《空间几何体的三视图》(课件)

合集下载

空间几何体的结构、三视图、直观图课件

空间几何体的结构、三视图、直观图课件
2、性质 Ⅰ、正棱锥的性质 (1)各侧棱相等,各侧面都是全等的等腰三角形。 (2)棱锥的高、斜高和斜高在底面上的射影组成一个直 角三角形;棱锥的高、侧棱和侧棱在底面上的射影也 组成一个直角三角形。
正棱锥性质2 P
棱锥的高、斜高和斜高在 底面的射影组成一个直角 三角形。棱锥的高、侧棱 和侧棱在底面的射影组成 一个直角三角形
S 投 射 方 向
物体上某一点与其投影面上的投影点的连线是平行的,则为 平行投影,如果聚于一点,则为中心投影.
三视图的形成
物体向投影面投影所得到的图形称为视图。
如果物体向三个互相垂直的投影面分别投影,所得到 的三个图形摊平在一个平面上,则就是三视图。
• 三视图
• 正(主)视图——从正面看到的图
由由这这些些面面所所围围成成的的 几几何何体体叫叫做做棱棱锥锥。。
用一个平行于棱锥 底用面一的个平面行去于截棱棱锥 锥底,面底的面平与面截去面截之棱 间锥的,部底分面叫与作截棱面台之
间的部分叫作棱台
(1)上下两个底面 互(1相)上平下行两;个底面
(互2)相侧平棱行的;延长线 相(2交)侧于棱一的点延;长线
圆柱
圆锥
圆台
圆锥的结构特征
S 顶点


线


A
O
底面
B
以直角三角形的一条直角边所在直线为旋转轴, 其余两边旋转形成的曲面所围成的几何体叫做圆锥。
球的结构特征
以半圆的直径所在的直线为旋转轴,将半圆旋转所 形成的曲面叫作球面,球面所围成的几何体叫作球体, 简称球。
直径
O
球心
半径
球的基本属性: 球面可看作与定点(球心)的距离 等于定长(半径)的所有点的集合.

空间几何体的三视图PPT课件

空间几何体的三视图PPT课件
但只有一个平面图形难以把握几何体的全貌,因此我们需 要从多个角度进行投影.
三 视
1.光线从几何体的前面向后面正投影所得到的投影图 叫做几何体的正视图.
2.光线从几何体的左面向右面正投影所得到的投影图
图 叫做几何体侧视图.
3.光线从几何体的上面向下面正投影所得到的投影图
叫做几何体的俯视图.
从正前方看到的投影
②正视图、侧视图和俯视图的长方形的长宽高分 别为多少厘米? ③正视图和侧视图中有没有相同的线段?正 视图和俯视图呢?侧视图和俯视图呢?
正 俯 长 3cm 对 正
俯 侧 宽 4cm 相 等
练习
5cm 正侧高平齐 4cm 3cm
正视图
5cm
侧视图
俯视图
3cm
5cm
4cm
例2.探究柱、锥的三视图
圆柱的三视图
高速铣削给落地式铣镗床带来了结构上的变化,主轴 箱居中的 结构较为 普遍,其 刚性高, 适合高速 运行。滑 枕驱动结 构采用线 性导轨, 直线电机 驱动,这 种结构是 高速切削 所必需的 ,国外厂 家在落地 式铣镗床 上都已采 用,国内 同类产品 还不多见 ,仅在中 小规格机 床
上采用线性导轨。高速加工还对环境、安全提出了 更高的要 求,这又 产生了宜 人化生产 的概念, 各厂家都 非常重视 机床高速 运行状态 下,对人 的安全保 护与可操 作性,将 操作台、 立柱实行 全封闭式 结构,既 安全又美 观。
空间几何体的三视 图
平行投影
斜投影
B
正投影
中心投影
A
D C
从不同的角度看建筑
汽车设计图纸
问题1:什么是三视图?
什么是三视图法呢?
就是从三个不同的方向看一个 物体,一般是从正前方、左侧 面和正上方,然后描绘三张所 看到的正投影图,即为三视图.

课件3:空间几何体的结构特征及其直观图、三视图

课件3:空间几何体的结构特征及其直观图、三视图

侧视图,可以将 D 排除,故选 B.
[答案] (1)D (2)B
第七章 第1讲
第30页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
[奇思妙想] 已知某一几何体的正视图与侧视图均如图 2 所
示,则在下列图形中,可以是该几何体的俯视图的图形有
体都是圆锥;
第七章 第1讲
第23页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
④棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A. 0
B. 1
C. 2
D. 3
第七章 第1讲
第24页
高三一轮总复习 ·新课标 ·数学
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
考点 3 空间几何体的直观图
空间几何体的直观图常用 斜二测 画法来画,基本步骤是:
1.画几何体的底面
在已知图形中取互相垂直的 x 轴、y 轴,两轴相交于点 O,
画直观图时,把它们画成对应的 x′轴、y′轴,两轴相交于点 O′,且使∠x′O′y′= 45°(或 135°) ,已知图形中平行于 x 轴 的线段,在直观图中长度 不变 ,平行于 y 轴的线段,长度 减半.
第七章 第1讲
第3页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训

三视图课件

三视图课件
画出下列几何体的三视图
1 4
5
练习
1 4
5
1 4
5 1
5
1 4
5
练习
新课教学
上一节学习的棱柱、棱锥、棱台以及圆台 的三视图是怎样的?
思考
问:已知三视图如下,该几何体是什么?
1 4
1 4
1 4
5
5
5
1
5
例题讲解
例1: 某几何体的如左图所示,则该几何体的俯
视图是( A )
例题讲解 观察几何体的三视图,说说它们的几何结构特征
正投影得到的投影图
光线从几何体的上面 向 俯视图
下面 正投影得到的投影图
一个几何体的正视 图和侧视图高度 一 样,正视图和俯视图 长度 一样,侧视图 与俯视图宽度 一样
[双基自测] 1.一个几何体的三视图如图所示,则该几何体可以是( )
A.棱柱 C.圆柱 答案:D
B.棱台 D.圆台
2.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是 ()
例2:
2
2 4
正视图
4
2 4
侧视图
圆柱和圆锥构 成的组合体
俯视图
(1)
题型二:由三视图还原空间几何体
例3: 观察下列几何体的三视图,想象并说明它 们的几何结构特征,画出示意图。
备用例题
上面是一个圆柱, 下面是一个四棱柱
(3)
2.如图,在正方体ABCDA1B1C1D1中,M、N分别是BB1、
BC的中点,则图中阴影部分在平面ADD1A1上的A投影为(
新课教学
二、平行投影:
斜投影:投影方向与投影面倾斜 的投影。
概念辨析
中心投影形成的直观图能非常逼真地反映原来 的物体,主要运用于绘画领域。

三视图课件

三视图课件

B
A. 32 B. 16 16 2 C. 48 D. 16 32 2
5.2010湖南高考
4

6. (2007宁夏理•8) 已知某个几何体的三视图 如下,根据图中标出的尺寸(单位:cm), 可得这个几何体的体积是( B)
24
柱体
夯实基础 1.棱柱 (1)定义:有两个面互相平行,而且夹在这两个平行 平面间的每相邻两个面的交线都 互相平行,由这些面所 围成的多面体叫做棱柱. 稳固根基
(如图)
1° 球面被经过球心的平面截得的圆叫做大圆. 2° 不过球心的截面截得的圆叫做球的小圆.
(3)球面距离: 1° 定义:在球面上两点之间的最短距离,就是经过这 两点的 大圆 在这两点间的一段 劣弧 的长度, 这个弧长 叫做两点的球面距离. 2° 地球上的经纬线 当把地球看作一个球时, 经线是球面上从北极到南极 的半个大圆,纬线是与地轴垂直的平面与球面的交线,其 中赤道是一个大圆,其余纬线都是一个小圆.
5.球的概念与性质 (1)定义: 半圆绕它的直径所在直线旋转所成的曲面叫 做球面,球面所围成的几何体叫做球.球面也可以看作空 间中到定点的距离等于定长的点的集合. (2)球的截面性质 ①用一个平面去截球,截面是圆面.
②球心到截面的距离 d 与球的半径 R 及截面的半径 r,有下面的关系:
r= R2-d2
空间几何体的结构、三 视图和直观图、表面积 和体积
椎体
2
2.棱锥及其分类 (1)定义: 有一个面是多边形, 其余各面是 有一个公共顶点 的三 角形.由这些面所围成的几何体叫做棱锥. (2)正棱锥 如果棱锥的底面是正多边形, 顶点在过底面中心且与 底面垂直的直线上,则这个棱锥叫做正棱锥.
正棱锥的性质: ①各侧棱相等, 各侧面都是全等的等腰三角形. 这些 等腰三角形的高叫做棱锥的斜高. ②棱锥的高、 斜高和斜高在底面内的射影组成一个直 角三角形; 棱锥的高、 侧棱和侧棱在底面内的射影也组成 一个直角三角形.

空间几何体的三视图

空间几何体的三视图

俯视图
圆锥
由三视图想象几何体 一个几何体的三视图如下,你能说出它是
什么立体图形吗?
四棱锥
思考、如图为某几何体的三视图,说明这是什么几何体?
主视图
侧视图
俯视图
正视图 侧视图 俯视图
正视图 侧视图 俯视图
思考:下列两图分别是两个简单组合体的 三视图, 想象它们表示的组合体的结构 特征, 并作适当描述.
b
a
c
正视图
c ba
侧 视 图
俯视图
三视图的形成
V
V正立投影面 H水平投影面 W侧立投影面
三视图的形成
V
H
W
V正视图 H俯视图 W侧视图
三视图的形成
主 视 图
左视图
俯视图
三视图的特点
长对正
高平齐
宽相等
三视图的作图规则
主—俯: 长对正 主—左: 高平齐 主 左—俯: 宽相等 视
图 左视图
俯视图
正视图
侧视图
正视
俯视图
简单组合体的三视图
例题1: 画出下面几何体的三视图。
简单组合体的三视图
正视图
侧视图
俯视图
简单组合体的三视图
正视图
侧视图
俯视图
练习、画下例几何体的三视图
思考、如图是几何体的三视图, 你能说出它对应的几何体名称吗?
正视图
·
俯视图
侧视图
练习、如图几何体的三视图, 说 出它对应的几何体。
正视图
侧视图
俯视图
正视图
侧视图
俯视图
理论迁移
例1 下面物体的三视图有无错误? 如果有,请指出并改正.
正视无穷远处,则所有的投影线都相互平 行,这种投射线为平行线时的投影称为平行投影.

高一数学必修2《空间几何体的三视图和直观图》PPT课件

高一数学必修2《空间几何体的三视图和直观图》PPT课件

名 茶
&与同伴交流你的看法和具体做法.
(三)归纳总结
1、空间几何体的三视图:正视图、侧视图、俯视图; 2、三视图特点: 一个几何体的侧视图和正视图高度一样, 俯视图和正视图长度一样,侧视图和俯视图宽度一样; 3、三视图的应用及原实物图的相互转化.
(四)分层作业
层次1:教材习题1.2A组1、2
层次2:课外动手操作:
球的三视图
俯视图
还有哪种几何体的三种视图一样呢
比一比看一看
3、简单组合体的三视图
下图是一个蒙古包的照片.小明认为这个蒙古包可以看成如 图所示的几何体,请画出这个几何体的三种视图.你与小明的 做法相同吗? 正视图 侧视图
俯视图
4 、 三 视 图 与 几 何 体 之 间 的 相 互 转 化 . A
3.过程与方法: (1)主要通过学生自己的亲自实践,动手作图,体会三视图的作 用; (2)体会组合体与三视图之间转化关系在现实生活中的应用; (3)培养学生的空间概念,提高学生空间想象力,掌握画三视 图的基本技能. 4.情感目标: (1)提高空间想象能力,培养学生的动手实践能力,在实际 操作中培养学生分析问题、解决问题的能力,体会几何学在其 他学科方面的应用; (2)体会三视图的作用,引发学生学习和使用知识的兴趣, 发展创新精神,培养事实求是、理论与实际相结合的科学态度 和科学道德观.
2、柱、锥、台、球的三视图
(1)三视图的有关概念:
合作探究 用小正方体搭建一个几何体:
从 上 面俯 看视 到图 的 图
“三视图”
你还记得 三视图吗?
侧视图 从左面看到的图 驶向胜利 彼岸
能你能画出这个几何体的三视图
吗?
经过努力我会收获
“三视图”

人教版高中数学第一章第2节《平行投影与中心投影空间几何体的三视图》(共54张PPT)教育课件

人教版高中数学第一章第2节《平行投影与中心投影空间几何体的三视图》(共54张PPT)教育课件
不要一味的坚持自己的看法,试着从别人的角度 去看看,也许你会有不一样的认识!
三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图.
光线自物体的前面向后投影所得的投影图称 为“正视图” ,自左向右投影所得的投影图称 为“侧视图”,自上向下投影所得的投影图称 为“俯视图”.
用这三种视图即可刻划空间物体的几何结构, 这种图称之为“三视图”.即向三个互相垂直 的投影面分别投影,所得到的三个图形摊平在 一个平面上,则就是三视图.
A
B
C
三视图的作图步骤
1.确定视图方向 2.画出能反映物体真实形状的一个视图
3.运用长对正、高平齐、宽相等的原 则画出其它视图
4.检查,加深
巩固提高:
组合体的三视图
10
6 12
8
知识探究:画简单几何体的三视图
思考:如图所示,将一 个长方体截去一部分, 这个几何体的三视图是 什么?
正视图
侧视图
正视
正视图
侧视图
俯视图
知识探究:将三视图还原成几何体
一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
三视图的形成
V
V正立投影面 H水平投影面 W侧立投影面
三视图的形成
V
H
W
V正视图 H俯视图 W侧视图
三视图的形成
正 视 图
侧视图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例3】将一个长方体挖去两个小长方体后剩余 的部分如图所示, 试画出这个组合体的三视图.
【例4】说出下面的三视图表示的几何体的
结构特征.
【例4】说出下面的三视图表示的几何体的
结构特征.
思考:根据几何体的三视图, 还原成几何体
•作业布置
课本第18页1、2 •学案第7页1、6、8
1. 自前向后的投影图--正视图 2. 自上向下的投影图--俯视图
三 视 图
3. 自左向右的投影图--侧视图
几何体三视图
几何体三视图
正视图
侧视图
俯视图
几何体三视图
正视图
侧视图
俯视图
几何体三视图
正视图
侧视图
俯视图
几何体三视图
正视图
侧视图
俯视图
知识探究3: 空间图形的三视图的画法
知识探究3: 空间图形的三视图的画法
中心投影、平行投影和 空间几何体三视图
主讲: 陈志坚 授课班级:高一276班 时间:2016年11月30日
猜 猜 他 们 是 什 么 关 系 ?
看 事 物 不 能 只 看 单 方 面
汽车设计图纸
湖南长郡卫星远程学校
制作 05 2011年上学期
湖南长郡卫星远程学校
直观 图
汽车设计图纸
制作 05 2011年上学期
【例2】画简单组合体的三视图
正视图
侧视图
俯视图
知识探究4: 将三视图还原成几何体 (1)
主视图 侧视图
(2)
主视图
侧视图
俯视图
俯视图
知识探究4: 将三视图还原成几何体 (1)
主视图 侧视图
(2)
主视图
侧视图
俯视图
俯视图
知识探究4: 将三视图还原成几何体 (1)
主视图 侧视图
(2)
主视图
侧视图
知识探究2: 空间几何体的三视图
1. 自前向后的投影图--正视图
知识探究2: 空间几何体的三视图
1. 自前向后的投影图--正视图 2. 自上向下的投影图--俯视图
知识探究2: 空间几何体的三视图
1. 自前向后的投影图--正视图 2. 自上向下的投影图--俯视图
3. 自左向右的投影图--侧视图
知识探究2: 空间几何体的三视图
正视图 侧视图
俯视图
俯视图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
知识探究3:空间图形的三视图的画法
宽b 高c 长a
正 视 图
高c
长a
知识探究3:空间图形的三视图的画法
宽b 高c 长a
正 视 图
高c 高c
长a
宽b
侧 视 图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
俯视图
正 视 图
【例1】画下例几何体的三视图
【例1】画下例几何体的三视图
【例1】画下例几何体的三视图
【注】能看得见的轮廓线或棱用实线表示, 不能看见的轮廓线或棱用虚线表示。
【例2】画简单组合体的三视图
【例2】画简单组合体的三视图
【例2】画简单组合体的三视图
正视图
【例2】画简单组合体的三视图
正视图
侧视图
俯视图
正 视 图
高c 高c
长a 长a
宽b
宽b
侧 视 图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
俯视图
正 视 图
高c 高c
长a 长a
宽b
宽b
侧 视 图
长对正. 正视俯视长相等且对正
高平齐. 正视侧视高相等且平齐 宽相等. 俯视侧视宽相等且对应
知识探究3:空间图形的三视图的画法
宽b 高c 长a
正视图
知识探究3: 空间图形的三视图的画法
正视图 侧视图
知识探究3: 空间图形的三视图的画法
正视图 侧视图
俯视图
知识探究3: 空间图形的三视图的画法
正视图 侧视图
正视图
俯视图
知识探究3: 空间图形的三视图的画法
正视图 侧视图
正视图 侧视图
俯视图
知识探究3: 空间图形的三视图的画法
正视图 侧视图
高c 高c
长a 长a
宽b
宽b
侧 视 图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
俯视图
正 视 图
高c 高c
长a 长a
宽b
宽b
侧 视 图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
俯视图
正 视 图
高c 高c
长a 长a
宽b
宽b
侧 视 图
知识探究3:空间图形的三视图的画法
宽b 高c 长a
知识探究1: 中心投影与平行投影
在平行投影中,投影线正对着投影面时叫做 正投影,否则叫做斜投影.
知识探究1: 中心投影与平行投影
在平行投影中,投影线正对着投影面时叫做 正投影,否则叫做斜投影.
一个与投影面平行的平面图形,在正投影和斜 投影下的形状、大小不会发生变化。
知识探究2: 空间几何体的三视图
三视图
湖南长郡卫星远程学校
直观 图
汽车设计图纸
制作 05 2011年上学期
请同学们看下面的自然现象, 它们是怎
样得到的?
通过观察和自己的认识 , 你是怎 样理解投影的含义的?
知识探究1: 中心投影与平行投影
电灯泡
知识探究1: 中心投影与平行投影
电灯泡
知识探究1: 中心投影与平行投影
投影线
电灯泡
知识探究1: 中心投影与平行投影
投影线 投影面
电灯泡
知识探究1: 中心投影与平行投影
投影线 投影面
电灯泡
中心投影:
探照灯
知识探究1: 中心投影与平行投影
探照灯
知识探究1: 中心投影与平行投影
探照灯 平行投影: 在一束平行光线照射下形成的投影.
俯视图
正 视 图
高c 高c
长a 长a
宽b
宽b
侧 视 图
长对正. 正视俯视长相等且对正
高平齐. 正视侧视高相等且平齐 宽相等. 俯视侧视宽相等且对应
【注】俯视图在 正视图的正下方, 侧视图在正视图 的正右方.
【例1】画下例几何体的三视图
【例1】画下例几何体的三视图
【例1】画下例几何体的三视图
【例1】画下例几何体的三视图
俯视图
俯视图
知识探究4: 将三视图还原成几何体 (3)
正视图
侧视图
俯视图
知识探究4: 将三视图还原成几何体 (3)
正视图
侧视图
俯视图
思考2: 下列两图分别是两个简单组合体的三视图, 想 象它们表示的组合体的结构特征, 并作适当描述。
【例3】将一个长方体挖去两个小长方体后剩余 的部分如图所示, 试画出这个组合体的三视图.
相关文档
最新文档