.……4分; (2)作图如下:……2分;(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,∴△AEM ∽△BCE ∽△ECM ,∴∠BCE=∠ECM=∠AEM .由折叠可知:△ECM ≌△DCM ,∴∠ECM=∠DCM ,CE=CD ,∴∠BCE=30°,∴BE=12CE=12CD=12AB .∴⎛⎫== ⎪ ⎪⎝⎭BC BC AB 或.……6分; 27.(1)A (-1,0)B (3,0)C (0,3).……3分;(2)证明:直线y=kx+t 经过C (0,3)、M (1,4)两点,所以34=⎧⎨+=⎩t k t ,即k=1,t=3,直线解析式为y=x+3.令y=0,得x=-3,故D (-3,0),∴AD=2,∵C (0,3),N (1,3),∴CN=2,且CN ∥AD, ∴四边形ADCN 为平行四边形。

相关文档
最新文档