中考数学专项复习 一次函数练习

合集下载

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。

中考数学总复习《一次函数综合》专项测试卷(附答案)

中考数学总复习《一次函数综合》专项测试卷(附答案)

中考数学总复习《一次函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023秋•铜陵期中)下列函数①y=πx,②y=﹣2x+3,③,④,⑤y=x2﹣1中是一次函数的有()A.1个B.2个C.3个D.4个2.(2023•长沙模拟)已知一次函数y=ax﹣4的函数值y随x的增大而减小,则该函数的图象大致是()A.B.C.D.3.(2022秋•大东区校级期末)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣44.(2022秋•碑林区期末)一次函数y=kx+b图象经过(1,1),(2,﹣4),则k与b的值为()A.B.C.D.5.(2023春•乾安县期末)已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y16.(2023•灞桥区校级二模)若一次函数y=(m﹣1)x+m﹣2的图象不经过第二象限,则m的取值范围是()A.m>1B.m<2C.1<m<2D.1<m≤27.(2023春•开福区校级期末)对于函数y=﹣2x+4,说法正确的是()A.点A(1,3)在这个函数图象上B.y随着x的增大而增大C.它的图象必过一、三象限D.当x>2时,y<08.(2023•南岗区校级二模)在全民健身越野比赛中乙选手匀速跑完全程,甲选手1.5小时后的速度为每小时10千米,甲、乙两选手的行程y(千米)随时间z(时)变化的图象(全程)如图所示.下列说法:①起跑后半小时内甲的速度为每小时16千米;②第1小时两人都跑了10千米;③两人都跑了20千米;④乙比甲晚到0.3小时.其中正确的个数有()A.1个B.2个C.3个D.4个9.(2023秋•合肥期中)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A.B.C.D.10.(2023春•盖州市期末)如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A8B9的长为()A.64B.128C.256D.512二、填空题(本题共6题,每小题2分,共12分)。

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

中考数学总复习《一次函数》练习题附含答案

中考数学总复习《一次函数》练习题附含答案

中考数学总复习《一次函数》练习题附含答案一、单选题(共12题;共24分)1.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个2.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≤3B.x≥32C.x≥3D.x≤323.如图,四个一次函数y=ax,y=bx ,y=cx+1 ,y=dx-3 的图象如图所示,则 a, b, c , d的大小关系是()A.b>a>d>c B.a>b>c>d C.a>b>d>c D.b>a>c>d4.已知一次函数y =kx +b 的图象如图,则k 、b 的符号是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <05.我市某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.乙队修筑了840米后,因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.两队开工8天时所修道路的长度都为560米,甲、乙两个工程队所修道路的长度y (米)与修筑时间x (天)之间的关系图象如图所示.下列说法: ①乙工程队每天修路70米;②甲工程队后12天中每天修路50米; ③该公路全长1640米;④若乙工程队不提前离开,则两队只需要13 23 天就能完成任务其中正确的结论有( )A .1个B .2个C .3个D .4个6.下列命题是假命题的是 ( )A .49的平方根是 ±7B .点 M(1,a) 和点 N(3,b) 是一次函数 y =−2x +1 图象上的两点,则 a >bC .无限小数都是无理数D .点 (−2,3) 到y 轴的距离是27.若一次函数 y =kx +b 的图象不经过第二象限,则关于 x 的方程 x 2+kx +b =0 的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定8.已知甲、乙两个函数图象上的部分点的横坐标x 与纵坐标y 如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a ,下列判断正确的是( )x ﹣2 0 2 4 y 甲 5 4 3 2 y 乙653.5<2D .2<a <49.函数y=k (x ﹣k )与y=kx 2,y= kx(k ≠0),在同一坐标系上的图象正确的是( )A .B .C .D .10.将直线y=2x 向右平移1个单位后所得图象对应的函数解析式为( )A .y=2x-1B .y=2x-2C .y=2x+1D .y=2x+211.如图,已知函数y =(k −1)x +k 的图象经过二、三、四象限,则k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >112.如图,在同一坐标系中,关于x 的一次函数y =x+b 与y =bx+1的图象只可能是( )A .B .C .D .二、填空题(共6题;共6分)13.将一次函数y=﹣2x+6的图象向左平移 个单位长度,所得图象的函数表达式为y=﹣2x .14.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时y 1<y 2正确的是 .15.小李从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小李从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小李从家出发去学校步行16分钟时到学校还需步行 米.16.如图,在矩形OABC 中,点A 在x 轴的正半轴,点C 在y 轴的正半轴.抛物线y= 169 x 2﹣ 163x+4经过点B ,C ,连接OB ,D 是OB 上的动点,过D 作DE ∥OA 交抛物线于点E (在对称轴右侧),过E 作EF ⊥OB 于F ,以ED ,EF 为邻边构造▱DEFG ,则▱DEFG 周长的最大值为 .17.一次函数y=3x + m的图象与两坐标轴所围成的三角形面积为54,则m = .18.已知正比例函数y=kx的图象过点(2,﹣4),则该正比例函数的解析式为.三、综合题(共6题;共60分)19.某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B 商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式. 20.如图,在平面直角坐标系中,直线l1:y=−2x+1与y轴交于点A,直线l2与y轴交于点B (0,-2),交直线l1于点C,点C的纵坐标为-1,点D是直线l2上任意一点,过点D作x轴的垂线,交直线l1于点E.(1)求直线l2的解析式;(2)当DE=2AB时求点D的坐标.21.用描点法在同一直角坐标系中画出y1=|x|和y2=x+1的图象,并根据图象回答:(1)当x在什么范围时y1<y2?(2)当x在什么范围时y1>y2?22.如图,在平面直角坐标系xOy中,一次函数y=−x+m的图象过点A(1,3),且与x轴交于点B.(1)求m的值和点B的坐标;(2)求ax2+bx>−x+m的解集.23.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,冬奥会来临之际,冰墩墩玩偶非常畅销.小李在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售,两款玩偶的进货价和销售价如表:A款玩偶B款玩偶进货价(元/个)2015销售价(元/个)2518(2)第二次小李进货时网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶共100个,应如何设计进货方案才能获得最大利润,最大利润是多少?24.如图,在平面直角坐标系xOy中,一次函数y=﹣x+2的图象与x轴交于点A与反比例函数y=kx(x<0)的图象交于点B,过点B作BC⊥x轴于点C,且OA=OC.(1)求点A的坐标和反比例函数的表达式;(2)若点P是反比例函数y=kx(x<0)的图象上的点,过P作PQ∥y轴,交直线AB于点Q,当PQ=BC时求点P的坐标.参考答案1.【答案】B 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】C 7.【答案】A 8.【答案】D 9.【答案】C 10.【答案】B 11.【答案】A 12.【答案】C 13.【答案】3 14.【答案】① 15.【答案】280 16.【答案】2434017.【答案】±18 18.【答案】y =﹣2x19.【答案】(1)解:设A ,B 两种商品每件进价分别为每件x 元,每件y 元,则{3x =5y3x +y =360解得:{x =100y =60答:A ,B 两种商品每件进价分别为每件100元,每件60元. (2)解:由题意可得:w =(150−100)m +(80−60)(80−m) =50m +1600−20m =30m +1600即总利润w (元)与m (件)的函数关系式为:w =30m +1600.20.【答案】(1)解:∵点 C 的纵坐标为 −1 ,点 C 在直线 l 1 上∴−1=−2x +1 解得: x =1∴点 C 坐标为 (1,−1)设直线 l 2 的解析式为 y =kx +b∵直线 l 2 与 y 轴交于点 B(0,−2) ,交直线 l 1 于点 C ∴{k +b =−1b =−2解得: {k =1b =−2∴直线 l 2 的解析式为 y =x −2(2)解:令 x =0 ,得 y =−2×0+1=1 ∴点 A 坐标为 (0,1) ∴AB =3设 D 点横坐标为 m ,则点 D 坐标为 (m ,m −2) ∵DE 平行于 y 轴∴点 E 坐标为 (m ,−2m +1)∴DE =|(m −2)−(−2m +1)|=|3m −3| ∵DE =2AB =6 ∴|3m −3|=6解得 m =3 或 m =−1当 m =3 时点 D 坐标为 (3,1) 当 m =−1 时点 D 坐标为 (−1,−3) .综上所述:点 D 的坐标为 (3,1) 或 (−1,−3) .21.【答案】(1)解:如图所示:两函数的交点坐标是(﹣0.5,0.5) 当x >﹣0.5时y 1<y 2(2)解:当x <﹣0.5时y 1>y 222.【答案】(1)解:∵y =−x +m 的图象过点 A(1,3)∴3=−1+m ∴m =4 . ∴y =−x +4 . 令 y =0 ,得 x =4 ∴点 B 的坐标为 (4,0) ;(2)解:∵二次函数 y =ax 2+bx 图象过 A , B 两点 ∴{3=a +b 0=42a +4b ,解得: {a =−1b =4 画出函数图象如图:由函数图象可得不等式 ax 2+bx >−x +m 的解集为: 1<x <4 .23.【答案】(1)解:设购进A 款玩偶x 个,则购进B 款玩偶(100-x )个由题意可得:20x+15(100-x )=1650,解得x=30,∴100-x=70 答:购进A 款玩偶30个,则购进B 款玩偶70个;(2)解:设购进A 款玩偶a 个,则购进B 款玩偶(100-a )个,利润为w 元 由题意可得:w=(25-20)a+(18-15)(100-a )=2a+300 ∵k=2>0∴w 随a 的增大而增大∵网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半,∴a ≤12(100−a)解得a ≤1003 ∵a 为整数,∴a ≤33∴当a=33时w 取得最大值,此时w=366,100-a=67答:购进A 款玩偶33个,购进B 款玩偶67个时才能获得最大利润,最大利润是366元.24.【答案】(1)解:在y =﹣x+2中,当y =0时﹣x+2=0,解得x =2, ∴A (2,0), 又OA =OC∴OC =OA =2 又∵BC ⊥x 轴于点C∴B 点的横坐标为﹣2,代入y =﹣x+2,可得B 点的纵坐标为4 ∴点B 坐标为(﹣2,4)将点B 坐标为(﹣2,4)代入 y =kx得∴k =﹣8, 故反比例函数的表达式为 y =−8x;(2)解:设P (a , −8a)(a <0), ∵PQ ∥y 轴,交直线AB 于点Q∴Q (a ,﹣a+2)∴PQ =| −8a ﹣(﹣a+2)|=| −8a+a ﹣2|∵点B坐标为(﹣2,4),∴BC=4当PQ=BC时有|−8a+a−2|=4,当﹣2<a<0时有−8a+a−2=4解之得a=3±√17,舍去正值,a=3−√17此时点P(3﹣√17,3+ √17)当a<﹣2时有﹣8a +a﹣2=﹣4,解之得a1=﹣4,a2=2(舍去),此时点P(﹣4,2)综上满足条件的点P坐标为(3﹣√17,3+ √17)或(﹣4,2).第11页共11。

中考数学总复习《一次函数》专项测试卷(附答案)

中考数学总复习《一次函数》专项测试卷(附答案)

中考数学总复习《一次函数》专项测试卷(附答案)一、单选题(共12题;共24分)1.直线y=kx+b与两坐标轴的交点如图所示,当y<0时,x的取值范围是()A.x>2B.x<2C.x>-1D.x<-12.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x 之间的函数关系式是()A.y=-2x+24(0<x<12)B.y=- 12x+12(0<x<24)C.y=2x-24(0<x<12)D.y= 12x-12(0<x<24)3.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B 在第四象限,则下列判断一定正确的是()A.b<0B.b>0C.k<0D.k>04.一次函数y=kx—k(k<o)的图象大致是()A.B.C.D.5.某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量(x)的函数关系如图2所示,则降价后每件商品的销售价格为()图1 图2A.5元B.10元C.12.5元D.15元6.直线y=2x−3与直线y=x−1的交点坐标是()A.(2,1)B.(4,3)C.(2,−1)D.(−2,1)7.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①ab<0;②函数y=ax+ d不经过第一象限;③不等式ax+b>cx+d的解集是x<3;④a−c=13(d−b).其中正确的个数有()A.4B.3C.2D.19.已知整数x满足0≤x≤5,y1=x+2,y2=-2x+5,对任意一个x,y1,y2中的较大值用m表示,则m 的最小值是()A.3B.5C.7D.210.甲、乙两同学从地出发,骑自行车在同一条路上行驶到地,他们离出发地的距离(千米)和行驶时间(小时)之间的函数关系的图象如图所示.根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0. 5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)12.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<13x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6二、填空题(共6题;共6分)13.一次函数y=2x+3的图象沿y轴向下平移2个单位,所得图象的函数解析式是.14.如图,点A的坐标为(0,3),B点坐标为(1,2),将ΔOAB沿x轴向右平移后得到ΔO′A′B′,点A的对应点A′恰好落在直线y=34x上,则点B′的坐标是.15.若直线y=x+3与直线y=-2x+k的交点在第一象限,则k的取值范围是.16.给出下列函数①y=3x+1;②y=−2x;③y=−15x2.从中任取一个函数,则取出的函数符合条件“当x>1时,函数值y随x的增大而减小”的概率是.17.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是18.一次函数y=-2x+4,当函数值为正时,x的取值范围是.三、综合题(共6题;共59分)19.如图,直线y=kx+b 与x 轴,y 轴分别交于点A,点B,点A 的坐标为(﹣2,0),点B 的坐标为B(0,4).(1)求直线AB 解析式;(2)如图,将△AOB 向右平移 6 个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB 扫过的面积.20.如图,在直角坐标系中直线y=−2x+4分别交x轴,y轴于点E,F,交直线y=x于点P,过线段OP上点A作x轴,y轴的平行线分别交y轴于点C,直线EF于点B.(1)求点P的坐标.(2)当AC=AB时,求点P到线段AB的距离.21.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=mx的图象交于点B(−2,n),过B作BC⊥x轴于点C,D(3−3n,1)是反比例图象上一点,AB=5.求:(1)反比例函数的表达式;(2)求一次函数的表达式.22.某商家代理经销某种商品,以每件进价40元,批发购进该商品915件,经走访市场发现:每天的销售量y(件)和销售单价x之间的一次函数关系如下表(x≥50的整数).销售单价x(元/件)…505152…每天销售量y(件)…1009590…(1)写出y关于x的函数关系式.(2)问定价x为多少时,每天获得利润最大,并求最大利润.(3)商家在实际销售过程中以每天最大利润销售了10天后,他发现销售时间只剩下最后两天,所以在最后不超过2天时间内销售完余下的商品,这915件商品的总利润为w元,则总利润w的最大值为(直接写出答案).23.富平柿饼,以其加工精细,味香醇厚等优点成为陕西畅销国内外的传统土产之一,小张家的柿子今年喜获丰收,根据经验小张预计可以制作3000盒柿饼,根据市场需求她将制作两种盒装的柿饼放在网站进行销售,每盒单价、制作成本、运输成本如表:每盒单价(元)制作成本(元/盒)运输成本(元/盒)普通盒装3010.59.5精品盒装4014.510.5设销售精品盒装的柿饼x盒,小张所获得的利润为y元.(1)求y与x之间的函数关系式;(2)根据市场需求,精品盒装的数量不多于普通盒装的2倍,求小张销售完这些柿饼最多能获得总利润多少元?24.如图1,在矩形ABCD中动点P从点A出发,沿A→D→C→B的路径运动.设点P运动的路程为x,△PAB的面积为y.图2反映的是点P在A→D→C运动过程中y与x的函数关系.请根据图象回答以下问题:(1)矩形ABCD的边AD=,AB=;(2)写出点P在C→B运动过程中y与x的函数关系式,并在图2中补全函数图象.参考答案1.【答案】B 2.【答案】B 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】A 7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】C 13.【答案】y=2x+1 14.【答案】(5,2) 15.【答案】k >3 16.【答案】2317.【答案】x <2 18.【答案】x <219.【答案】(1)解:设直线 AB 解析式为y=kx+b∵点 A 的坐标为(﹣2,0),点 B 的坐标为 B (0,4). ∴{−2k +b =0b =4 ,解得: {k =2b =4 ∴直线 AB 解析式y=2x+4 (2)解:∵△AOB=90° ∴△AO 1B 1=90° ∵OO 1=6, O 1B 1=OB=4 ∴OB 1=√62+42=2√13 ;(3)解:△AOB 过的面积=长方形OBB 1O 1的面积+△A0B 的面积 =6×4+ 12 ×2×4=2820.【答案】(1)解:解 {y =−2x +4y =x 得, {x =43y =43∴ 点P 的坐标为 (43,43) ;(2)解: ∵ 直线 y =−2x +4 分别交x 轴,y 轴于点E ,F ∴E(2,0) F(0, 4) ∴OE =2延长BA 交x 轴于D 设 A(a,a) ∴AC =AB =a ∵ 点A 在直线OP 上 ∴AC =AD =a ∴BD =2a ∵BD//OF ∴△EDB △ △EFO∴DE OE =BD OF ∴2−a 2=2a 4∴a =1∴ 点P 到线段AB 的距离 =43−1=13.21.【答案】(1)解:∵B(-2,n)、D(3-3n ,1)在反比例函数y =mx (x <0)的图象上∴{−2n =m 3−3n =m ,解得:{m =−6n =3∴y =−6x;(2)解:∵点B 的坐标为(−2,3) ∴BC =3在Rt △ABC 中AC =√AB 2−BC 2=√52−32=4 ∴OA =4−2=2 ∴点A 的坐标为(2,0)将点A(2,0),点B(-2,3)代入y =kx +b 得:{2k +b =0−2k +b =3解得:{k =−34b =32∴y =−34x +32.22.【答案】(1)y=-5x+350(2)解:设每天的利润为z 元则:z =(x −40)(−5x +350)=−5(x −55)2+1125; ∵a =−5<0∴当x =55时,每天获得的利润最大,最大利润为1125元 即:定价为55元时,每天获得的利润最大,最大利润为1125元; (3)13475元23.【答案】(1)解:根据题意可得: y =(40−14.5−10.5)x +(30−10.5−9.5)(3000−x)=5x +30000 ;(2)解:根据题意可得: x ≤2(3000−x) 解得: x ≤2000∵在y=5x+30000中∴y随x的增大而增大∴当x=2000时,小张销售完成这些柿饼所获得的利润最大,最大利润y=5×2000+30000= 40000(元)答:小张销售完这些柿饼最多能获得总利润40000元.24.【答案】(1)2;4(2)解:当点P在C→B运动过程中PB=8﹣x∴y=S△APB= 12×4×(8﹣x),即y=﹣2x+16(6≤x≤8)正确作出图象,如图所示:。

中考数学一轮复习《一次函数》专项练习题-附含答案

中考数学一轮复习《一次函数》专项练习题-附含答案

中考数学一轮复习《一次函数》专项练习题-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.点P(1,3)在正比例函数y=kx(k≠0)的图象上,则k的值为()A.13B.2 C.3 D.42.直线y=x−1的图象大致是()A.B.C.D.3.对于函数y=3x,下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(1,2)C.该函数图象经过一、三象限D.y随着x的增大而增大4.对于一次函数y=﹣2x+4,当﹣2≤x≤4时,函数y的取值范围是()A.﹣4≤y≤16 B.4≤y≤8 C.﹣8≤y≤4 D.﹣4≤y≤85.将一次函数y=2x+4的图像向右平移5个单位后,所得的直线与两坐标轴围成的三角形的面积是()A.4 B.6 C.9 D.496.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(时)之间的函数关系式为()A.y=40x+5B.y=5x+40C.y=5x−40D.y=40−5x7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>38.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等二、填空题9.一次函数y=2x的图象向上平移个单位后经过点A(−2,−1).10.若一次函数y=(k+1)x+2k−4的图象经过第一、三、四象限,则k的取值范围是.11.已知正比例函数y=kx与反比例函数y=3x的图象没有交点,写出一个符合条件的k的值为.12.如图,函数y1=mx,y2=x+3的图象相交于点A(−1,2),则关于x的不等式−2<x+3≤mx的解集是.13.如图,在平面直角坐标系xOy中,已知直线y=ax+b和直线y=kx交于点P(1,2),若关于x、y的二元一次方程组{y=kxy=ax+b的解为x、y,则x+y=.三、解答题14.如图,一次函数y1=kx+b的图象交x轴于点B,OB=12并与一次函数y2=−x+4的图象交于点A,点A的横坐标为1.(1)求一次函数y1=kx+b的解析式.(2)请直接写出kx+b>−x+4时自变量x的取值范围.15.A,B两地距离24km,甲、乙两人同时从A地出发前往B地.甲先匀速慢走2h,而后匀速慢跑;乙始终保持匀速快走,设运动时间为x(单位:h).甲、乙距离A地的路程分别为y1,y2(单位:km)y1,y2分别与x的函数关系如图所示.(1)求y1关于x的函数解析式;(2)相遇前,是否存在甲、乙两人相距1km的时刻?若存在,求运动时间;若不存在,请说明理由.16.如图,一次函数y1=x+m的图象与y轴交于点B,与正比例函数y2=3x的图象交于点A(1,3).(1)求△ABO的面积;(2)利用函数图象直接写出当y1>y2时,x的取值范围.17.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,研究表明:课桌的高度与椅子的高度符合一次函数关系,小明测量了一套课桌、椅对应的四档高度,得到数据如下表:档次/高度第一档第二档第三档第四档椅高x/cm 37.040.042.045.0桌高y/cm 68.074.078.0(1)设课桌的高度为y(cm),椅子的高度为x(cm),求y与x的函数关系式;(2)在表格中,有一个数据被污染了,则被污染的数据为;(3)小明放学回到家,又测量了家里的写字台的高度为79cm,凳子的高度为43.5cm,请你判断小明家里的写字台与凳子是否符合科学设计,并说明理由.18.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(4,0).(1)设△OAP的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=10时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.参考答案1.C2.A3.B4.D5.C6.D7.A8.B9.310.−1<k<211.k=−1(答案不唯一)12.−5<x≤−113.314.(1)解:∵OB=12∴B(−12,0).∵点A的横坐标为1,点A在一次函数y2=−x+4的图象上∴x=1时y=3,即A(1,3).将A(1,3),B(−12,0)代入,得{−12k+b=0k+b=3,解得{k=2b=1∴一次函数的解析式为y1=2x+1(2)解:由图象可知,当x>1时,直线y1=kx+b在直线y=−x+4的上方∴kx+b>−x+4时自变量x的取值范围为x>115.(1)解:当0≤x<2时,设y1=kx,把(2,8)代入得:2k=8解得k=4∴y1=4x当x≥2时,设y1=kx+b把(2,8)(3,16)代入得:{2k+b=83k+b=16解得{k =8b =−8∴y 1=8x-8∴y 1关于x 的函数解析式为y 1={4x(0≤x <2)8x −8(x ≥2)(2)解:∵乙3小时运动16千米,乙的速度是163千米/小时 ∴y 2=163x当163x −4x =1时,解得x =34<3 当163x −(8x −8)=1时,解得x =218<3;答:相遇前,存在甲、乙两人相距1km 的时刻,运动时间为34小时或218小时 16.(1)解:∵一次函数 y 1=x +m 的图象过点 A(1,3) ∴3=1+m ∴m =2∴一次函数的表达式为 y 1=x +2 . 当 x =0 时 ∴B(0,2)∴S △ABO =12×2×1=1 .(2)当 y 1>y 2 时, x 的取值范围为 x <117.(1)解:由课桌的高度与椅子的高度符合一次函数关系,设y =kx +b ∵y =kx +b 过点(37.0,68.0)和(40.0,74.0) ∴{68=37k +b74=40k +b 解得{k =2b =−6∴y 与x 的函数关系式y =2x −6 (2)84.0(3)解:小明家里的写字台与凳子不符合科学设计,理由如下∶ 当x =43.5时,y =2×43.5−6=81≠79 ∴小明家里的写字台与凳子不符合科学设计. 18.(1)解:∵点A 的坐标为(4,0) ∴OA =4∵直线l 为x +y =8∴直线l 的解析式为y =−x +8 ∴当y =0时x =8; ∵S =12OA ⋅|y P |,y p >0∴S =2|−x +8|=2(−x +8)=−2x +16 ∴S =−2x +16(0<x <8)(2)解:当S =10时,则−2x +16=10 ∴x =3 ∴−x +8=5 ∴P(3,5);(3)解:作点O 关于直线l 的对称点G ,连接GM ,GD ,AG ,设直线l 与x 轴,y 轴分别交于D 、C ,∴D(8,0),C(0,8) ∴OC =OD =8 ∴∠ODC =45°由对称性可知GD =OD =8,∠GDC =∠ODC =45°,OM =GM ∴∠ODG =90° ∴G(8,8)∵OM +MA =GM +MA∴当A 、M 、G 三点共线时GM +MA 最小,即此时OM +MA 最小,则点M 即为直线AG 与直线l 的交点 设直线AG 的解析式为y =kx +b ∴{8k +b =84k +b =0 ∴{k =2b =−8∴直线AG 的解析式为y =2x −8 联立{y =2x −8y =−x +8,解得{x =163y =83∴M(163,83).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数
1.已知直线y=kx+b,若k+b=-5,kb=5,那该直线不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2. 直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A.(-4,0) B.(-1,0) C.(0,2) D.(2,0)
3. 对于函数y=-3x+1,下列结论正确的是( )
A.它的图象必经过点(-1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
4. 若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是( )
5. 如图,直线y=-x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,-1),则关于x的不等式-x+2≥ax+b的解集为( )
A.x≥-1 B.x≥3 C.x≤-1 D.x≤3
6. 如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x-3 C.y=2x-3 D.y=-x+3
7. 如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是( )
A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3
8. 已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.
9. 在平面直角坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为____________.
10. 一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为.
11. 点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2(填“>”“=”或“<”).
12. 把直线y=-x-1沿x轴向右平移2个单位,所得直线的函数解析式为.
13. 已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4,求这个一次函数的解析式.
14. 在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点.
①求a的值;
②设这条直线与y轴相交于点D,求△OPD的面积.
参考答案:
1---7 ADCAD DC
8. ≥2
9. 73
≤k≤3 10. x =-1
11. <
12. y =-x +1
13. 解:设一次函数解析式为y =kx +b ,将x =3,y =1;x =-2,y =-4代入得⎩
⎪⎨⎪⎧3k +b =1,-2k +b =-4,解得k =1,b =-2.则一次函数解析式为y =x -2
14. 解:①设直线的解析式为y =kx +b ,把A(-1,5),B(3,-3)代入,可得⎩⎪⎨⎪⎧-k +b =5,3k +b =-3,解得⎩
⎪⎨⎪⎧k =-2,b =3,所以直线解析式为y =-2x +3,把P(-2,a)代入y =-2x +3中,得a =7;②由①得点P 的坐标为(-2,
7),令x =0,则y =3,所以直线与y 轴的交点D 的坐标为(0,3),所以△OPD 的面积=12
×3×2=3。

相关文档
最新文档