图论的起源

合集下载

离散数学——图论

离散数学——图论


提示:反证法。
设有两个连通分支,这两个分支至多是完 全图。由此得到图中点与边之间的数量关系。
§8.3欧拉图

欧拉图产生的背景就是前面的七桥问题。

定义:图G的回路,若它通过G中的每条边一 次,这样的回路称为欧拉回路。具有欧拉回 路的图称为欧拉图。
定义欧拉通路:通过图G中每条边一次的通 路(非回路)称为欧拉通路。


基本通路:通路中没有重复的点。
简单回路和基本回路。

基本通路一定是简单通路,但反之简单通路 不一定是基本通路。基本回路必是简单回路。

定理:一个有向(n,m)图中任何基本通路长 度≤n-1。任何基本回路的长度≤n。 任一通路中如果删去所有回路,必得基本通 路。 任一回路中如删去其中间的所有回路,必得 基本回路。

例1:教材121页。
结点次数

引出次数:有向图中以结点v为起点的边的条数称为 v的引出次数,记 deg(v) 引入次数:有向图中以结点v为终点的边的条数称为 v的引出次数,记 deg(v)


结点次数:有向图中引出次数和引入次数之和称为 结点次数;无向图中与结点v相关联的边的条数称为 V的次数。统一为记deg(v)。
图论的发展

图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。


一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。

有向连通图

离散数学 教案 第八章 图论

离散数学 教案  第八章 图论

西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 为方便起见,在无向图中往往用字母ei表示 边。例如,在上图中,用e1表示边(v2,v2),e2 表示边(v1,v2)等。 对于一个确定的图,我们不关心顶点的位置, 边的长短与形状,因此,所画出的图的图形可 能不唯一。 定义 一个有向图G是一个二元组<V,E>,即 G=<V,E>,其中
西南科技大学
4
计算机科学与技术学院
Discrete Mathematics 定义 一个无向图G是一个二元组<V,E>,即 G=<V,E>,其中
(1). V是一个非空的集合,称为G的顶点集, V中元素称为顶点或结点;
(2). E是无序积 的一个多重子集 (元素可重复 出现的集合为多重集),称E为G的边集,E中元 素称为无向边或简称边。 在一个图G=<V,E>中,为了表示V和E分别 为G的顶点集和边集,常将V记成V(G),而将E 记成E(G)。
由于2m,
为偶数,所以
也为偶数。
可是,vV1时,d(v)为奇数,偶数个奇数之和才能 为偶数,所以|V1|为偶数。结论得证。
西南科技大学
17
计算机科学与技术学院
Discrete Mathematics 对有向图来说,还有下面的定理: 定理 设G=<V,E>为有向图, V={v1,v2,…,vn} , |E|=m,则
(5).设E´ E且E´ ≠Φ ,以E´为边集,以E´中边
关联的顶点的全体为顶点集的G的子图,则称G´是由 边集E´导出的G的子图。
西南科技大学
26
计算机科学与技术学院
Discrete Mathematics 例如,在下图中,(2),(3)均为(1)的子图;(3)是 生成子图;(2)是顶点子集{v1,v2}的导出子图,也

图论基础知识汇总

图论基础知识汇总

图论基础知识汇总(总32页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除图与网络模型及方法§1 概论图论起源于18世纪。

第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。

1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。

1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。

哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。

图论中所谓的“图”是指某类具体事物和这些事物之间的联系。

如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。

图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。

哥尼斯堡七桥问题就是一个典型的例子。

在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。

当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。

欧拉为了解决这个问题,采用了建立数学模型的方法。

他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。

问题成为从任一点出发一笔画出七条线再回到起点。

欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。

图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。

图论的起源

图论的起源

莱昂哈德· 欧拉
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
桥所连接的地区 视为点 A A
C
C D B B
D
每一座桥视为一 条线
求从图中任一点出发,通过每条边一次,最后回到起点。
如果通奇数座桥的地方不止两个,那麽 满足要求的路线便不存在了。
如果只有两个地方通奇数座桥,则可从 其中一地出发可找到经过所有桥的路线。 若没有一个地方通奇数座桥,则从任何 一地出发,所求的isberg七桥问题(Euler问题)
柯尼斯堡七桥问题是图论中的著名问题。 这个问题是基于一个现实生活中的事例: 位于当时东普鲁士柯尼斯堡(今日俄罗斯加里 宁格勒)有一条河,河中心有两个小岛。小岛 与河的两岸有七条桥连接。如何才能在所有 桥都恰巧只走一遍的前提下,回到原出发点?
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
图论的起源
图论诞生和孕育于民间游戏。 创生:1736年 瑞士数学家欧拉——图论之父; 进展:1936年,匈牙利数学家寇尼希(Konig)发 表名著 《有限图和无限图理论》 1930年,波兰数学家库拉托父斯基 (Kulatowsky)证明了平面图可以画在平面上。 其后,图论在现代数学、计算机科学、工程 技术、优化管理等领域有大用而得以大力发 展
不少数学家都尝试去解析这个事例。而 这些解析,最后发展成为了数学中的图论。 莱昂哈德· 欧拉(Leonhard Euler)在1736 年圆满地解决了这一问题,证明这种方法并 不存在。他在圣彼得堡科学院发表了图论史 上第一篇重要文献。欧拉把实际的抽象问题 简化为平面上的点与线组合,每一座桥视为 一条线,桥所连接的地区视为点。这样若从 某点出发后最后再回到这点,则这一点的线 数必须是偶数。

图论—基本概念

图论—基本概念
2) 在无向图中,两个结点间(包括结点自身间)若有几条 边,则这几条边称为平行边;
3) 两结点vi,vj间相互平行的边的条数称为边(vi,vj) 或<vi,vj>的重数;
4) 含有平行边的图称为多重图; 5) 非多重图称为线图; 6) 无自回路的线图称为简单图。
2020年3月14日
计算机科学与技术学院
G3=<V3,E3>=<{1,2,3,4,5},{<1,2>,(1,4),<4,3>,
<3,5>,<4,5>}>
2020年3月14日
计算机科学与技术学院
第9页
几个基本概念
1) 在一个图中,关联结点vi和vj的边e,无论是有向的 还是无向的,均称边e与结点vI和vj相关联,而vi和 vj称为邻接点,否则称为不邻接的;
设V={v1, v2,…,vn}为图G的结点集,称 (deg(v1),deg(v2),…,deg(vn))为G的度数序列。
上图的度数序列为(3,3,5,1,0)。
2020年3月14日
计算机科学与技术学院
第18页

1) (3,3,2,3),(5,2,3,1,4)能成为图的度数序列吗? 为什么?
2) 已知图G中有10条边,4个度数为3的结点,其余结点 的度数均小于等于2,问G中至少有多少个结点?为什 么?
对任意e∈E,都有e与<u,v>∈VV或者
(u,v)∈V&V相对应。
2020年3月14日
计算机科学与技术学院
第6页
图的分类(按边的方向)
1) 若边e与无序结点对(u,v)相对应,则称边e为无向边, 记为e=(u,v),这时称u,v是边e的两个端点;

图论基本概念

图论基本概念

图的矩阵表示
权矩阵W = (wij ) n×n
w vi v j , w ij 0, , vi v j E i j vi v j E
例:写出右图的权矩阵:
解:
0 W 3 4
6 0
7 0 5
8 2 0
哥尼斯堡
(K nigsberg ) o
七桥问题
是否可以 一笔画?
C
(Euler, 1736)
C
A
D
A
D
B
B
右图是否存在经过每条边恰好一次的回路,即是否为 Euler 图?
化学药品存放问题 某单位需要存放一些化学药品,其中某些药品不能放 在同一个库房里,问至少需要几个库房?
用点表示药品,在不能放在同一个库房的两种药品之 间连边。需要几个库房等价于需要用几种颜色给图的 点着色可以使得相邻的点有不同的颜色。
可以用 V 或 E 表示图 G 的顶点数和边数。
点 v 的度数:与 v 相连的边的条数,记作 d(v) 。
与顶点v出关联的边的数目称为出度,记作d +(v), 与顶点v入关联的边的数目称为入度,记作d -(v)。
命题:图的所有点的度数之和等于边数的两倍,即
vV deg(
H H C H
v) 2 | E | 。
的相邻顶点,到(0,0,0,0)终止,得到有向图即是。
图论的基本概念
例2、证明:在任意6人的集会上,总有3人互相认 识,或总有3人互相不认识。
解:以顶点表示人,以边表示认识,得6个顶点 的简单图G。 问题:3人互相认识即G包含K3为子图, 3人互相不认识即G包含(3,0)图为子图。
图论的基本概念

图论

图论

四色问题又称四色猜想,是世界近代三大数学难题之一。
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗 南西斯.格思里来到一家科研单位搞地图着色工作时,发现 了一种有趣的现象:“看来,每幅地图都可以用四种颜色 着色,使得有共同边界的国家都被着上不同的颜色。”
1878~1880年两年间,著名律师兼数学家肯普和泰勒两人 分别提交了证明四色猜想的论文,宣布证明了四色定理。 但后来数学家赫伍德以自己的精确计算指出肯普的证明是 错误的。不久,泰勒的证明也被人们否定了。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的 两台不同的电子计算机上,用了1200个小时,作了100亿 判断,终于完成了四色定理的证明。不过不少数学家并不 满足于计算机取得的成就,他们认为应该有一种简捷明快 的书面证明方法。
在拓扑学的发展历史中,还有一个著名而且重要的关于多 面体的定理也和欧拉有关。这个定理内容是:如果一个凸 多面体的顶点数是v、棱数是e、面数是f,那么它们总有 这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实: 只存在五种正多面体。它们是正四面体、正六面体、正八 面体、正十二面体、正二十面体。
1859年,英国数学家哈密顿发明了一种游戏:用一个规则 的实心十二面体,它的20个顶点标出世界著名的20个城市, 要求游戏者找一条沿着各边通过每个顶点刚好一次的闭回 路,即「绕行世界」。 用图论的语言来说,游戏的目的是在十二面体的图中找出 一个生成圈。这个问题后来就叫做哈密顿问题。由於运筹 学、计算机科学和编码理论中的很多问题都可以化为哈密 顿问题,从而引起广泛的注意和研究。 在图论的历史中,还有一个最著名的问题——四色猜想。 这个猜想说,在一个平面或球面上的任何地图能够只用四 种颜色来着色,使得没有两个相邻的国家有相同的颜色。 每个国家必须由一个单连通域构成,而两个共点。

离散数学第讲7

离散数学第讲7

无向图 <V,E> (2) 若|V(G)| 、|E(G)|均为有限数,则称G为有限图。
一个 为A与B的无序积,记作A&B.
是一个有序的二元组
,记作G, 其中
1 , vi可达vj
第十四章 图的(基1本)概念V≠φ称为顶点集,其元素称为顶点或结点。
第十四章 图的基本概念
第十四章 图的(基2本)概念E称为边集,它是无序积V&V的多重子集,其元素称为
所有边互不相同),则称此回路为基本回路或者初级 则V1∪ V2 =V, V1∩V2= φ,由握手定理知
若回路中的所有边e1,e2,…,ek互不相同,则称此回路为简单回路或一条闭迹;
回路、圈。 26 设有向图D=<V,E>中无环, V={v1,v2,…,vn}, E={e1,e2,…,em}, 令aij(1)为顶点vi与邻接到顶点vj边的条数,称(aij(1))n×n为D的邻接矩
第十四章 图的基本概念
例14.1 画出下列 图形。
v1。
。v2
(1) G=<V,E>,其中
V={v1,v2,v3,v4,v5},
v3

(1)
E={(v1,v1), (v1,v2), (v2,v3),
v4 。
。v5
(v2,v3), (v1,v5),
(v2,v5), (v4,v5)}。
(2) D=<V,E>,其中
顶点的度数均小于3,问G中至少有多少个顶点?
第十四章 图的基本概念
定义14.5完全图
1. 设G=<V,E>为一个具有n个结点的无向简单图,如 果G中任一个结点都与其余n-1个结点相邻接,则称 G为无向完全图,简称G为完全图,记为Kn。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不少数学家都尝试去解析这个事例。而 这些解析,最后发展成为了数学中的图论。 莱昂哈德· 欧拉(Leonhard Euler)在1736 年圆满地解决了这一问题,证明这种方法并 不存在。他在圣彼得堡科学院发表了图论史 上第一篇重要文献。欧拉把实际的抽象问题 简化为平面上的点与线组合,每一座桥视为 一条线,桥所连接的地区视为点。这样若从 某点出发后最后再回到这点,则这一点的线 数必须是偶数。
莱昂哈德· 欧拉
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
桥所连接的地区 视为点 A A
C
C D B B
D
每一座桥视为一 条线
求从图中任一点出发,通过每条边一次,最后回到起点。
如果通奇数座桥的地方不止两个,那麽 满足要求的路线便不存在了。
如果只有两个地方通奇数座桥,则可从 其中一地出发可找到经过所有桥的路线。 若没有一个地方通奇数座桥,则从任何 一地出发,所求的路线都能实现。 >>
图论(Graphic Theory)的分支很多,例如: 图论 算法图论 极值图论 网络图论 模糊图论 代数图论 随机图论 超图论
莱昂哈德· 欧拉(Leonhard Euler,1707.4.5~1783.9.18) 瑞士的数学家和物理学家。他被称为历史上最伟大的两位 数学家之一(另一位是卡尔· 弗里德里克· 高斯)。欧拉出 生于瑞士,在那里受教育。他是一位数学神童。作为数学 教授,他先后任教于圣彼得堡(1727-1741)和柏林,尔后 再返圣彼得堡(1766)。 欧拉的一生很虔诚。然而,那个广泛流传的传说却不 是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里, 挑战德尼· 狄德罗:“先生,(a+b)n/n = x;所以上帝存在, 这是回答!” 欧拉的离世也很特别:据说当时正是下午茶时间, 正在逗孙儿玩的时候,被一块蛋糕卡在喉头窒息而死。 欧拉是第一个使用“函数”一词来描述包含各种参数 的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在 1694年给出)。他是把微积分应用于物理学的先驱者之一。 欧拉是有史以来最多产的数学家,他的全集共计75卷。欧 拉实际上支配了18世纪的数学,对于当时新发明的微积分, 他推导出了很多结果。在他生命的最后7年中,欧拉的双 目完全失明,尽管如此,他还是以惊人的速度产出了生平 一半的著作。 小行星欧拉2002是为了纪念欧拉而命名的。
图论的起源
图论诞生和孕育于民间游戏。 创生:1736年 瑞士数学家欧拉——图论之父; 进展:1936年,匈牙利数学家寇尼希(Konig)发 表名著 《有限图和无限图理论》 1930年,波兰数学家库拉托父斯基 (Kulatowsky)证明了平面图可以画在平面上。 其后,图论在现代数学、计算机科学、工程 技术、优化管理等领域有大用而得以大力发 展
Konisberg七桥问题(Euler问题)
柯尼斯堡七桥问题是图论中的著名问题。 这个问题是基于一个现实生活中的事例: 位于当时东普鲁士柯尼斯堡(今日俄罗斯加里 宁格勒)有一条河,河中心有两个小岛。小岛 与河的两岸有七条桥连接。如何才能在所有 桥都恰巧只走一遍的前提下,回到原出发点?
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
什么是图论?
图论是离散数学的分支: 图(graph):是一个离散集和某些两元素子集 的集合。 数学形象是:纸上画几个顶点,把其中一些 点用曲线段或直线连起来。图显示的是点与 点之间的二元关系。

图论——计算机问题求解的描述工具。
抽象 求解
实际问题
数学模型

求解算法(算法)
用大量数据验证
测试
编程实现
相关文档
最新文档