八年级数学上学期第一次月考试卷(含解析) 新人教版1
八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)(考试总分:120 分)一、单选题(本题共计6小题,总分18分)1.(3分)下列图形中,具有不稳定性的是()A. 钝角三角形B. 锐角三角形C. 直角三角形D. 长方形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,1B.2,2,4C.3,4,5 D.3,4,8 3.(3分)若一个三角形三个内角度数的比为3:4:7,则这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.无法确定4.(3分)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360度B.540度C.180或360度D.540或360或180度5.(3分)如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为()A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米6.(3分)如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68二、 填空题 (本题共计6小题,总分18分)7.(3分)等腰三角形的两边长分别为3cm 和6cm ,则周长为 .8.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .9.(3分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于 .10.(3分)将一副三角板按如图所示的位置摆放,则图中∠1= °.11.(3分)如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1ACD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________12.(3分)在平面直角坐标系中,已知点A(1,2),B(3,3),C(3,2),若存在一点E,使△ACE和△ACB全等,请写出所有满足条件的点E的坐标:.三、解答题(本题共计11小题,总分84分)13.(6分)已知一个多边形,过一个顶点处可以引6条对角线,问(1)这是一个几边形?(2)这个多边形的内角和是多少?14.(6分)已知:如图,点B,D在线段AE上,AD=BE,AC//EF,∠C=∠F,求证:△ABC≌△EDF.15.(6分)如图,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.16.(6分)(1)在图1中,沿图中的虚线画线,把下面的图形划分为两个全等的图形.(2)图2为边长为1个单位长度的小正方形组成的网格在△ABC的下方画出与△ABC全等的△EBC.图1图217.(6分)如图,AB=CB,AD=CD.AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE= OF.18.(8分)证明命题:全等三角形对应边上的中线相等,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。
湖北省黄冈市八年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省黄冈市八年级(上)第一次月考数学试卷一、选择题:每小题3分,共10小题.1.如图所示,三角形的个数是()A.3 B.4 C.5 D.62.下列线段能构成三角形的是()A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,63.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40° B.60° C.80° D.90°4.如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18 B.24 C.48 D.365.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.24米D.不能确定6.已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°8.如图,D为∠ABC的平分线上一点,P为平分线上异于D的一点,PA⊥BA,PC⊥BC,垂足分别为A、C,则下列结论错误的是()A.AD=CD B.∠DAP=∠DCP C.∠ADB=∠BDC D.PD=BD9.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC10.下列判断:①有两边及其中一边上的高对应相等的两个三角形全等;②有两边及第三边上的高对应相等的两个三角形全等;③三角形有6个边、角元素中,有5个元素分别对应相等的两个三角形全等;④一边及其他两边上的高对应相等的两个三角形全等,其中成立的是()A.①②④B.③C.都不对D.全对二、填空题:共8小题,每小题3分.11.如图,已知AC=AD,要证明△ABC≌△ABD,还需添加的一个条件是.(只添一个条件即可)12.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,则∠A′CO=.13.图中∠1+∠2+∠3+∠4+∠5+∠6=度.14.如图,在Rt△ABC中,∠A CB=90°,CD⊥AB交AB于点D,过AC的中点E作EF⊥AC交CD的延长线于点F,若AE=BC=4cm,则EF的值为.15.如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E=.16.图中x的值为.17.如图所示,已知O为∠A和∠C的平分线的交点,OE⊥AC于E.若OE=2,则O到AB与O 到CD的距离之和=.18.如图,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC.其中成立的是.(填上序号即可)三、解答题:共66分.19.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.已知,a、b、c为△ABC的三边长,b、c满足(b﹣2)2+|c﹣3|=0,且a为方程|a﹣4|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.23.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值X围.24.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G 点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.25.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE 的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.2016-2017学年某某省黄冈市红安实验中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:每小题3分,共10小题.1.如图所示,三角形的个数是()A.3 B.4 C.5 D.6【考点】三角形.【分析】三角形就是三条首尾顺次相接的线段构成的图形.按顺序找.【解答】解:如图所示:三角形有△AED、△BED、△ACD、△ABD、△ABC,共5个.故选C.2.下列线段能构成三角形的是()A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.【解答】解:A、2+2=4,不能构成三角形,故A选项错误;B、3、4、5,能构成三角形,故B选项正确;C、1+2=3,不能构成三角形,故C选项错误;D、2+3<6,不能构成三角形,故D选项错误.故选:B.3.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40° B.60° C.80° D.90°【考点】三角形内角和定理.【分析】设∠A=x,则∠B=2x,∠C=x+20°,再根据三角形内角和定理求出x的值即可.【解答】解:设∠A=x,则∠B=2x,∠C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∠A=40°.故选A.4.如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18 B.24 C.48 D.36【考点】三角形的面积.【分析】由于F是BE的中点,BF=EF,那么△EFD和△BFD可看作等底同高的两个三角形,根据三角形的面积公式,得出△EFD和△BFD的面积相等,进而得出△BDE的面积等于△BFD 的面积的2倍;同理,由于E是AD的中点,得出△ADB的面积等于△BDE面积的2倍;由于AD是BC边上的中线,得出△ABC的面积等于△ABD面积的2倍,代入求解即可.【解答】解:∵F是BE的中点,∴BF=EF,∴S△EFD=S△BFD,又∵S△BDE=S△EFD+S△BFD,∴S△BDE=2S△BFD=2×6=12.同理,S△ABC=2S△ABD=2×2S△BDE=4×12=48.故答案为48.5.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.24米D.不能确定【考点】多边形内角与外角.【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【解答】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转30°,∴多边形的边数=360°÷30°=12,周长=12×2=24米.故选C.6.已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°【考点】全等图形.【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选B.8.如图,D为∠ABC的平分线上一点,P为平分线上异于D的一点,PA⊥BA,PC⊥BC,垂足分别为A、C,则下列结论错误的是()A.AD=CD B.∠DAP=∠DCP C.∠ADB=∠BDC D.PD=BD【考点】角平分线的性质.【分析】根据角平分线的性质得出距离相等,结合其它条件证三角形全等,得出结论与各选项进行比对,答案可得.【解答】解:∵点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,∴△ABP≌△CBP,AP=CP,∴∠APD=∠CPD,∴在△APD和△CPD中,,∴△APD≌△CPD,∴AD=CD、∠DAP=∠DCP、∠ADP=∠CDP,∴∠ADB=∠BDC.∵P是BD上任意一个与D不同的点,∴PD=BD不一定成立.故选D.9.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【考点】全等三角形的性质.【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选C.10.下列判断:①有两边及其中一边上的高对应相等的两个三角形全等;②有两边及第三边上的高对应相等的两个三角形全等;③三角形有6个边、角元素中,有5个元素分别对应相等的两个三角形全等;④一边及其他两边上的高对应相等的两个三角形全等,其中成立的是()A.①②④B.③C.都不对D.全对【考点】全等三角形的判定.【分析】错误的判断可以通过举反例的办法说明;正确的可通过定理定义或者证明说明.【解答】解:钝角三角形和锐角三角形满足两边及其中一边上的高相等,但不全等,故①错;如右图所示,AB=AB,AC=AD,第三边BD、BC边上的高也相等,显然△ABC不全等于△ABD,故②错;有5个元素分别对应相等的两个三角形一定全等,故③正确;如下图所示,△ABC 和△ABD满足一边和其他两边上的高对应相等,但它们不全等,故④不成立.故选B.二、填空题:共8小题,每小题3分.11.如图,已知AC=AD,要证明△ABC≌△ABD,还需添加的一个条件是BC=BD .(只添一个条件即可)【考点】全等三角形的判定.【分析】已知AC=AD,AB为公共边,只需要再找一条边BC=BD即可判定△ABC≌△ABD.【解答】解:需添加条件:BC=BD.在△ABC和△ABD中,∵,∴△ABC≌△ABD(SSS).故答案为:BC=BD.12.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,则∠A′CO=82°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠B′=∠B=30°,∠AOB=∠A′OB′,求出∠AOA′=∠BOB′=52°,代入∠A′CO=∠B′+∠BOB′求出即可.【解答】解:∵△AOB≌△A′OB′,∠B=30°,∴∠B′=∠B=30°,∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′=52°,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°,故答案为:82°.13.图中∠1+∠2+∠3+∠4+∠5+∠6= 360 度.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】根据三角形外角的性质,四边形内角的性质,可得答案.【解答】解:如图,由三角形外角的性质,得∠7=∠1+∠6,∠8=∠2+∠7.由等式的性质,得∠8=∠2+∠1+∠7.∠1+∠2+∠3+∠4+∠5+∠6=∠8+∠3+∠4+∠5=(4﹣2)×180=360°,故答案为:360.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB交AB于点D,过AC的中点E作EF⊥AC交CD的延长线于点F,若AE=BC=4cm,则EF的值为8 .【考点】全等三角形的判定与性质.【分析】根据EF⊥AC,CD⊥AB得出∠A=∠F,再根据E是AC的中点,得出AE=CE,根据AE=BC=4cm,得出CE=BC,AC=8,最后根据AAS证出△ABC≌△FCE,则AC=EF,即可得出答案.【解答】解:∵EF⊥AC,∴∠CEF=90°,∵CD⊥AB,∴∠ADF=90°,∴∠A=∠F,∵E是AC的中点,∴AE=CE,∵AE=BC=4cm,∴CE=BC,AC=8,∵在△ABC和△FCE中,,∴△ABC≌△FCE(AAS),∴AC=EF,∴EF=8.故答案为:8.15.如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E= 40°.【考点】三角形内角和定理.【分析】利用角平分线定义可知∠ECD=∠ACD.再利用外角性质,可得∠ACD=∠A+∠ABC ①,∠ECD=∠E+∠ABC②,那么可利用∠ECA=∠ECD,可得相等关系,从而可求∠E的度数.【解答】解:∵CE是∠ACD的角平分线,∴∠ECD=∠ACD.又∵∠ACD=∠A+∠ABC,∴∠ECD=∠A+∠ABC,又∵∠ECD=∠E+∠ABC,∴∠A+∠ABC=∠E+∠ABC,∴∠E=∠A=40°,故答案为:40°.16.图中x的值为60°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和可得x+x+20°=x+80°,再解即可.【解答】解:根据三角形外角的性质可得:x+x+20°=x+80°,解得:x=60°,故答案为:60°17.如图所示,已知O为∠A和∠C的平分线的交点,OE⊥AC于E.若OE=2,则O到AB与O 到CD的距离之和= 4 .【考点】角平分线的性质.【分析】首先过点O作OM⊥AB于点M,作ON⊥CD于点N,由O为∠A和∠C的平分线的交点,OE⊥AC,根据角平分线的性质,可得OM=OE=2,ON=OE=2,继而求得答案.【解答】解:过点O作OM⊥AB于点M,作ON⊥CD于点N,∵O为∠A和∠C的平分线的交点,OE⊥AC,∴OM=OE=2,ON=OE=2,∴O到AB与O到CD的距离之和=2+2=4.故答案为:4.18.如图,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC.其中成立的是①②③④.(填上序号即可)【考点】全等三角形的性质.【分析】根据全等三角形的性质得出AE=DE,∠A=∠DEC,AB=CE,BE=CD,求出∠AEB+∠DEC=90°,求出∠AED=90°,即可判断①②③,根据平行线的判定即可判断④.【解答】解:∵Rt△ABE≌Rt△ECD,∴AE=DE,∠A=∠DEC,∴①正确;∵∠B=90°,∴∠A+∠AEB=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°,∴AE⊥DE,∴②正确;∵Rt△ABE≌Rt△ECD,∴AB=CE,DC=BE,∴BC=BE+CE=AB+DC,∴③正确;∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,∴④正确;故答案为:①②③④.三、解答题:共66分.19.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.【考点】角平分线的性质.【分析】根据角平分线性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出即可.【解答】解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=28,AB=6,BC=8,∴×6×DE+×8×DF=28,∴DE=DF=4.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.【考点】三角形三边关系;解三元一次方程组.【分析】(1)根据三角形的三边关系得出a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,再化去绝对值即可;(2)通过解三元一次方程组,即可得出三角形的各边.【解答】解:(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|=﹣a+b+c﹣b+c+a﹣c+a+b=a+b+c;(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①﹣②,得a﹣c=2,④由③+④,得2a=12,∴a=6,∴b=11﹣6=5,∴c=10﹣6=4.21.已知,a、b、c为△ABC的三边长,b、c满足(b﹣2)2+|c﹣3|=0,且a为方程|a﹣4|=2的解,求△ABC的周长,并判断△ABC的形状.【考点】三角形三边关系;绝对值;非负数的性质:绝对值;非负数的性质:偶次方;等腰三角形的判定.【分析】利用绝对值的性质以及偶次方的性质得出b,c的值,进而利用三角形三边关系得出a的值,进而求出△ABC的周长进而判断出其形状.【解答】解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|a﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意舍去,∴a=2,∴△ABC的周长为:2+2+3=7,∴△ABC是等腰三角形.22.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4).23.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值X围.【考点】三角形三边关系;列代数式.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)当m=10时,三边长分别为10,28,12,根据三角形三边关系即可作出判断;(3)根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出m的取值X围.【解答】解:(1)∵第二条边长为(3m﹣2)米,∴第三条边长为50﹣m﹣(3m﹣2)=(52﹣4m)米;(2)当m=10时,三边长分别为10,28,12,由于10+12<28,所以不能构成三角形,即第一条边长不能为10米;(3)由题意,得,解得<m<9.24.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G 点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF;(2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF.【解答】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.25.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE 的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE ﹣CE.【解答】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.。
山东省聊城市八年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省聊城市八年级(上)第一次月考数学试卷一.精心选一选(每题3分,共36分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cm C.7cm D.无法确定3.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠44.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去5.有理式:①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④6.到三角形三个顶点距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条内角平分线的交点D.三角形三条边垂直平分线的交点7.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40° 40°B.80° 20°C.50° 50°D.50° 50°或80° 20°8.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣4,﹣5)D.(﹣5,﹣4)9.如图△ABC中,∠C=90°,AD平分∠BAC,若AB=9,CD=2,则△ABD的面积是()A.B.9 C.18 D.10.如图所示,在△ABC中,直线MN是AC的垂直平分线,若CM=4cm,△ABC的周长是27cm,那么△ABN的周长是()A.19cm B.17cm C.9cm D.9cm或17cm11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个12.已知点A和点B(如图),以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A.2个B.4个C.6个D.8个二、耐心填一填(每小题4分,共20分)13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).14.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=.15.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是;生活中的活动铁门是利用四边形的.16.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、画图题(共10分,每题5分):用心画一画18.(1)如图1,已知:∠α,∠β,线段a,用尺规作△ABC,使∠A=∠α,∠B=∠β,AB=a.(保留作图痕迹,不写作法)(2)已知∠AOB及C、D两点,如图2所示,C在∠AOB外,D在∠AOB内,求作一点P,使PC=PD且P到OA、OB的距离相等(保留作图痕迹).四、解答题(共54分):用心做一做19.如图,△ABC中,DE为AB的垂直平分线,交AC于点D,交AB于点E,若△ABC的周长为20,AE为4,求△BCD的周长.20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.21.如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM与QN相等吗?请证明.22.如图,在等腰△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:∠DEF=∠DFE.23.如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.(1)求证:BD=DE+CE(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE 的关系如何?请予以证明.(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE 的关系如何?直接写出结果,不需证明.2016-2017学年某某省聊城市文轩中学八年级(上)第一次月考数学试卷参考答案与试题解析一.精心选一选(每题3分,共36分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.2.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cm C.7cm D.无法确定【考点】全等图形.【分析】根据全等三角形的书写,DE与BC是对应边,再根据全等三角形对应边相等即可求出DE的长度也就是BC的长度.【解答】解:∵△ABC≌△ADE,∴DE=BC,∵BC=7cm,∴DE=7cm.故选C.3.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠4【考点】全等三角形的判定.【分析】根据题目中给出的条件AB=AD,AC=AE,要用“SAS”还缺少条件是夹角:∠BAC=∠DAE,筛选答案可选出C.【解答】解:还需条件∠1=∠2,∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即:∠BAC=∠DAE,在△ABC和△ADE中:,∴△ABC≌△ADE(SAS).故选:C.4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.5.有理式:①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.6.到三角形三个顶点距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条内角平分线的交点D.三角形三条边垂直平分线的交点【考点】线段垂直平分线的性质.【分析】到两个顶点距离相等的点在这两个顶点为端点的线段的垂直平分线上.∴到三角形三个顶点距离相等的点是三角形三条边垂直平分线的交点.【解答】解:到两个顶点距离相等的点在这两个顶点为端点的线段的垂直平分线上.∴到三角形三个顶点距离相等的点是三角形三条边垂直平分线的交点.故选D.7.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40° 40°B.80° 20°C.50° 50°D.50° 50°或80° 20°【考点】等腰三角形的性质.【分析】先求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等分情况讨论求解.【解答】解:∵一个外角等于100°,∴与这个外角相邻的内角是180°﹣100°=80°,①80°角是顶角时,底角是=50°,与它不相邻的两个内角的度数分别为50°,50°;②80°角是底角时,顶角是180°﹣80°×2=20°,与它不相邻的两个内角的度数分别为80°,20°,综上所述,与它不相邻的两个内角的度数分别为50°,50°或80°,20°.故选D.8.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣4,﹣5)D.(﹣5,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).【解答】解:∵点P关于x轴对称点M的坐标为(4,﹣5),∴P(4,5),∴点P关于y轴对称点N的坐标为:(﹣4,5).故选:A.9.如图△ABC中,∠C=90°,AD平分∠BAC,若AB=9,CD=2,则△ABD的面积是()A.B.9 C.18 D.【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×9×2=9,故选:B.10.如图所示,在△ABC中,直线MN是AC的垂直平分线,若CM=4cm,△ABC的周长是27cm,那么△ABN的周长是()A.19cm B.17cm C.9cm D.9cm或17cm【考点】线段垂直平分线的性质.【分析】由“MN是AC的垂直平分线”知AN=NC,再根据已知边长及△ABC周长,即可求得三角形ABN的周长.【解答】解:∵MN是AC的垂直平分线,CM=4cm,∴AN=NC,AM=MC,∴BC=AN+BN,AC=8cm,又∵△ABC的周长是27cm,∴AB+BC=19cm,∴△ABN的周长=AB+BN+AN=AB+BC=19cm.故选:A.11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BF=CF,∴△ABC,△ABD,△ACE,△BFC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,∴BE=BF,CF=CD,BC=BD=CF,∴△BEF,△CDF,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选C.12.已知点A和点B(如图),以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A.2个B.4个C.6个D.8个【考点】等腰直角三角形.【分析】利用等腰直角三角形的性质来作图,要注意分不同的直角顶点来讨论.【解答】解:此题应分三种情况:①以AB为腰,点A为直角顶点;可作△ABC1、△ABC2,两个等腰直角三角形;②以AB为腰,点B为直角顶点;可作△BAC3、△BAC4,两个等腰直角三角形;③以AB为底,点C为直角顶点;可作△ABC5、△ABC6,两个等腰直角三角形;综上可知,可作6个等腰直角三角形,故选C.二、耐心填一填(每小题4分,共20分)13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.14.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC= 15°.【考点】等边三角形的性质.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.15.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是三角形的稳定性;生活中的活动铁门是利用四边形的不稳定性.【考点】三角形的稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性与四边形的不稳定性作答.【解答】解:大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是三角形的稳定性;生活中的活动铁门是利用四边形的不稳定性.故答案为:三角形的稳定性、不稳定性.16.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【考点】等边三角形的性质;全等三角形的判定与性质.【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠D CE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、画图题(共10分,每题5分):用心画一画18.(1)如图1,已知:∠α,∠β,线段a,用尺规作△ABC,使∠A=∠α,∠B=∠β,AB=a.(保留作图痕迹,不写作法)(2)已知∠AOB及C、D两点,如图2所示,C在∠AOB外,D在∠AOB内,求作一点P,使PC=PD且P到OA、OB的距离相等(保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠A=∠α,∠B=∠β,AB=a即可;(2)利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:(1)如图1,△ABC即为所求.;(2)如图2,点P即为所求..四、解答题(共54分):用心做一做19.如图,△ABC中,DE为AB的垂直平分线,交AC于点D,交AB于点E,若△ABC的周长为20,AE为4,求△BCD的周长.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质即可得到结论.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,AB=2AE=8,∵若△ABC的周长为20,∴BC+AC=20﹣8=12,∴△BCD的周长=BC+CD+BD=BA+BD+AD=BC+AC=12.20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.【考点】线段垂直平分线的性质.【分析】先利用ASA证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O 在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【解答】证明:在△AOB与△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.21.如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM与QN相等吗?请证明.【考点】角平分线的性质.【分析】根据到角的两边的距离相等的点再叫的平分线上可得OP是∠AOB的角平分线,再根据角的平分线上的点到角的两边的距离相等可得QM=QN.【解答】解:QM=QN,理由如下:∵PE⊥OA,PF⊥OB垂足分别为E,F,PE=PF,∴OP是∠AOB的角平分线,∵QM⊥OA,QN⊥OB,∴QM=QN.22.如图,在等腰△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:∠DEF=∠DFE.【考点】等腰三角形的性质;角平分线的性质.【分析】根据等腰三角形的性质得到AD是∠BAC的平分线,再根据角平分线的性质得到DE=DF,再根据等腰三角形的性质可证此题.【解答】证明:连接AD,∵D是BC的中点,∴BD=CD,又∵AB=AC,∴AD是∠BAC的平分线,又∵DE⊥AB,DF⊥AC,∴DE=DF,∴∠DEF=∠DFE.23.如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.(1)求证:BD=DE+CE(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE 的关系如何?请予以证明.(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE 的关系如何?直接写出结果,不需证明.【考点】几何变换综合题.【分析】(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(2)BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.【解答】证明:(1)∵BD⊥AE于D,CE⊥AE于E,∴∠ADB=∠AEC=90°.∵∠BAC=90°,∠ADB=90°,∵∠ABD+∠BAD=∠CAE+∠BAD=90°,∴∠ABD=∠CAE在△ABD 和△CAE中,∠ABD=∠CAE,∠ADB=∠CEA,AB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵AE=AD+DE,∴BD=DE+CE(2)解:BD=DE﹣CE证明如下:∵BD⊥AE于D,CE⊥AE于E,∴∠DAB+∠DBA=90°∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE.在△DBA和△EAC中,∠D=∠E=90°,∠DBA=∠CAE,AB=AC△DBA≌△EAC(AAS)∴BD=AE,AD=CEBD=AE=DE﹣AD=DE﹣CE(3)∵BD⊥AE于D,CE⊥AE于E,∴∠DAB+∠DBA=90°∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE.在△DBA和△EAC中,∠D=∠E=90°,∠DBA=∠CAE,AB=AC △DBA≌△EAC(AAS)∴BD=AE,AD=CE又∵ED=AD+AE,∴DE=BD+CE.。
八年级数学上学期第一次月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。
【初中教育】最新八年级数学上学期第一次月考试题(含解析)新人教版

——教学资料参考参考范本——【初中教育】最新八年级数学上学期第一次月考试题(含解析)新人教版______年______月______日____________________部门一、选择题:(每题3分,共30分)1.数3.14,,,0.323232…,,,,1+中,无理数的个数为()A.2个B.3个C.4个D.5个2.已知x3ym﹣1•xm+ny2n+2=x9y9,则4m﹣3n等于()A.8 B.9 C.10 D.113.若a为实数,则下列说法正确的是()A.|﹣a|是正数B.﹣|a|是负数C.是非负数D.|﹣a|永远大于﹣|a|4.下列计算中,错误的有()①(3a+4)(3a﹣4)=9a2﹣4;②(2a2﹣b)(2a2+b)=4a2﹣b2;③(3﹣x)(x+3)=x2﹣9;④(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2﹣y2.A.1个B.2个C.3个D.4个5.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A.20xx B.20xx C.20xx D.20xx6.(﹣3)20xx+(﹣3)20xx所的结果是()A.﹣3 B.﹣2×320xx C.﹣1 D.﹣320xx7.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4 B.3 C.﹣5 D.28.若x2﹣7xy+M是一个完全平方式,那么M是()A.B.C.D.49y29.设a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.10.如果(﹣am)n=amn成立,则()A.m是偶数,n是奇数B.m、n都是奇数C.m是奇数,n是偶数D.n是偶数二、填空:(每题2分,共34分)11.的平方根是.若x2=(﹣0.7)2,则x= .12.的平方根是,的立方根是.13.如果a2=1,则= .若=2,则2x+5的平方根是.14.()(5a+1)=1﹣25a2,(a+3b)2= .15.当n是奇数时,(﹣a2)n= .16.写出所有比小且比大的整数.17.若a+b=0,则+= .(﹣)1996•(3)1996= .18.已知某数的两个平方根分别是a+3与2a﹣15,则a= ,这个数= .19.99×101=()×()= .20.若an=3,则bn=2,那么(ab)2n= ;若x2n=2,则(3x3n)2﹣4(x2)2n= .21.若m+4n﹣3=0,则2m•16n=;若5x﹣3y﹣2=0,则105x÷103y=.22.2100÷833=;2x﹣8=12,则2x﹣10= .23.长方形的长为(2a+3b),宽为(2a﹣3b),则长方形的面积为.24.已知x2﹣x+1=0,则x2+= .25.若+(3m﹣n)2=0,则m+n的立方根为.26.如果(x+4)(x+q)=x2+mx+24成立,那么m= ,q= .27.建筑工人李师傅想用钢材焊制一个面积为5平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为米(精确到0.01).三、解答题(共56分)28.计算(1)+﹣(2)(x+3)(x﹣1)﹣x(x﹣2)+1(3)(﹣0.125)12×(﹣1)7×(﹣8)13×(﹣)9.(4)(m﹣2n)(m2+4n2)(m+2n)29.先化简再求值:3x(x2﹣x﹣1)﹣(x+1)(3x2﹣x),其中x=﹣.30.已知x是的整数部分,y是的小数部分,求的平方根.31.如果(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,求p,q的值.32.已知x,y为实数,且,求的值.33.已知m2+n2﹣6m+10n+34=0,求m+n.34.若A=是a+3b的算术平方根,B=是1﹣a2的立方根,求a与b的值.35.已知a,b,c实数在数轴上的对应点如图所示,化简.36.探索题图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于多少?(2)请用两种不同的方法求图b中阴影部分的面积.方法1:方法2:(3)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2= .20xx-20xx学年福建省××市××县稔田中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.数3.14,,,0.323232…,,,,1+中,无理数的个数为()A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,1+是无理数.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.已知x3ym﹣1•xm+ny2n+2=x9y9,则4m﹣3n等于()A.8 B.9 C.10 D.11【考点】同底数幂的乘法;解二元一次方程组.【分析】先根据同底数幂乘法对等式左边进行计算,再根据相同字母的指数相等列出方程组,解出m、n的值,代入4m﹣3n求解即可.【解答】解:x3ym﹣1•xm+ny2n+2=xm+n+3ym+2n+1=x9y9,∴,解得,∴4m﹣3n=4×4﹣3×2=10.故选C.【点评】本题主要考查同底数幂乘法运算后根据指数相等列二元一次方程组求解,再代入求解代数式的值.3.若a为实数,则下列说法正确的是()A.|﹣a|是正数B.﹣|a|是负数C.是非负数D.|﹣a|永远大于﹣|a|【考点】实数.【分析】根据绝对值都是非负数,算术平方根是非负数,可得答案.【解答】解:A、a=0时,|﹣a|是非负数,故A错误;B、﹣|a|是非正数,故B错误;C、是非负数,故C正确;D、a=0时|﹣a|=﹣|a|,故D错误;故选:C.【点评】本题考查了实数,绝对值都是非负数,算术平方根是非负数.4.下列计算中,错误的有()①(3a+4)(3a﹣4)=9a2﹣4;②(2a2﹣b)(2a2+b)=4a2﹣b2;③(3﹣x)(x+3)=x2﹣9;④(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2﹣y2.A.1个B.2个C.3个D.4个【考点】平方差公式.【专题】计算题.【分析】根据平方差公式:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,结果是乘式中两项的平方差,即相同项的平方减去相反项的平方,对各选项计算后利用排除法求解.【解答】解:①应为(3a+4)(3a﹣4)=9a2﹣16,故本选项错误;②应为(2a2﹣b)(2a2+b)=4a4﹣b2,故本选项错误;③应为(3﹣x)(x+3)=9﹣x2,故本选项错误;④应为(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2+y2,故本选项错误.所以①②③④都错误.故选D.【点评】本题主要考查平方差公式的具体应用,熟记公式结构是解题的关键.5.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A.20xx B.20xx C.20xx D.20xx【考点】实数的运算.【专题】应用题.【分析】由于题目中“输出的数比该数的平方小1”可表示为:输出的结果=输入一个数的平方﹣1,由此即可求解.【解答】解:依题意得:()2﹣1=20xx.故选B.【点评】此题主要考查了实数的运算,解答本题的关键就是弄清楚题目给出的计算程序.6.(﹣3)20xx+(﹣3)20xx所的结果是()A.﹣3 B.﹣2×320xx C.﹣1 D.﹣320xx【考点】因式分解-提公因式法.【分析】通过提取公因式(﹣3)20xx进行因式分解,然后解答.【解答】解:原式=(﹣3)20xx(1﹣3)=﹣2×(﹣3)20xx=﹣2×320xx.故选:B.【点评】本题考查了因式分解﹣﹣提取公因式法.注意:负数的偶次方是正数.7.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4 B.3 C.﹣5 D.2【考点】平方差公式.【分析】直接利用平方差公式计算,然后再合并同类项即可.【解答】解:(n+3)(n﹣3)﹣(n+2)(n﹣2),=(n2﹣9)﹣(n2﹣4),=n2﹣9﹣n2+4,=﹣5,故选C.【点评】本题考查了平方差公式的应用,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.若x2﹣7xy+M是一个完全平方式,那么M是()A.B.C.D.49y2【考点】完全平方式.【专题】常规题型.【分析】先根据已知两平方项与乘积二倍项确定出这两个数,再根据完全平方公式把另一个数平方即可.【解答】解:∵x2﹣7xy+M=x2﹣2×x•y+M,∴M=(y)2=y2.故选C.【点评】本题主要考查了完全平方式,根据已知平方项与乘积二倍项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.设a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.【考点】估算无理数的大小;实数与数轴.【分析】本题利用实数与数轴的关系解答,首先估计的大小,进而找到其在数轴的位置,即可得答案.【解答】解:a=,有3<a<4,可得其在点3与4之间,并且靠近4;分析选项可得B符合.故为B.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.10.如果(﹣am)n=amn成立,则()A.m是偶数,n是奇数B.m、n都是奇数C.m是奇数,n是偶数D.n是偶数【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵(﹣am)n=amn成立,∴n为偶数.故选D.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.二、填空:(每题2分,共34分)11.的平方根是±3.若x2=(﹣0.7)2,则x= ±0.7.【考点】算术平方根;平方根.【分析】根据平方根的定义,即可解答.【解答】解: =9,9的平方根是±3;若x2=(﹣0.7)2,x2=0.49,则x=±0.7,故答案为:±3,0.7.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.12.的平方根是±2,的立方根是 2 .【考点】立方根;平方根;算术平方根.【分析】根据立方根和平方根的定义进行填空即可.【解答】解:∵=4,∴的643的平方根是±2,∵=8,∴的立方根是2,故答案为±2,2.【点评】本题考查了立方根、平方根以及算术平方根,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.如果a2=1,则= 1或﹣1 .若=2,则2x+5的平方根是±.【考点】立方根;平方根.【分析】根据a2=1和=2,分别求得a和x,再求出和2x+5的平方根即可.【解答】解:∵a2=1,∴a=±1,∴当a=1时, =1,当a=﹣1时, =﹣1;∵=2,∴x+3=8,∴x=5,∴2x+5=15,∴2x+5的平方根为±.故答案为1或﹣1,.【点评】本题考查了立方根的定义,平方根的定义,熟记定义是解题的关键.14.(1﹣5a )(5a+1)=1﹣25a2,(a+3b)2= a2+6ab+9b2 .【考点】平方差公式;完全平方公式.【分析】分别利用平方差公式以及完全平方公式计算得出答案.【解答】解:∵1﹣25a2=(1+5a)(1﹣5a),∴(1﹣5a)(5a+1)=1﹣25a2,(a+3b)2=a2+6ab+9b2.故答案为:1﹣5a,a2+6ab+9b2.【点评】此题主要考查了平方差公式以及完全平方公式,正确应乘法公式是解题关键.15.当n是奇数时,(﹣a2)n= ﹣a2n .【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则求出答案.【解答】解:当n是奇数时,(﹣a2)n=﹣a2n.故答案为:﹣a2n.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.16.写出所有比小且比大的整数2和3 .【考点】估算无理数的大小.【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案.【解答】解:∵3<<4,1<<2,∴所有比小且比大的整数2,3,故答案为:2,3.【点评】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键.17.若a+b=0,则+= 0 .(﹣)1996•(3)1996= 1 .【考点】立方根;幂的乘方与积的乘方.【分析】根据立方根的定义,即可解答.【解答】解:∵a+b=0,∴a,b互为相反数,∴+=0;(﹣)1996•(3)1996==1,故答案为:0,1.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.18.已知某数的两个平方根分别是a+3与2a﹣15,则a= 4 ,这个数= 49 .【考点】平方根.【分析】根据平方根的性质建立等量关系,求出a的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣15)=0,解得:a=4,∴(a+3)2=72=49.故答案为:4,49.【点评】本题主要考查了平方根的性质,其中解题关键是利用正数的两个平方根互为相反数的性质求解.19.99×101=(100﹣1 )×(100+1 )= 9999 .【考点】平方差公式.【分析】直接利用平方差公式进行计算得出答案.【解答】解:99×101=(100﹣1)×(100+1)=9999.故答案为:9999.【点评】此题主要考查了平方差公式的应用,正确应用平方差公式是解题关键.20.若an=3,则bn=2,那么(ab)2n= 36 ;若x2n=2,则(3x3n)2﹣4(x2)2n= 56 .【考点】幂的乘方与积的乘方.【分析】结合已知将原式利用积的乘方运算法则和幂的乘方运算法则变形,进而求出答案.【解答】解:∵an=3,bn=2,∴(ab)2n=(an)2(bn)2=32×22=9×4=36;∵x2n=2,∴(3x3n)2﹣4(x2)2n=9(x2n)3﹣4×(x2n)2=9×23﹣4×22=56.故答案为:36,56.【点评】此题主要考查了幂的乘方运算和积的乘方运算,正确掌握运算法则是解题关键.21.若m+4n﹣3=0,则2m•16n=8 ;若5x﹣3y﹣2=0,则105x÷103y=100 .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法底数不变指数相加,可得答案;根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:由m+4n﹣3=0,得m+4n=3.2m•16n=2m•(24)n=2m•24n=2m+4n=23=8;由5x﹣3y﹣2=0,得5x﹣3y=2.105x÷103y=105x﹣3y=102=100.故答案为:8,100.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的乘法是解题关键.22.2100÷833= 2 ;2x﹣8=12,则2x﹣10= 3 .【考点】同底数幂的除法.【分析】根据幂的乘方底数不变指数相乘,可得同底数幂的除法,根据同底数幂的除法,可得答案;根据同底数幂的除法,可得答案.【解答】解:2100÷(23)33=100÷299=2,2x﹣10=2x﹣8﹣2=2x﹣8÷22=12÷4=3;故答案为:2,3.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.23.长方形的长为(2a+3b),宽为(2a﹣3b),则长方形的面积为4a2﹣9b2 .【考点】平方差公式.【分析】利用长方形面积公式结合平方差公式计算得出答案.【解答】解:∵长方形的长为(2a+3b),宽为(2a﹣3b),∴长方形的面积为:(2a+3b)(2a﹣3b)=4a2﹣9b2.故答案为:4a2﹣9b2.【点评】此题主要考查了平方差公式,正确应用平方差公式是解题关键.24.已知x2﹣x+1=0,则x2+= 3 .【考点】一元二次方程的解.【分析】将方程x2﹣x+1=0,两边同时除以x,可得出x+=,再平方可得出x2+的值.【解答】解:∵x2﹣x+1=0,∴x+=(方程两边同时除以x),故可得则x2+=(x+)2﹣2=3,故答案为:3.【点评】此题考查了完全平方式的知识,将方程变形得出x+=是解答本题的关键,难度一般.25.若+(3m﹣n)2=0,则m+n的立方根为 2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方;立方根.【分析】根据绝对值和偶次方是非负数和几个非负数的和为0的性质得到m﹣2=0,3m﹣n=0,易得m=2,n=6,则m+n=8,然后根据立方根的定义计算8的立方根即可.【解答】解:∵+(3m﹣n)2=0,∴m﹣2=0,3m﹣n=0,∴m=2,n=6,∴m+n=2+6=8,∴m+n的立方根是2,故答案为:2.【点评】本题考查了立方根的定义:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了绝对值和偶次方是非负数以及几个非负数的和为0的性质.26.如果(x+4)(x+q)=x2+mx+24成立,那么m= 10 ,q= 6 .【考点】多项式乘多项式.【分析】直接利用多项式乘以多项式运算法则得出关于m,q的等式进而求出答案.【解答】解:∵(x+4)(x+q)=x2+mx+24成立,∴x2+qx+4x+4q=x2+mx+24,∴4q=24,q+4=m,解得:q=6,m=10.故答案为:10,6.【点评】此题主要考查了多项式乘以多项式,正确把握多项式乘法法则是解题关键.27.建筑工人李师傅想用钢材焊制一个面积为5平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为8.94 米(精确到0.01).【考点】算术平方根.【分析】先根据面积求出正方形的边长,再求出周长即可解答.【解答】解:正方形的边长为:,正方形的周长为:4≈8.94(米),故答案为:8.94.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.三、解答题(共56分)28.计算(1)+﹣(2)(x+3)(x﹣1)﹣x(x﹣2)+1(3)(﹣0.125)12×(﹣1)7×(﹣8)13×(﹣)9.(4)(m﹣2n)(m2+4n2)(m+2n)【考点】整式的混合运算;实数的运算.【专题】计算题;整式.【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式结合后,利用积的乘方逆运算法则变形,计算即可得到结果;(4)原式结合后,利用平方差公式化简即可得到结果.【解答】解:(1)原式=﹣2+0﹣=﹣2;(2)原式=x2﹣x+3x﹣3﹣x2+2x+1=4x﹣2;(3)原式=(0.125×8)12×(﹣8)×(×)7×(﹣)2=﹣;(4)原式=(m2﹣4n2)(m2+4n2)=m4﹣16n4.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.29.先化简再求值:3x(x2﹣x﹣1)﹣(x+1)(3x2﹣x),其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=3x3﹣3x2﹣3x﹣3x3+x2﹣3x2+x=﹣5x2﹣2x,当x=﹣时,原式=﹣+1=﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.30.已知x是的整数部分,y是的小数部分,求的平方根.【考点】估算无理数的大小.【分析】首先可以估算的整数部分和小数部分,然后就可得的整数部分是3,小数部分分别是﹣3;将其代入求平方根计算可得答案.【解答】解:由题意得:x=3,y=﹣3,∴y﹣=﹣3,x﹣1=2,∴(y﹣)x﹣1=9,∴(y﹣)x﹣1的平方根是±3.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法;估算出整数部分后,小数部分=原数﹣整数部分.31.如果(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,求p,q的值.【考点】多项式乘多项式.【分析】首先利用多项式乘以多项式运算法则化简,进而得出含x2与x3的项的系数为0,进而求出答案.【解答】解:∵(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,∴x4﹣3x3﹣qx2﹣px3+3px2+pqx+8x2﹣24x﹣8q=x4﹣(3+p)x3﹣(q﹣3p﹣8)x2+(pq﹣24x)﹣8q即3+p=0,q﹣3p﹣8=0,解得:p=﹣3,q=﹣1.【点评】此题主要考查了多项式乘以多项式,正确把握多项式乘法法则是解题关键.32.已知x,y为实数,且,求的值.【考点】二次根式有意义的条件.【分析】已知根号下为非负数,所以在中,可以得到x=9,从而可得y的值,代入即可.【解答】解:∵有意义,∴,解得x=9,所以y=4,所以, =3+2=5.【点评】本题考查的是对二次根式意义的理解和化简求值,要求学生熟练掌握应用.33.已知m2+n2﹣6m+10n+34=0,求m+n.【考点】完全平方公式;非负数的性质:偶次方.【分析】把原式化成(m﹣3)2+(n+5)2=0,得出m﹣3=0,n+5=0,求出m、n的值,代入求出即可.【解答】解:∵m2+n2﹣6m+10n+34=0,∴m2﹣6m+9+n2+10n+25=0,∴(m﹣3)2+(n+5)2=0,m﹣3=0,n+5=0,m=3,n=﹣5,∴m+n=3+(﹣5)=﹣2.【点评】本题考查了完全平方公式,整式的混合运算的应用,主要考查学生的化简能力和计算能力.34.若A=是a+3b的算术平方根,B=是1﹣a2的立方根,求a与b的值.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的定义,利用根指数列出方程组求解即可.【解答】解:由题意得:,解得.故a的值为3,b的值为2.【点评】本题考查了立方根的定义,算术平方根的定义,熟记定义并利用根指数列出方程是解题的关键.35.已知a,b,c实数在数轴上的对应点如图所示,化简.【考点】立方根;实数与数轴.【分析】首先根据数轴上的各点的位置,可以知道a<0,b<0,c>0,且|a|>|b|>c,接着有a﹣b<0,c﹣a>0,b﹣c<0,由此即可化简绝对值,最后合并同类项即可求解.【解答】解:有数轴可知,a<0,b<0,c>0,∴|a|>|b|>c,a﹣b<0,c﹣a>0,b﹣c<0,∴=﹣a﹣(b﹣a)+(c﹣a)+(c﹣b)=﹣a﹣b+a+c﹣a+c﹣b=2c﹣2b﹣a.【点评】本题考查实数与数轴上的点的对应关系,在原点O左边的数小于0,右边的数大于0,同时也考查了对带有绝对值和根号的代数式的化简.36.探索题图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于多少?m﹣n(2)请用两种不同的方法求图b中阴影部分的面积.方法1:(m+n)2﹣4mn方法2:(m﹣n)2(3)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2= 29 .【考点】完全平方公式的几何背景.【专题】计算题.【分析】(1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图b中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图b中的阴影部分的正方形面积得到(m﹣n)2=(m+n)2﹣4mn;(4)根据(3)的结论得到(a﹣b)2=(a+b)2+4ab,然后把a+b=7,ab=5代入计算.【解答】解:(1)图b中的阴影部分的正方形的边长等于长为m,宽为n的长方形的长宽之差,即m﹣n;(2)方法一:图b中的阴影部分的正方形面积等于大正方形的面积减去4个长方形的面积,即(m+n)2﹣4mn;方法二:图b中的阴影部分的正方形的边长等于m﹣n,所有其面积为(m﹣n)2;(3)(m﹣n)2=(m+n)2﹣4mn;(4)∵(a﹣b)2=(a+b)2﹣4ab,当a+b=7,ab=5,∴(a﹣b)2=72﹣4×5=29.故答案为m﹣n;(m+n)2﹣4mn;(m﹣n)2;29.【点评】本题考查了完全平方公式的几何背景:利用几何图形之间的面积关系得到完全平方公式.。
人教版八年级上册数学《第一次月考》考试(含答案)

人教版八年级上册数学《第一次月考》考试(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=6.估计( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.3二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:()()22322323a a b ab a a b ---,其中a ,b 满足()2130a b a b +-+--=3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、B7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、直角3、32或424、72°5、26、82.︒三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、483、(1)见解析;(2)经过,理由见解析4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B 型号家用净水器7台;购进A 型号家用净水器14台,购进B 型号家用净水器6台;购进A 型号家用净水器15台,购进B 型号家用净水器5台.。
八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
人教版数学八年级上册第一次月考数学试卷带答案解析

人教版数学八年级上册第一次月考数学试卷一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.1010.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.参考答案与试题解析一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.2.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD中根据三角形内角和求∠1的度数.【解答】解:∵CD平分∠ACB,∴∠ACD=×90°=45°,在△ACD中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④【考点】全等图形.【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.10【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.10.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°【考点】全等三角形的判定与性质.【分析】根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°﹣∠B﹣∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选A.二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是7.【考点】多边形内角与外角.【分析】设内角的度数是5x°,则外角是2x°,根据内角与相邻的外角互补,即可求得外角的度数,然后根据外角和是360度,即可求得边数.【解答】解:设内角的度数是5x°,则外角是2x°,根据题意得:5x+2x=180,解得:x=,则2x=,故多边形的边数是:=7.故答案为7.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=74°.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD⊥BC,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∵∠DAE=24°,∴∠BAE=∠BAD﹣∠DAE=64°﹣24°=40°,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×40°=80°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣26°=74°.故答案为:74°.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.【考点】方向角.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.【考点】勾股定理;三角形的面积.【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积计算出CD长即可.【解答】解:∵AC=5cm,BC=12cm,∴AB==13(cm),=AC•CB=AB•CD,∴S△ACB∴5×12=13×CD,解得:CD=,故答案为:.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年内蒙古鄂尔多斯市康巴什一中八年级(上)第一次月考数学试卷一、选择题1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)3.下列给出的各组线段中,能构成三角形的是()A.5,12,13 B.5,12,7 C.8,18,7 D.3,4,84.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等.则代数式h•(m﹣k)n的值为()A.16 B.24 C.32 D.605.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45° B.60° C.75° D.90°7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.688.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A. B. C. D.9.如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE10.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=F N;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.已知三角形三个外角度数的比是3﹕4﹕5,那么这个三角形最大的内角的度数是.12.一个多边形的内角和与其一个外角的总和为1350°,则它是边形.13.表示三条相互交叉直线工路上,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有处.14.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.15.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,AB=8,CD是斜边AB上的高,CE是中线,DE= .17.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.18.如图1,在△ABC中,∠ABC,∠ACB的角平分线交于点O,则∠BOC=90°+∠A=×180°+∠A.如图2,在△ABC中,∠ABC,∠ACB的两条三等分角线分别对应交于O1,O2,则∠BO1C=×180°+∠A,∠BO2C=×180°+∠A.根据以上阅读理解,你能猜想(n等分时,内部有n﹣1个点)(用n的代数式表示)∠BO n﹣1C= .三、解答题(共66分)19.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.20.如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.22.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.23.已知在Rt△ABC中,∠C=90°,点E在边AB上,且AE=AC,∠BAC的平分线AD与BC交于点D.(1)根据上述条件,用尺规在图中作出点E和∠BAC的平分线AD(不要求写出作法,但要保留作图痕迹);(2)证明:DE⊥AB.24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF.25.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到过点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米(1)求AP长的取值范围;(2)当∠CPN=60°时,求AP的值.26.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC 上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△ABC边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016-2017学年内蒙古鄂尔多斯市康巴什一中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.下列给出的各组线段中,能构成三角形的是()A.5,12,13 B.5,12,7 C.8,18,7 D.3,4,8【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.【解答】解:A、5+12>13,能构成三角形,故本选项正确;B、5+7=12,不能构成三角形,故本选项错误;C、8+7<18,不能构成三角形,故本选项错误;D、3+4<8,不能构成三角形,故本选项错误.故选:A.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等.则代数式h•(m﹣k)n的值为()A.16 B.24 C.32 D.60【考点】多边形内角与外角;多边形的对角线.【分析】若过m边形的一个顶点有7条对角线,则m=10;n边形没有对角线,只有三角形没有对角线,因而n=3;k边形有k条对角线,即得到方程k(k﹣3)=k,解得k=5;正h边形的内角和与外角和相等,内角和与外角和相等的只有四边形,因而h=4.代入解析式就可以求出代数式的值.【解答】解:∵n边形从一个顶点发出的对角线有n﹣3条,∴m=7+3=10,n=3,k=5,h=4;则h•(m﹣k)n=60.【点评】本题考查了多边形的内角与外角的应用,解此题的关键是知道:n边形从一个顶点发出的对角线有n﹣3条,共有对角线n(n﹣3)条.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45° B.60° C.75° D.90°【考点】三角形的外角性质;直角三角形的性质.【分析】根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,所以,∠α=45°+30°=75°.故选C.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【专题】压轴题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A. B. C. D.【考点】镜面对称.【分析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.【解答】解:实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,所以应该是C或D答案之一,这两个答案中更接近八点的应该是第四个图形.故选D.【点评】本题考查了镜面反射的原理与性质;这是一道开放性试题,解决此类题注意技巧.9.如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE【考点】全等三角形的判定与性质.【分析】从已知条件思考,利用角平分线的性质,结合平行线的性质,可得很多结论,然后与选项进行逐个比对,答案可得.【解答】解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°∴∠BAD=∠C(同角的余角相等)又∵EF∥AC∴∠BFE=∠C∴∠BAD=∠BFE又∵BE平分∠ABC∴∠BEF=∠AEB,在△ABE与△FBE中,∵∴△ABE≌△FBE(AAS)∴AB=BF.故选A.【点评】此题考查角平分线的定义,平行线的性质,同角的余角相等,三角形全等的判定等知识点.10.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴△AEB≌△AFC;(AAS)∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【点评】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.二、填空题11.已知三角形三个外角度数的比是3﹕4﹕5,那么这个三角形最大的内角的度数是90°.【考点】多边形内角与外角.【分析】根据五边形五个外角度数的比是3:4:5,则可以设最小的一个是3x°,则另外两个角就可用x表示出来,根据三角形的外角和是360度,即可列方程求解.【解答】解:设最小的一个是3x°,则另外两个角的度数是4x°,5x°.根据三角形的外角和是360度,可得:3x+4x+5x=360,解得:x=30.∴三角形的三个外角分别是90°,120°和150°,相应地,三个内角度数分别是90°,60°和30°.则这个三角形最大的内角的度数是90°.【点评】本题主要考查了多边形的内角和外角的关系以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.12.一个多边形的内角和与其一个外角的总和为1350°,则它是9 边形.【考点】多边形内角与外角.【分析】根据n边形的内角和定理可知:n边形内角和为(n﹣2)×180°.设这个外角度数为x度,利用方程即可求出答案.【解答】解:设这个外角度数为x,根据题意,得(n﹣2)×180°+x=1350°,解得:x=1350°﹣180°n+360°=1710°﹣180°n,由于0<x<180°,即0<1710°﹣180°n<180°,解得8.5<n<9.5,所以n=9.故多边形的边数是9.【点评】主要考查了多边形的内角和定理,n边形的内角和为:180°•(n﹣2),则内角和一定是180度的整数倍.13.表示三条相互交叉直线工路上,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有 4 处.【考点】角平分线的性质.【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.【点评】本题考查了角平分线的性质.掌握角平分线上的点到角两边的距离相等是解题的关键,注意数形结合思想的应用.14.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.15.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7 cm.【考点】翻折变换(折叠问题).【专题】压轴题;数形结合.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.【点评】本题考查了翻折变换的知识,利用了折叠的性质.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,AB=8,CD是斜边AB上的高,CE是中线,DE= 2 .【考点】含30度角的直角三角形.【分析】根据直角三角形中30°所对的边是斜边的一半可求得BC的长,再根据直角三角形斜边上的中线等于斜边的一半可得到CE=BE=BC,从而根据可判定△BCE是等边三角形,根据等边三角形的性质不难求得DE的长.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,AB=8,CD是斜边AB上的高,CE是中线,∴BC=BE=CE=4,∴△BCE是等边三角形,∵CD是斜边AB上的高,∴CD也是BE边上的中线,∴ED=EB=2.故答案是:2.【点评】此题主要考查直角三角形斜边上的中线的性质,含30°角的直角三角形的性质及等边三角形的判定与性质的综合运用能力.17.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50°.【考点】翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.【分析】利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OBC=∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可.【解答】解:连接BO,∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=25°,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∴∠OBC=65°﹣25°=40°,∵,∴△ABO≌△ACO,∴BO=CO,∴∠OBC=∠OCB=40°,∵点C沿EF折叠后与点O重合,∴EO=EC,∠CEF=∠FEO,∴∠CEF=∠FEO==50°,故答案为:50°.【点评】此题主要考查了翻折变换的性质以及垂直平分线的性质和三角形内角和定理等知识,利用翻折变换的性质得出对应相等关系是解题关键.18.如图1,在△ABC中,∠ABC,∠ACB的角平分线交于点O,则∠BOC=90°+∠A=×180°+∠A.如图2,在△ABC中,∠ABC,∠ACB的两条三等分角线分别对应交于O1,O2,则∠BO1C=×180°+∠A,∠BO2C=×180°+∠A.根据以上阅读理解,你能猜想(n等分时,内部有n﹣1个点)(用n的代数式表示)∠BO n﹣1C= ×180°+∠A .【考点】三角形内角和定理.【分析】根据已知中的特例,观察两部分前边的倍数和n等分线间的关系,从而写出结论.【解答】解:根据题中所给的信息,总结可得:∠BO1C=×180°+∠A,∠BO n﹣1C=×180°+∠A.故答案为:×180°+∠A【点评】本题考查了三角形的内角和定理,综合运用了三角形的内角和定理和n等分角的概念,难度不大,注意由特殊到一般的总结.三、解答题(共66分)19.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.20.如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.【解答】解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD(SAS),∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.【点评】本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD是关键.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图形,重叠部分为两个直角三角形的面积的差,列式计算即可得解.【解答】解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.22.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.【考点】等边三角形的性质;全等三角形的判定与性质;三角形中位线定理.【专题】计算题;证明题.【分析】(1)过点D作DF∥AB,构造三角形全等,可证得△CDF为等边三角形,得到DF=BE,可由AAS证得△DFP≌△EBP⇒DP=EP;(2)若D为AC的中点,则DF是△ABC的中位线,有BF=BC=a,点P是BF的中点,得到BP=BF=a.【解答】(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.【点评】本题利用了等边三角形的判定和性质,全等三角形的判定和性质求解.23.已知在Rt△ABC中,∠C=90°,点E在边AB上,且AE=AC,∠BAC的平分线AD与BC交于点D.(1)根据上述条件,用尺规在图中作出点E和∠BAC的平分线AD(不要求写出作法,但要保留作图痕迹);(2)证明:DE⊥AB.【考点】作图—复杂作图.【分析】(1)以A为圆心,AC长为半径画弧,交AB于点E,再根据角平分线的画法作出∠BAC的平分线AD即可,注意AD是线段,不要画成射线;(2)首先证明△ACD≌△AED,根据全等三角形的性质可得∠AED=∠C=90°,再根据垂直定义可得答案.【解答】解:(1)如图所示:(2)∵AD平分∠BAC,∴∠EAD=∠CAD,在△ACD和△AED中,∵,∴△ACD≌△AED(SAS),∴∠AED=∠C=90°,∴DE⊥AB.【点评】此题主要考查了基本作图,以及全等三角形的判定与性质,关键是正确画出图形.24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA 即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根据ASA证出△AEB≌△CEB,推出AE=CE即可.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,,∴Rt△DFB≌Rt△DAC(AAS),∴BF=AC.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC,又∵BF=AC,∴CE=BF.【点评】本题考查了三角形的内角和定理,等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是推出△BDF≌△CDA和△AEB≌△CEB,题目综合性比较强.25.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到过点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米(1)求AP长的取值范围;(2)当∠CPN=60°时,求AP的值.【考点】等边三角形的判定与性质.【专题】应用题.【分析】(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得AP的取值范围;(2)根据等边△PCN的判定和性质即可求解.【解答】解:(1)∵BC=2.0分米,AC=CN+PN=12分米,∴AB=12﹣2=10(分米),∴AP的取值范围为:0分米≤AP≤10分米.(2)∵CN=PN,∠CPN=60°,∴△PCN等边三角形.∴CP=6分米.∴AP=AC﹣PC=12﹣6=6(分米).即当∠CPN=60°时,AP=6分米.【点评】本题考查了等边三角形的判定与性质.解答该题时,需要弄清楚遮阳伞的工作原理.26.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC 上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△ABC边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】几何综合题;压轴题.【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可以证得△BCD≌△ACF;然后由全等三角形的对应边相等知AF=BD;(2)通过证明△BCD≌△ACF,即可证明AF=BD;(3)Ⅰ.AF+BF′=AB;利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD (SAS),则BF′=AD,所以AF+BF′=AB;Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD (全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.【解答】解:(1)AF=BD;证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质);同理知,DC=CF,∠DCF=60°;∴∠BCA﹣∠DCA=∠DCF﹣∠DCA,即∠BCD=∠ACF;在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF(全等三角形的对应边相等);(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;(3)Ⅰ.AF+BF′=AB;证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;证明如下:在△BCF′和△ACD中,,∴△BCF′≌△ACD(SAS),∴BF′=AD(全等三角形的对应边相等);又由(2)知,AF=BD;∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质.等边三角形的三条边都相等,三个内角都是60°.。