初三数学用三种方式表示二次函数同步练习一

合集下载

新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)

新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)

26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+,②y =-x 2+1,③y =32
+2x ,④2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个 2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =-x 22
中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。

[初三数学]二次函数经典练习含答案

[初三数学]二次函数经典练习含答案

《二次函数》同步练习(一)一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=_________.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.3.(2分)(2012•新疆)当x=_________时,二次函数y=x2+2x﹣2有最小值.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为_________.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是_________.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是_________(填写序号)7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是_________.10.(2分)已知二次函数,当x_________时,y随x的增大而增大.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为_________.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是_________.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x 值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________(请写出所有正确说法的序号).14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:_________(对称轴方程,图象与x正半轴,y轴交点坐标例外).15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=_________.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是_________cm2.17.(2分)(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b分别为_________、_________.18.(2分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现:如果每件衬衫降价1元,商场平均每天可多售出2件.则商场降价后每天盈利y(元)与降价x(元)的函数关系式为_________.19.(2分)(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6﹣x)个,则当x= _________元时,一天出售该种文具盒的总利润y最大.20.(2分)(2009•湖州)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,且经过点(﹣1,y1),(3,y2),试比较y1和y2的大小:y1_________y2.(填“>”,“<”或“=”)21.(2分)(2009•咸宁)已知A、B是抛物线y=x2﹣4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是_________(写出一对即可).22.(2分)(2009•本溪)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A (﹣1,0)和B(2,0),当y<0时,x的取值范围是_________.23.(2分)(2009•兰州)二次函数y=x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=_________;△A1B2A2的边长=_________;△A2007B2008A2008的边长=_________.24.(2分)(2010•宣武区一模)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是_________.25.(2分)已知抛物线y=x2﹣3x﹣4,则它与x轴的交点坐标是_________.26.(2分)抛物线y=2x2﹣5x+3与坐标轴的交点共有_________个.27.(2分)抛物线y=﹣2x2﹣4x+3的顶点坐标是_________;抛物线y=﹣2x2+8x﹣1的顶点坐标为_________.28.(2分)(2005•四川)用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系y=﹣(x﹣12)2+144(0<x<24),则该矩形面积的最大值为_________m2.29.(2分)根据y=ax2+bx+c的图象,思考下面五个结论①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.正确的结论有_________.30.(2分)请写出符合以下三个条件的一个函数的解析式_________,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.31.(2分)(2008•山西)二次函数y=x2+2x﹣3的图象的对称轴是直线_________.32.(2分)(2010•南昌模拟)二次函数y=2x2﹣4x﹣1的最小值是_________.33.(2分)(2012•鞍山三模)函数y=ax2﹣(a﹣3)x+1的图象与x轴只有一个交点,那么a 的值和交点坐标分别为_________.35.(2分)将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是_________.36.(2分)(2008•南昌)将抛物线y=﹣3x2向上平移一个单位后,得到的抛物线解析式是_________.37.(2分)用铝合金型材做一个形状如图(1)所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图(2)所示.观察图象,当x=_________时,窗户透光面积最大.38.(2分)(2007•呼伦贝尔)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________.(请将自己认为正确结论的序号都填上)39.(2分)(2011•宝安区三模)二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴.给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是_________;40.(2分)如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是_________.二、解答题(共6小题,满分40分)41.(6分)已知二次函数.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标;42.(6分)(2009•宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.43.(6分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y>0时,x的取值范围.44.(6分)(2009•黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1,y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.45.(6分)(2009•哈尔滨)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值=)46.(10分)(2009•包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.《第26章二次函数》2010年同步练习(一)参考答案与试题解析一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.考点:完全平方公式.专题:压轴题;配方法.分析:根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.解答:解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故填﹣3.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.考点:待定系数法求二次函数解析式.专题:综合题;压轴题.分析:由于点(,)不在坐标轴上,与原点的距离为1的点有两种情况:点(1,0)和(﹣1,0),所以用待定系数法求解需分两种情况:(1)经过原点及点(,)和点(1,0),设y=ax(x+1),可得y=x2+x;(2)经过原点及点(,)和点(﹣1,0),设y=ax(x﹣1),则得y=x2+x.解答:解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况: (1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1, ∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.点评:本题主要考查二次函数的解析式的求法.解题的关键利用了待定系数法确定函数的解析式.3.(2分)(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.考点:二次函数的最值.分析:先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.解答:解:∵二次函数y=x2+2x﹣2可化为y=(x+1)2﹣3,∴当x=﹣1时,二次函数y=x2+2x﹣2有最小值.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为(1,3).考点:二次函数的性质.分析:直接利用顶点式的特点可知顶点坐标.解答:解:顶点坐标是(1,3).点评:主要考查了求抛物线顶点坐标的方法.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是y=x2﹣1.考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律“上加下减,左加右减".解答:解:由“上加下减”的原则可知,将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是,y=x2﹣2+1,即y=x2﹣1.故答案为:y=x2﹣1.点评:本题比较容易,考查二次函数图象的平移.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c >0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是①②③④(填写序号)考点:二次函数图象与系数的关系.专题: 压轴题.分析:先根据图象与x轴的交点及与y轴的交点情况画出草图,再由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵图象与x轴交于点(﹣2,0),(x1,0),与y轴正半轴的交点在(0,2)的下方∴a<0,c>0,又∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴在y轴左侧,对称轴为x=<0,∴b<0,∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴<<,∴a<b<0,由图象可知:当x=﹣2时y=0,∴4a﹣2b+c=0,整理得4a+c=2b,又∵b<0,∴4a+c<0.∵当x=﹣2时,y=4a﹣2b+c=0,∴2a﹣b+=0,而与y轴正半轴的交点在(0,2)的下方,∴0<<1,∴2a﹣b+1>0,∵0=4a﹣2b+c,∴2b=4a+c<0而x=1时,a+b+c>0,∴6a+3c>0,即2a+c>0,∴正确的有①②③④.故填空答案:①②③④.点评:此题主要考查了二次函数的图象与性质,尤其是图象的开口方向,对称轴方程,及于y 轴的交点坐标与a,b,c的关系.7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=.考点:二次函数的最值.分析:先把二次函数化为一般式或顶点式的形式,再求其最值即可.解答:解:原二次函数可化为y=﹣x2+5x﹣6=﹣(x﹣)2+,取得最大值时x=﹣=.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3.考点:二次函数图象与几何变换.专题:压轴题.分析:利用抛物线的性质.解答:解:可先从抛物线y=x2﹣2x﹣3上找三个点(0,﹣3),(1,﹣4),(﹣1,0).它们关于原点对称的点是(0,3),(﹣1,4),(1,0).可设新函数的解析式为y=ax2+bx+c,则c=3,a﹣b+c=4,a+b+c=0.解得a=﹣1,b=﹣2,c=3.故所求解析式为:y=﹣x2﹣2x+3.点评:解决本题的关键是得到所求抛物线上的三个点,这三个点是原抛物线上的关于原点对称的点.10.(2分)已知二次函数,当x<2时,y随x的增大而增大.考点:二次函数的性质.专题:计算题.分析:根据二次函数的对称轴,结合开口方向,可确定二次函数的增减性.解答:解:由对称轴公式,二次函数的对称轴为x=﹣=2,又∵a=﹣<0,抛物线开口向下,∴当x<2时,y随x的增大而增大.故本题答案为:<2.点评:本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.考点: 待定系数法求二次函数解析式.分析:此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.解答:解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是2π.考点: 二次函数的图象.专题:压轴题.分析:不规则图形面积通过对称转化为可求的图形面积.解答:解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.点评:此题主要考查了学生的观察图形与拼图的能力.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有①②④(请写出所有正确说法的序号).考点:抛物线与x轴的交点;二次函数图象与系数的关系.专题:压轴题.分析:①由抛物线的开口方向可以确定a的符号,由抛物线对称轴和开口方向可以确定b 的符号;②利用图象与x轴的交点坐标即可确定方程ax2+bx+c=0的根;③当x=1时,y=a+b+c,结合图象即可判定是否正确;④由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;⑤当y>0时,图象在x轴的上方,结合图象也可判定是否正确.解答:解:①∵抛物线开口方向朝上,∴a>0,又对称轴为x=1,∴b<0,∴ab<0,故正确;②∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,故正确;③∵当x=1时,y=a+b+c,从图象知道当x=1时,y<0,∴a+b+c<0,故错误;④∵抛物线的对称轴为x=1,开口方向向上,∴当x>1时,y随x值的增大而增大,故正确;⑤∵当y>0时,图象在x轴的上方,而抛物线与x轴的交点坐标为(﹣1,0)、(3,0),∴当y>0时,x<﹣1,x>3,故错误.故正确的结论有①②④.点评:由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:答案不唯一.如:①c=3;②b+c=1;③c﹣3b=9;④b=﹣2;⑤抛物线的顶点为(﹣1,4),或二次函数的最大值为4;⑥方程﹣x2+bx+c=0的两个根为﹣3,1;⑦y>0时,﹣3<x<1;或y<0时,x<﹣3或x>1;⑧当x>﹣1时,y随x的增大而减小;或当x<﹣1时,y随x的增大而增大.等等(对称轴方程,图象与x正半轴,y轴交点坐标例外).考点:二次函数的性质.专题: 压轴题;开放型.分析:根据题意,利用二次函数的图象和限制随便写两个正确的答案则可.解答:解:∵x=0时,y=3代入抛物线解析式,∴c=3;当x=1时,y=0代入表达式得b+c=1,所以填c=3和b+c=1.点评:本题的答案很多,主要考查学生的散发性思维,比较灵活.15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=11.考点:二次函数图象与几何变换.分析:因为抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=x2﹣3x+5,所以y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,先由y=x2﹣3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=11.解答:解:∵y=x2﹣3x+5=(x﹣)2+,当y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,∴y=(x﹣+3)2++2=x2+3x+7;∴a+b+c=11.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是12。

人教版九年级数学下册第二十六单元二次函数的应用同步练习1带答案

人教版九年级数学下册第二十六单元二次函数的应用同步练习1带答案

人教版九年级数学下册第二十六单元《二次函数的应用》同步练习1带答案一、抛物线y=(k+1)x 2+k 2-9开口向下,且通过原点,那么k =—————————二、已知抛物线y=x 2+(n-3)x+n+1通过坐标原点O ,求这条抛物线的极点P 的坐标3、、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x =(D )3x =4、极点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.五、已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图象通过点(2,3),求那个函数的关系式.6、某水果批发商场经销一种水果,若是每千克盈利10元,天天可售出500千克.经市场调查发觉, 在进货价不变的情形下,假设每千克涨价1元,日销售量将减少20千克.(10分)(1)当每千克涨价为多少元时,天天的盈利最多?最多是多少?(2)假设商场只要求保证天天的盈利为6000元,同时又可使顾客取得实惠,每千克应涨价为多少元?7、已知函数12-+=bx x y 的图象通过点(3,2).求那个函数的解析式;并指出图象的极点坐标;当0>x 时,求使2≥y 的x 的取值范围.八、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。

九、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,那么其极点为( )A.(0,0) B.(1,-2) C.(0,-1) D.(-2,1)10、已知二次函数232)1(2-++-=m mx x m y ,那么当=m 时,其最大值为0. 1一、抛物线2ax y =与直线b ax y +=交于点)3,3(-A ,求这两个函数的解析式。

中考数学总复习《二次函数的三种形式》练习题附带答案

中考数学总复习《二次函数的三种形式》练习题附带答案

中考数学总复习《二次函数的三种形式》练习题附带答案一、单选题(共12题;共24分)1.已知二次函数y=ax2+bx+c的y与c的部分对应值如下表则下列判断中正确的是().A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0D.方程ax2+bx+c=0有两个相等实数根2.若b<0,则二次函数y=x2-bx-1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.将二次函数y=2x2﹣4x+1化成顶点式是()A.y=2(x+1)2﹣1B.y=2(x﹣1)2﹣1C.y=2(x+1)2+1 D.y=2(x﹣1)2+14.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+25.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)6.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+77.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-28.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-79.在平面直角坐标系中,抛物线y=-(x-2)2+1的顶点是点P,对称轴与x轴相交于点Q,以点P为圆心,PQ长为半径画⊙P,那么下列判断正确的是()A.x轴与⊙P相离;B.x轴与⊙P相切;C.y轴与⊙P与相切;D.y轴与⊙P相交.10.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b、k的值分别为()A.0,5B.0,1C.-4,5D.-4,111.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE⊙x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE 所在抛物线的解析式为()A.y= 14(x+3)2B.y= 14(x﹣3)2C.y=﹣14(x+3)2D.y=﹣14(x﹣3)212.抛物线y=−(x−1)2−2的顶点坐标是()A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)二、填空题(共6题;共6分)13.将二次函数y=﹣2x2+6x﹣5化为y=a(x﹣h)2+k的形式,则y=.14.一抛物线和另一抛物线y=﹣2x2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为15.已知某抛物线的顶点是(2,−1),与y轴的交点到原点的距离为3,则该抛物线的解析式为.16.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,那么抛物线y=x2+bx+c的顶点坐标为.17.将二次函数y=x2﹣2x+4化成y=(x﹣h)2+k的形式,则y=.18.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.三、综合题(共6题;共74分)19.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的表达式;(3)当线段PB最短时,二次函数的图象是否过点Q(a,a﹣1),并说理由.20.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,⊙AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.21.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴(1)y=2x2+6x﹣12(2)y=﹣0.5x2﹣3x+3.22.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.23.已知二次函数y=x2−4x+3.(1)将y=x2−4x+3化成y=a(x−ℎ)2+k的形式:;(2)这个二次函数图象与x轴交点坐标为;(3)这个二次函数图象的最低点的坐标为;(4)当y<0时,x的取值范围是.24.已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】B12.【答案】C13.【答案】﹣2(x﹣32)2﹣1214.【答案】y=﹣2(x+2)2+115.【答案】y=(x−2)2−1或y=−12(x−2)2−116.【答案】( 32,- 14)17.【答案】(x﹣1)2+318.【答案】y=x2-8x+20.19.【答案】(1)解:设直线OA的解析式为y=kx∵A(2,4)∴2k=4,解得k=2∴线段OA所在直线的函数解析式为y=2x;(2)解:∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2)∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2)∴当m=1时,PB最短当PB最短时,抛物线的解析式为y=(x﹣1)2+2;(3)解:若二次函数的图象是过点Q(a,a﹣1)则方程a﹣1=(a﹣1)2+2有解.即方程a2﹣3a+4=0有解∵⊙=(﹣3)2﹣4×1×4=﹣7<0.∴二次函数的图象不过点Q.20.【答案】(1)解:设抛物线解析式为y=a(x+4)(x﹣2)将B(0,﹣4)代入得:﹣4=﹣8a,即a= 1 2则抛物线解析式为y= 12(x+4)(x﹣2)=12x2+x﹣4;(2)解:过M作MN⊙x轴将x=m代入抛物线得:y= 12m2+m﹣4,即M(m,12m2+m﹣4)∴MN=| 12m2+m﹣4|=﹣12m2﹣m+4,ON=﹣m∵A(﹣4,0),B(0,﹣4),∴OA=OB=4∴⊙AMB的面积为S=S⊙AMN+S梯形MNOB﹣S⊙AOB= 12×(4+m)×(﹣12m2﹣m+4)+ 12×(﹣m)×(﹣12m2﹣m+4+4)﹣12×4×4=2(﹣12m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4当m=﹣2时,S取得最大值,最大值为4.21.【答案】(1)解:y=2x2+6x﹣12=2(x+ 32)2﹣32,则该抛物线的顶点坐标是(﹣32,﹣32)对称轴是x=﹣3 2(2)解:y=﹣0.5x2﹣3x+3=﹣12(x+3)2+ 152,则该抛物线的顶点坐标是(﹣3,152),对称轴是x=﹣322.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4)令x=0,则y=﹣3∴与y轴交点为(0,﹣3)令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3∴与x轴交点为(﹣1,0),(3,0).列表:x…﹣10 123…y=x2﹣2x﹣3…0﹣3﹣4﹣30…(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<1223.【答案】(1)y=(x-2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x<324.【答案】(1)解:y=(x2﹣2x+1)﹣4=(x﹣1)2﹣4(2)解:令y=0,得x2﹣2x﹣3=0解得x1=3,x2=﹣1∴这条抛物线与x轴的交点坐标为(3,0),(﹣1,0)。

人教版九年级数学上学期(第一学期)《二次函数》同步练习及答案.docx

人教版九年级数学上学期(第一学期)《二次函数》同步练习及答案.docx

第二十六章二次函数26.1 二次函数(一)1.矩形周长是20cm,一边长是x㎝,面积是y㎝2,则y与x的函数关系式是,这个函数称作次函数.2.下列函数y=0.5x-1,y=3x2,y=0.5x2-4x+1,y=x(x-2),y=(x-1)2-x2中,二次函数的个数为( )(A)2个(B)3个(C)4个(D)5个3.k取哪些值时,函数y=(k2-k)x2+kx+(k+1)是以x为自变量是一次函数?二次函数?4.已知等腰直角三角形的斜边长为xcm,面积为ycm2,请写出y与x的函数关系式,并判断它是什么函数?5.如图,正方形ABCD边长是4,E、F分别在BC、CD上,设ΔAEF面积是y,EC=x,如果CE=CF,试求出y与x的函数关系及自变量取值范围,并判定y是x的什么函数?6.已知二次函数y=ax2+c,当x=0时,y=-3;当x=1时,y=-1,求当x=-2时,y的值.7.一块矩形耕地大小尺寸如下图,要在这块地上沿东西方向挖一条水渠,沿南北方向挖两条水渠,水渠宽为xm,余下的可耕地面积为ym2,(1)请你写出y与x之间的函数关系式.(2)根据你写出的函数关系式,求出水渠宽为1m时,余下的可耕地面积为多少?(3)若耕除去水渠剩余部分面积为4408m2,求此时水渠的宽度.26.1二次函数(二)1.已知函数y=ax2的图象过点(2,-4),则a=,对称轴是,顶点坐标是,抛物线的开口方向,抛物线的顶点是最点.2.下列关于函数y=-0.5x2的图象说法( )①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0).其中正确的有( )(A)1个(B)2个(C)3个(D)4个3.已知函数y=x2的图象过点(a,b),则它必通过的另一点是( )(A)(a,-b) (B)(-a,b)(C)(-a,-b) (D)(b,a)4.抛物线y=ax2过A(-1,2),试判断B(-2,-3),C(,)是否在抛物线上.5、已知正方形的对角线长为x,面积为y.(1)写出y与x的函数关系;(2)画出这个函数的图象草图.6.抛物线y=ax2(a≠0)与直线y=4x-3交于点A(m,1),求:(1)点A的坐标及抛物线顶点C的坐标和对称轴;(2)抛物线y=ax2与直线y=4x-3是否还有其他交点?若有,请求出这个交点B的坐标,若没有,请说明理由. 并求点A、B、C三点构成的三角形的面积.2.6.1二次函数(三)1.函数y=-1.5x2+2的图象开口方向,对称轴是,顶点坐标是,当x=时,y最大.2.把抛物线y=-x2向上平移4个单位后,得到的抛物线的函数解析式为,平移后的抛物线的顶点坐标是,对称轴是,与y轴的交点坐标是,与x轴的交点坐标是.3.将抛物线y=2x2-3通过下列( )平移后得到抛物线y=2x2,(A)向下平移3个单位(B)向上平移3个单位(C)向下平移2个单位(D)向上平移2个单位4.已知抛物线的对称轴是y轴,顶点的纵坐标为5,且过点(1,2)求这条抛物线的解析式.5.抛物线y=ax2+c顶点是(0,2),且形状及开口方向与y=-0.5x2相同.(1)确定a、c的值;(2)画出这个函数的图象.6.在同一坐标系中,画出函数y=-x2+2与y=x2-2的图像请分别说出图象的顶点坐标、对称轴及开口方向,并比较两个图像之间有何联系?26.1二次函数(四)1.抛物线y=3(x-2)2的对称轴是( )(A)直线x=2 (B)直线x=-2 (C)y 轴 (D)x 轴2.将抛物线y=3x 2向左平移3个单位所得的抛物线的函数关系式为( )A 、332-=x y B 、2)3(3-=x y C 、332+=x y D 、2)3(3+=x y3.抛物线2)1(--=x y 是由抛物线向平移个单位得到的,平称后的抛物线对称轴是,顶点坐标是,当x=时,y 有最值,其值是.4.用配方法把下列函数化成y=a(x-h)2的形式,并指出开口方向,顶点坐标和对称轴.(1)y=x 2+4x+4(2)y=- x 2+3x-(3)y=2x 2-4x5、已知二次函数图像的顶点在x 轴上,且图像经过点(2,-2)与(-1,-8)求此函数解析式.6.抛物线2)2(-=x a y 经过(1,-1).(1)确定a 的值;(2)画出这个函数图象; (3)求出抛物线与坐标轴的交点坐标.2.6.1 二次函数(五) 1、填表2、下列抛物线顶点是(2,1)的是( )A.1)2(22--=x yB.2)1(32+-=x y C.1)2(22+-=x y D.2)1(42+-=x y 3、抛物线23x y =先向上平移2个单位,后向右平移3个单位,所得抛物线是( )A.2)3(32-+=x y B.2)3(32++=x y C.2)3(32--=x y D.2)3(32+-=x y 4、抛物线的顶点在(-1,-2)且又过(-2,-1). (1)确定抛物线的解析式; (2)画出这个函数的图象.综合与运用5、如图所示,求:(1)抛物线的解析式,(2)抛物线与x 轴的交点坐标.6.某同学在推铅球时,推球经过的路线是抛物线的一部分(如图),出手处A 点坐标是(0,2),最高点B 坐标是(6,5),(1)求此抛物线的函数表达式.(2)你能算出这位学生推出的铅球有多远吗?拓展与探索7.如图,在一幢建筑物里,从10m 高的窗户处用水管斜着向外喷水,喷出的水,在垂直于墙壁的平面内画出一条抛物线,其顶点离墙1m,并且在离墙3m 处落到地面上,问抛物线的顶点比喷出的水高出多少?26.1二次函数(六)1、二次函数322+-=x x y 的顶点坐标是( ) A 、(1,0) B 、(1,2) C 、(2,1) D 、(―1,―2)2、二次函数y= x 2+x-1的图像是由函数y=x 2的图像先向平移个单位,再向平移个单位得到的. 3、用配方法求下列抛物线的顶点坐标和对称轴(1)x x y -=2(2)122+--=x x y4、写出下列抛物线的开口方向、对称轴、顶点坐标,当x 为何值时,y 有最大(小)值?并求其值. (1)y=-x 2+3x-2 (2))12)(2(--=x x y综合与运用5、有一矩形的苗圃,其四周是总长为40m 篱笆,假设它的一边长为xm ,面积为2ym . (1)y 随x 的变化的规律是什么?请分别用函数的表达式、表格、函数的图象表示出; (2)由函数的图象指出当x 取何值时,苗圃的面积最大?最大面积是多少?6、有一条长为7.2m 的木料,做成如图所示的“日”字形的窗柜,窗柜的宽和高各取多少时,这个窗的面积S 最大?最大面积是多少?(不考虑木料加工时的损耗和中间木柜所占的面积)7、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min)之间满足函数关系y=-0.1x 2+2.6x+43 (0≤x ≤30),y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低? (2)第10min 时,学生的接受能力是多少? (3)多长时间内,学生的接受能力最强? 复习巩固1、下列函数中,是二次函数的是( )A 、y=0.5(x-3)xB 、y=(x+2)(x-2)-x 2C 、y=-0.75xD 、y=2、抛物线1)1(22+-=x y 的顶点是( ) A 、(1,1) B 、(-1,1) C 、(1,-1) D 、(-1,-1)3、顶点是(-2,0),开口方向、形状与抛物线y=0.5x 2相同的抛物线是( )A 、y=0.5(x-2)2B 、y=0.5(x+2)2C 、y=-0.5(x-2)2D 、y=-0.5(x+2)2 4、抛物线32+=x y 向右平移2个单位,再向上平移3个单位,所得新的抛物线是. 5、写出一个开口向下且对称轴是x=-2的二次函数解析式 6、将二次函数222---=x x y 经配方后得( )A 、3)1(2---=x y B 、3)1(2-+-=x yC 、1)1(2---=x yD 、1)1(2-+-=x y 7、二次函数42-=x y 与x 轴的交点坐标为,8、二次函数a x ax y ++=42的最大值是3,则=a9、将一根铁丝长为x,围成一个等边三角形,则面积S 与周长x 的关系式为. 10、 根据下列条件,分别确定二次函数中字母系数的值:(1)抛物线c x x y ++=42的顶点在x 轴上;c= (2)抛物线232+-=x ax y 的图像经过点(-1,3)a= (3)抛物线52+-=bx x y 的对称轴是直线x=-2,b=综合与运用11、如图,有一直角梯形的苗圃,它的两邻边借用夹角是135°的两围墙,另外两边用总长为30m的篱笆,问篱笆的两边各是多少米时,苗圃的面积最大?最大面积是多少?12、某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.(1)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多少个?13.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图甲、乙两图请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜每千克的收益最大?说明理由.拓展与探索14、已知二次函数y=-0.5x 2+x+1.5 (1)用配方法求它的顶点坐标和对称轴; (2)画出这个函数的图象;(3)根据图象回答:当x 取哪些值时,y =0,y >0,y <0第二十六章答案 26.1二次函数(一)1、x x y 102+-=,二. 2、B 3、k=1,k ≠0且k ≠1.4、241x y =它是二次函数 5、x x y 4212+-= 0<x<4,二次 6、5 7(1)480020022+-=x x y , (2)4602m 2, (3)此时水渠的宽度是2m.26、1二次函数(二)1、-1 y 轴 (0,0) 向下 高 2、D 3、B 4、点B 不在,点C 在 5、(1)221x y = (2)略 6、A 7(1)A(1,1) 顶点C(0,0)对称轴是y 轴.(2)(3,9)3 26、1二次函数(三)1、 下、y 轴、(0,2),1,2 2、42+-=x y (0,4) y 轴 (0,4) (2,0)(-2,0) 3、B 4、532+-=x y 5、(1)2,21=-=c a (2)略 6、顶点坐标分别是(0,2)(0,-2) 对称轴都是y 轴,开口方向向下与向上,两个图象关于x 轴对称, 6、 26.1二次函数(四)1、A 2、D 3、2x y -= 右 1 直线x=1 1 大草原0 4、(1)2)2(+=x y 开口向上, 顶点(-2,0)对称轴是直线x=-2 (2)2)3(21--=x y 开口向下,顶点(3,0)对称轴是直线x=3 5、2)5(92--=x y 或2)1(2--=x y ,6、(1)-1,(2)略(3) (0,-4)(2,0) 26.1二次函数(五)1、略 2、C 3、D 4、(1)2)1(2-+=x y (2)略5、(1)3)2(432+--=x y (2)(0,0) (4,0 ) 6、(1)5)6(1212+--=x y (2)1526+ 7、310 26.1二次函数(六)1、B 2、左 2 下 2 3、(1)41)21(2--=x y 顶点()41,21- 对称轴是直线21=x (2)2)1(2++-=x y 顶点(-1,2)对称轴是直线x=-1, 4、(1)25)3(212+--=x y 开口向下,顶点(3,)25对称轴是直线x=3,当x=3时,y 有最大值是35 (2)87)45(22--=x y 开口向上,顶点()87,45- 对称轴是直线x=45,当x= 45时,y 有最小值87- 5、(1)变化规律是二次函数、x x y 202+-= 表格与图象略,(2)当x=10m 时,y 的最大值是100m 2,6、宽为,21m ⋅高为m 8.1,最大面积为216.2m . 7、(1) 0≤x ≤13 13<x ≤30 (3)x=13复习题1、A 2、A 3、B 4、6)2(2+-=x y 5、不唯一如2)2(+-=x y 6、D 7、(2,0) (-2,0)8、4或-1 9、2363x y = 10、(1)4 (2)-2 (3)-4 11、直角腰为10m,下底边为20m,最大面积为150m 2.12、(1)当售价定为50元时,销售量为500个,当售价定为80元时,销售量为200个,(2)当售价定为65元时,销售量为350个,获利最大是1225元.13、(1)1元,(2)每千克售价关于月份的函数关系式为7321+-=x y ,每千克成本关于月份的函数关系式1)6(3122+-=x y ,每千克的收益21y y y -=,故37)5(312+--=x y ,当x=5时,y 最大值37, 14、(1)2)1(212+--=x y 顶点点坐标(1,2) 对称轴是直线x=1,(2)略 (3)当x=-1或x=3时,y=0,当-1<x<3时y>0,当x<-1或x>3时,y<0.。

九年级数学用三种方式表示二次函数、二次函数与一元二次方程 试题

九年级数学用三种方式表示二次函数、二次函数与一元二次方程 试题

初三数学用三种方式表示二次函数、二次函数与一元二次方程北师大版【本讲教育信息】一. 教学内容:1. 用三种方式表示二次函数2. 何时获得最大利润3. 最大面积是多少4. 二次函数与一元二次方程二. 教学目的:1. 能利用二次函数解决实际问题2. 理解二次函数与一元二次方程的关系三. 教学重点、难点:1. 能利用二次函数解决实际问题2. 理解二次函数与一元二次方程的关系四. 课堂教学:[知识要点]1. 表示二次函数的三种方式:列表法、图象法、解析式法。

2. 二次函数c bx ax y 2++=的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。

3. 当二次函数c bx ax y 2++=的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程0c bx ax 2=++的根。

【典型例题】例1. 假设二次函数7x 7kx y 2--=的图象和x 轴有交点,那么k 的取值范围是〔 〕A. 47k -> B. 0k 47k ≠-≥且C. 47k -≥D. 0k 47k ≠->且答案:B例2. 二次函数图象的顶点为〔-1,-4〕,且与y 轴交点为〔0,-3〕,那么该二次函数的解析式为_______________。

答案:3x 2x y 2-+=例3. 二次函数c bx ax y 2++=的值永远为负值的条件是〔 〕A. 0ac 4b ,0a 2<->B. 0ac 4b ,0a 2<->C. 0ac 4b ,0a 2>-<D. 0ac 4b ,0a 2<-<答案:D例4. 如下图,在平面直角坐标中,抛物线的顶点P 到x 轴的间隔 是4,抛物线与x 轴相交于O 、M 两点,OM=4;矩形ABCD 的边BC 在线段OM 上,点A 、D 在抛物线上。

〔1〕请写出P 、M 两点坐标,并求这条抛物线的解析式; 〔2〕设矩形ABCD 的周长为l ,求l 的最大值;〔3〕连结OP 、PM ,那么ΔPMO 为等腰三角形,请判断在抛物线上是否还存在点Q 〔除点M 外〕,使得ΔOPQ 也是等腰三角形,简要说明你的理由。

北师大版九年级(下) 中考题同步试卷:2.5 用三种方式表示二次函数(01)

北师大版九年级(下) 中考题同步试卷:2.5 用三种方式表示二次函数(01)

北师大版九年级(下)中考题同步试卷:2.5 用三种方式表示二次函数(01)一、选择题(共2小题)1.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2 2.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+2二、填空题(共3小题)3.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.4.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=.5.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是.三、解答题(共13小题)6.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,P A:PB=1:5,求一次函数的表达式.7.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.8.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.9.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.10.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.11.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.12.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.13.如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD ∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.14.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△P AB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.15.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).17.已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.18.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).北师大版九年级(下)中考题同步试卷:2.5 用三种方式表示二次函数(01)参考答案一、选择题(共2小题)1.D;2.A;二、填空题(共3小题)3.y=(x﹣6)2﹣36;4.﹣2;5.y=x2﹣7x+12;三、解答题(共13小题)6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;。

九上数学每日一练:二次函数的三种形式练习题及答案_2020年解答题版

九上数学每日一练:二次函数的三种形式练习题及答案_2020年解答题版

九上数学每日一练:二次函数的三种形式练习题及答案_2020年解答题版答案解析答案解析答案解析答案解析答案解析2020年九上数学:函数_二次函数_二次函数的三种形式练习题
1.
(2016栖霞.九上期末) 用40cm 长的铁丝围成一个扇形,求此扇形面积的最大值.
考点: 二次函数的三种形式;扇形面积的计算;2.
(2016端州.九上期末) 已知抛物线的顶点坐标为(-2,-3),且经过点(-3,-2),求这个抛物线的解析式。

考点: 二次函数的三种形式;待定系数法求二次函数解析式;3.
(2017通州.九上期中) 用配方法把二次函数y=x +4x ﹣5化成y=a (x ﹣h )+k 的形式并写出顶点坐标.
考点: 二次函数的三种形式;4.
(2017磴口.九上期中) 用配方法把二次函数y=x ﹣3x ﹣4化成y=a (x ﹣h )+k 的形式,并写出该函数图象的开口方向、对称轴和顶点坐标.
考点: 二次函数的三种形式;5.
(2017徐闻.九上期中) 已知二次函数y=﹣x ﹣2x ,用配方法把该函数化为y=a (x ﹣h )+c 的形式,并指出函数图象的对称轴和顶点坐标.
考点: 二次函数的三种形式;2020年九上数学:函数_
二次函数_二次函数的三种形式练习题答案
1.
答案:2.答案:
3.答案:
4.答案:222222
5.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习
1.如图,在矩形ABCD中,AB=6 m,BC=12 m,点P从点A出发沿AB 边向B以1 m/s的速度运动,同时点Q从点B出发,沿BC边向点C以2 m/s的速度运动,P,Q两点在分别到达B,C两点后就停止运动.设经过t (s)时△PBQ 的面积为S m2,则
(1)用函数表达式表示是:
S=________________________________;
(2)用表格表示:
(3)用图象表示:
(4)在这个问题中,自变量t的取值范围是________________________;
图象的对称轴是________________,顶点坐标是________________;
当t<________时,S的值随t值的增大而________,当t>________时,S 的值随t值的增大而________(填“增大”或“减小”);
当t=________时,S取得最大值为________.
2.如图,甲、乙两船分别从相距10海里的两地A,B同时出发,甲船以2节的速度沿AB向正西方向行驶,乙船以6节的速度向正南方向行驶,直到甲船到达B地为止.设t时后,两船距离的平方为y,则
(1)用函数表达式表示是:y=________________________;
(2)用表格表示:
(3)用图象表示:
(4)在这个问题中,自变量t的取值范围是________________________;
图象的对称轴是________,顶点坐标是________;
当t<________时,y的值随t值的增大而________,当t>________时,y 的值随t值的增大而________(填“增大”或“减小”);
当t=________时,y取得最小值为________.
3.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:
(1)以车速为x轴、以刹车距离为y轴建立直角坐标系,在坐标系中描出这些数据所表示的点,并用光滑的曲线连接这些点,得到函数的大致图象;
(2)观察图象和表格,估计函数的类型并确定一个满足这些数据的函数表达式;
(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5 m,请推测刹车时的速度.事故发生时,汽车是超速行驶还是正常行驶?
答案:
1.(1) S=-t2+6t;(2) 略;(3) 略;
(4) 0≤t≤6;直线t=3,(3,9) ;3,增大,3,减小;3,9.
2.(1) y=10t2-40t+100;(2) 略;(3) 略;
(4) 0≤t≤5,直线t=2,(2,60) ,2,减小;2,增大;2,60.
3.(1) 略;(2) y=0.002x2+0.01x;
(3) 车速为150 km/h,超速行驶.
思考·探索·交流
1.在一块长为30 m、宽为20 m的矩形地面上修建一个正方形花台.设正方形的边长为x m,除去花台后,矩形地面的剩余面积为y m2,则y与x之间的函数关系表达式是________________________;自变量x的取值范围是________.y有最大值或最小值吗?若有,其最大值是________,最小值是________.这个函数的图象有何特点?
答案:
1.y=600-x2,0≤x≤20,最大值600,最小值200.。

相关文档
最新文档