【精品课件】3.3.2简单线性规划问题
合集下载
课件8:3.3.2 简单的线性规划问题

解:设投资人分别用 x 万元、y 万元投资甲、乙两个项目,
x+y≤10, 由题意知x0≥.30x,+0.1y≤1.8,
y≥0.
目标函数 z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即
可行域.
作直线 l0:x+0.5y=0,并作平行于直线 l0 的一组直线 x+0.5y =z,z∈R,与可行域相交,其中有一条直线经过可行域上的 M 点且与直线 x+0.5y=0 的距离最大,这里 M 点是直线 x+y= 10 和 0.3x+0.1y=1.8 的交点. 解方程组x0+.3xy+=01.01,y=1.8, 得xy==46,,
解:设此工厂应生产甲、乙两种产品 x kg、y kg,利润 z 万元,
9x+4y≤360, 4x+5y≤200, 则依题意可得约束条件:3x+10y≤300, x≥0, y≥0.
利润目标函数为 z=7x+12y.
作出不等式组所表示的平面区域,即可行域(如下图).
作直线l:7x+12y=0,把直线l向右上方平移至l1位置时,直 线l经过可行域上的点M时,此时z=7x+12y取最大值.
【答案】6
9 5
题型三 线性规划的实际应用 例3:某投资人打算投资甲、乙两个项目,根据预测,甲、乙 项目可能的最大盈利率分别为100%和50%,可能的最大亏损 率分别为30%和10%,投资人计划投资金额不超过10万元,要 求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两 个项目各投资多少万元,才能使可能的盈利最大?
解方程组x7+x+2y1=0y3=,17, 得 M(1,1). 故当 x=1,y=1 时,zmin=8.
2x+y≥4, 变式训练 1:设 x,y 满足x-y≥-1, 则 z=x+y( )
人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
3.3.2简单的线性规划问题ppt

2
作出约束条件所表示的平面区域,如图所示
2
4
6
8
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数的点)就代表所有可能的日 生产安排,即当点P(x,y)在上述平面区域中时,所 安排的生产任务x,y才有意义。
4
【进一步】: 若生产一件甲产 品获利2万元,生 产一件乙产品获 利3万元,采用哪 种生产安排获得 利润最大?
经过可行域内的整点B(3,9)和C(4,8)时,t=x+y=12是最优解.答:(略)
例7、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产 1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐 15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产 这两种混合肥料。若生产1车皮甲种肥料利润为10000 元;生产1车皮乙种肥料利润为5000元。分别生产甲、 乙两种肥料各多少车皮,能够产生最大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
三、例题 例5、营养学家指出,成人良好的日常饮食应该至少提 供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg 的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg 蛋白质,0.14kg脂肪,花费28元;而1千克食物B含有 0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪, 花费21元。为了满足营养专家指出的日常饮食要求, 同时使花费最低,需要同时食用食物A和食物B多少 kg?
工厂的厂长,你将会面对 1 4 0 生产安排、资源利用、人 力调配的问题 …… 4 2 0
x, y 0
作出约束条件所表示的平面区域,如图所示
设甲、乙两种产品的日生产分别为 x , y 件,
作出约束条件所表示的平面区域,如图所示
2
4
6
8
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数的点)就代表所有可能的日 生产安排,即当点P(x,y)在上述平面区域中时,所 安排的生产任务x,y才有意义。
4
【进一步】: 若生产一件甲产 品获利2万元,生 产一件乙产品获 利3万元,采用哪 种生产安排获得 利润最大?
经过可行域内的整点B(3,9)和C(4,8)时,t=x+y=12是最优解.答:(略)
例7、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产 1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐 15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产 这两种混合肥料。若生产1车皮甲种肥料利润为10000 元;生产1车皮乙种肥料利润为5000元。分别生产甲、 乙两种肥料各多少车皮,能够产生最大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
三、例题 例5、营养学家指出,成人良好的日常饮食应该至少提 供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg 的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg 蛋白质,0.14kg脂肪,花费28元;而1千克食物B含有 0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪, 花费21元。为了满足营养专家指出的日常饮食要求, 同时使花费最低,需要同时食用食物A和食物B多少 kg?
工厂的厂长,你将会面对 1 4 0 生产安排、资源利用、人 力调配的问题 …… 4 2 0
x, y 0
作出约束条件所表示的平面区域,如图所示
设甲、乙两种产品的日生产分别为 x , y 件,
3.3.2 简单的线性规划问题 课件

3.3.2
简单的线性规划问题
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
2.目标函数:欲达到最大值或最小值所涉及的变量x、y的解
析式,
线性目标函数是x、y的
一次
解析式.
条 件
3.线性规划问题:求线性目标函数在
线性约束
由约束条件画出可行域(如图6所示 ),为矩形 ABCD(包
括边界).点C的坐标为(3,1),z最大时,即平移y=-ax时使直线在
y轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
[答案]
a>1
[评析 ]
这是一道线性规划的逆向思维问题.解答此类问题
必须要明确线性目标函数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
解析:如图3所示.
作出可行域,作直
线 l0: x+ y= 0,平移 l0, 当 l0 过点 A(2,0) 时, z 有最 小值2,无最大值. 答案:B
x-y+5≥0, [例 2] 设 x,y 满足条件x+y≥0, x≤3.
(1)求 u=x2+y2 的最大值与最小值; y (2)求 v= 的最大值与最小值. x-5
(1)求目标函数 z=2x+3y 的最小值与最大值; (2)求目标函数 z=3x-y 的最小值与最大值;
简单的线性规划问题
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
2.目标函数:欲达到最大值或最小值所涉及的变量x、y的解
析式,
线性目标函数是x、y的
一次
解析式.
条 件
3.线性规划问题:求线性目标函数在
线性约束
由约束条件画出可行域(如图6所示 ),为矩形 ABCD(包
括边界).点C的坐标为(3,1),z最大时,即平移y=-ax时使直线在
y轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
[答案]
a>1
[评析 ]
这是一道线性规划的逆向思维问题.解答此类问题
必须要明确线性目标函数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
解析:如图3所示.
作出可行域,作直
线 l0: x+ y= 0,平移 l0, 当 l0 过点 A(2,0) 时, z 有最 小值2,无最大值. 答案:B
x-y+5≥0, [例 2] 设 x,y 满足条件x+y≥0, x≤3.
(1)求 u=x2+y2 的最大值与最小值; y (2)求 v= 的最大值与最小值. x-5
(1)求目标函数 z=2x+3y 的最小值与最大值; (2)求目标函数 z=3x-y 的最小值与最大值;
3.3.2简单的线性规划问题课件

x≥0,y≥0, ≥ , ≥ , 12x+8y≥64, + ≥ , + ≥ , 6x+6y≥42, + ≥ , 6x+10y≥54,
x≥0,y≥0, ≥ , ≥ , 3x+2y≥16, + ≥ , 即 + ≥ , x+y≥7, + ≥ 3x+5y≥27.
作出
可行域如图, 可行域如图,
x-y+2≥0, - + ≥ , - + ≤ , 束条件x-5y+10≤0, + - ≤ , x+y-8≤0,
的最大值和最小值分别为( 的最大值和最小值分别为( A.3,- ,-11 . ,- C.11,- ,-3 . ,-
【思路点拨】 思路点拨】
解答本题可先画出可行域, 解答本题可先画出可行域,再平
1.(2010 ⋅ 吉林联考)若点(1,3) 和(−4, 2) 在直线 − 2x + y + m = 0的两侧,则m的取值范围是( C B. m = −5或m = 10 D. − 5 ≤ m ≤ 10 10 A. m < −5或m > 10 C. − 5 < m < 10
)
解析:由已知两点在直线的两侧, 即( m + 5)( m − 10) < 0,所以 − 5 < m < 10,选C. 则( 2 + 3 + m )( −8 − 2 + m ) < 0,
让目标函数表示直线2.5x+4y=z在可行域上平移, + = 在可行域上平移 在可行域上平移, 让目标函数表示直线 由此可知z= 处取得最小值. 由此可知 =2.5x+4y在B(4,3)处取得最小值. + 在 处取得最小值 因此,应当为该儿童预订4个单位的午餐和 个单 个单位的午餐和3个单 因此,应当为该儿童预订 个单位的午餐和 位的晚餐,就可满足要求. 位的晚餐,就可满足要求.
课件3:3.3.2 简单的线性规划问题

最优解
M
y=3
x
x +2y-8=0
线性规划问题
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组. 线性约束条件:约束条件中均为关于x、y的一次不等 式或方程. 目标函数:欲求最值的关于x、y的解析式. 线性目标函数:欲求最值的解析式是关于x、y的一次 解析式.
有关概念
可行解:满足线性约束条件的解(x,y). 线性规划:求线性目标函数在线性约束条件下的最大值 或最小值. 可行域:所有可行解组成的集合. 最优解:使目标函数达到最大值或 最小值 的可 行 解.
截距
z 3
最大,即z最大.
解方程组
x x
2y 4
8
0得
所以 zmax 2 x 3 y 14
M 4,2
答:每天生产甲产品4件,乙产品2件时,工厂可获最大 利润14万元.
认识名词
x 2y 8
44
x y
16 12
x
0
线性目标 y 0
函数
z 2x 3y
可行解
y
N O
可行域
x=4
解:设需截第一种钢板x张,第一种钢板y张,则
2x+y≥15, x+2y≥18, x+3y≥27, x≥0 ,x∈N y≥0 ,y∈N 目标函数为 z=x+y 作出可行域(如图)
y
调整优值法
15
目标函数z= x+y x+y =0
10 B(3,9)
8
C(4,8)
A(18/5,39/5)
6
4
2
0
2
4
可行域中的整点(5,2)使z =320x+504y取得最小值,
M
y=3
x
x +2y-8=0
线性规划问题
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组. 线性约束条件:约束条件中均为关于x、y的一次不等 式或方程. 目标函数:欲求最值的关于x、y的解析式. 线性目标函数:欲求最值的解析式是关于x、y的一次 解析式.
有关概念
可行解:满足线性约束条件的解(x,y). 线性规划:求线性目标函数在线性约束条件下的最大值 或最小值. 可行域:所有可行解组成的集合. 最优解:使目标函数达到最大值或 最小值 的可 行 解.
截距
z 3
最大,即z最大.
解方程组
x x
2y 4
8
0得
所以 zmax 2 x 3 y 14
M 4,2
答:每天生产甲产品4件,乙产品2件时,工厂可获最大 利润14万元.
认识名词
x 2y 8
44
x y
16 12
x
0
线性目标 y 0
函数
z 2x 3y
可行解
y
N O
可行域
x=4
解:设需截第一种钢板x张,第一种钢板y张,则
2x+y≥15, x+2y≥18, x+3y≥27, x≥0 ,x∈N y≥0 ,y∈N 目标函数为 z=x+y 作出可行域(如图)
y
调整优值法
15
目标函数z= x+y x+y =0
10 B(3,9)
8
C(4,8)
A(18/5,39/5)
6
4
2
0
2
4
可行域中的整点(5,2)使z =320x+504y取得最小值,
3.3.2简单线性规划(1_2)--上课用

2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
3.32简单的线性规划问题课件人教新课标

1 -1 O
-1 B
x-y+1=0
9 17 A (8, 8 )
x-5y-3=0 C
3
x
5x+3y-15=0
课堂练习
1、求z=2x+y的最大值,使式中的x、y满足
y ≤ x,
束缚条件 x + y ≤ 1,
y ≥ -1.
解:用图形表示出不等式组表示的平面区域;
当x=0,y=0时,z=2x+y=0
作一组与直线平行的直线:2x+y=t,t∈R.
答:公司派出4辆A型卡车、4 辆B型卡车时 每天所支出的费用最少.
x 0,
y 0.
利用图解法可求出最大值.此时,x
y
=
1000 29
34.4
=
360 29
12.4
课堂小结
1、线性目标函数的最大(小)值一般在可 行域的顶点处取得,也可能在边界处取得.
2、求线性目标函数的最优解,要注意分析 线性目标函数所表示的几何意义—在y轴上的截 距或其相反数.
3、解线性计划问题的步骤: 画、移、求、答.
x + 2y ≤ 8
4x ≤ 16 4y ≤ 12
x≥0
y ≥ 0
(2)画出不等式组所表示的平面区域: 如上图,图中的阴影部分的整点(坐标为整数 的点)就代表所有可能的日生产安排;
(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生 产一件乙产品获利3万元,采用哪种生产安排利 润最大?
C
3
x
5x+3y-15=0
从图示可知,直线3x+5y=t在经过不等式 组所表示的公共区域内的点时,以经过点(2,-1)的直线所对应的t最小,以经过点 (9 , 17 ) 的直线所对应的t最大.
-1 B
x-y+1=0
9 17 A (8, 8 )
x-5y-3=0 C
3
x
5x+3y-15=0
课堂练习
1、求z=2x+y的最大值,使式中的x、y满足
y ≤ x,
束缚条件 x + y ≤ 1,
y ≥ -1.
解:用图形表示出不等式组表示的平面区域;
当x=0,y=0时,z=2x+y=0
作一组与直线平行的直线:2x+y=t,t∈R.
答:公司派出4辆A型卡车、4 辆B型卡车时 每天所支出的费用最少.
x 0,
y 0.
利用图解法可求出最大值.此时,x
y
=
1000 29
34.4
=
360 29
12.4
课堂小结
1、线性目标函数的最大(小)值一般在可 行域的顶点处取得,也可能在边界处取得.
2、求线性目标函数的最优解,要注意分析 线性目标函数所表示的几何意义—在y轴上的截 距或其相反数.
3、解线性计划问题的步骤: 画、移、求、答.
x + 2y ≤ 8
4x ≤ 16 4y ≤ 12
x≥0
y ≥ 0
(2)画出不等式组所表示的平面区域: 如上图,图中的阴影部分的整点(坐标为整数 的点)就代表所有可能的日生产安排;
(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生 产一件乙产品获利3万元,采用哪种生产安排利 润最大?
C
3
x
5x+3y-15=0
从图示可知,直线3x+5y=t在经过不等式 组所表示的公共区域内的点时,以经过点(2,-1)的直线所对应的t最小,以经过点 (9 , 17 ) 的直线所对应的t最大.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、例题 例1、营养学家指出,成人良好的日常饮食应该至少提 供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg 的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg 蛋白质,0.14kg脂肪,花费28元;而1千克食物B含有 0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪, 花费21元。为了满足营养专家指出的日常饮食要求, 同时使花费最低,需要同时食用食物A和食物B多少 kg?
M点是两条直线的交点天食用食物A143g,食物B约 571g,能够满足日常饮食要求,又使花费最低, 最低成本为16元。
例2 要将两种大小不同规格的钢板截成A、B、C三种规格, 每张钢板可同时截得三种规格的小钢板的块数如下表所示 :
规格类型 钢板类型
A规格 2 1
5x+3y 15 y x+1 x-5y 3
1.解:作出平面区域
y
A
o x C
y x x+ y 1 y -1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
线性约束条件
转化 转化 转化
可行域
线性目标函数 Z=Ax+By
Z y x B
一组平行线
图 解 法
最优解
四个步骤:
寻找平行线组的 最大(小)纵截距
1。画(画可行域) 2。作(作z=Ax+By=0时的直线L 。) 3。移(平移直线L 。寻找使纵截距取得最值时的点) 4。答(求出点的坐标,并转化为最优解)
B规格 1 2
C规格 1 3
第一种钢板 X张 第二种钢板 y张
今需要A,B,C三种规格的成品分别为15,18,27块,问 各截这两种钢板多少张可得所需三种规格成品,且使所 用钢板张数最少。 解:设需截第一种钢板x张,第一种钢板y张,则
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0 y≥0
zmax 2 3 3 11
二、基本概念
一组关于变量x、y的一次不等式,称为线性约束条 件。 把求最大值或求最小值的函数称为目标函数,因为 它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
的直线 l 2
2 1 B • • 注意:直线取最大截距 时,等价于 1 z 2 -1 O 1 取得最大值,则z取 得最小值 l 0 l -1 22 39 2 z min 1 2 5 5 同理,当直线取最小截距时,z有最大值
A
x-4y+3=0
3x+5y-25=0 2
3
4
5
6
7
x
zmax 5 2 2 1
经过可行域内的整点B(3,9)和C(4,8)时,t=x+y=12是最优解.答:(略)
例3、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产 1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐 15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产 这两种混合肥料。若生产1车皮甲种肥料利润为10000 元;生产1车皮乙种肥料利润为5000元。分别生产甲、 乙两种肥料各多少车皮,能够产生最大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
变式:求利润z=x+3y的最大值. y
x 2y 8 4 x 16 4 y 12 x 0 y 0
4 N(2,3) 3
4
0
x 8 1 y x4 2
1 z y x 3 3
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmin=3
y
故生产甲种、乙种肥料各 2车皮,能够产生最大利润, 最大利润为3万元。
M x
o
练习:
1.如图所示,已知 ΔABC 中的三顶点 A(2 , 4) , B( 1, 2) , C (1, 0), 点 P(x, y) 在 ΔABC 内部及边界运动, 请你探究并讨论以下问题: ① z x y ②
{
打网格线法
15
B(3,9)
C(4,8)
目标函数t = x+y
9
A(18/5,39/5)
x+y =0
2 1 0 12
x 78
2x+y=15
18
27
作出一组平行直线t = x+y, 当直线经过点A时t=x+y=11.4,但它不是最优整数解 ,
x+2y=18 x+3y=27
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
4.若实数x,y满足 x 4 y 3 求z=x-2y的最大值、最小 3 x 5 y 25 值
1 1 y x z 6 2 2 把z看成参数,同样是一组平行
x 1y 分析:目标函数变形为
x=1
线,且平行线与可行域有交点。 5 • 22 最大截距为过C (1, ) C• 4 5 的直线 l1 3 l 最小截距为过A(5,2) 1
分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105
0.07 0.14
0.14 0.07
0.105x+0.10 y 0.075 7 x 7 y 5 0.07x+0.14 y 0.06 7 x 14 y 6 0.14x 0.07 y 0.06 14x 7 y 6 x 0 x 0 y 0 y 0
2.解:作出平面区域
y
A o C x
5 x+ 3 y 15 y x+ 1 x- 5 y 3
z=3x+5y
B
作出直线3x+5y =z 的 图像,可知直线经过A点时, 求得A(1.5,2.5), B(-2,-1),则 Z取最大值;直线经过B点 Zmax=17,Zmin=-11。 时,Z取最小值。
z 28 是直线在y轴上
5/7
M
3/7
如图可见,当直线 z=28x+21y 经过可 行域上的点M时,截距 最小,即z最小。
o
3/7
5/7
6/7 x
7 x 7 y 5 14x 7 y 6 x 得M点的坐标为: y
所以zmin=28x+21y=16
C
5
2.作出下列不 等式组的所表 示的平面区域
x-4y+3=0
A
B
O
1 5 x=1
x
3x+5y-25=0
x 4 y 3 3 x 5 y 25 x 1
问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值?
【引例】: 某工厂用A、B两种配 件生产甲、乙两种产 品,每生产一件甲产 品使用4个A配件并耗 时1h,每生产一件乙 产品使用4个B配件并 耗时2h,该厂每天最 多可从配件厂获得16 个A配件和12个B配件, 按每天工作8h计算, 该厂所有可能的日生 产安排是什么?
当点P在可允许的取值范围变化时,
z 求截距 的最大值,即可得z的最大值. 3
问题:求利润z=2x+3y的最大值. y
x 2y 8 4 4 x 16 3 M(4,2) x 8 4 4 y 12 1 y x4 0 x 0 2 2 z y 0 y x 3 3 Zmax 4 2 2 3 14
目标函数为:z=28x+21y
解:设每天食用xkg食物A,ykg食物B,总成本为z, 那么
作出二元一次不等式组所表示的平面区域,即可行域
随z变化的一组平行直 6/7 y 线系
4 z 把目标函数z=28x+21y 变形为 y x 3 28 4 它表示斜率为 3
的截距,当截距最 小时,z的值最小。
在____处有最大值___, A 6 在____处有最小值___; BC 1 在____处有最大值___, C 1 在____处有最小值___; B -3
y
A (2 , 4)
z xy
B
(1, 2)
0
C (1, 0)
x
2、求z=2x+y的最大值,使x、y满足约束条件: y x x+ y 1 y -1 3、求z=3x+5y的最大值,使x、y满足约束条件:
4
【进一步】: 若生产一件甲产 品获利2万元,生 产一件乙产品获 利3万元,采用哪 种生产安排获得 利润最大?
2
M ( 4 ,2 )
2
4
6
8
2 z z y 2 x 3 y x 3 3
若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述二元一次不等式组且为非负整 数时,z的最大值为多少? 2 z 2 把z=2x+3y变形为y=- x+ ,这是斜率为- , 3 3 3 z 在y轴上的截距为 的直线, 3
目标函数为 z=x+y
作出可行域(如图)
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N y≥0 y∈N
y
15
调整优值法
作出一组平行直线z=x+y,
10 B(3,9) C(4,8) 目标函数z= x+y 8 A(18/5,39/5) 6 x+y =0 4 2 0 2 4 6 8