反比例函数知识点及复习题[1]

合集下载

2021年九年级数学下册第二十六章《反比例函数》知识点复习(答案解析)(1)

2021年九年级数学下册第二十六章《反比例函数》知识点复习(答案解析)(1)

一、选择题1.已知反比例函数13y x =-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭ B .y 随x 的增大而增大 C .图象在第二、四象限内D .若1x >,则103y -<< 2.将函数 6y x =的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+B .61y x =-C .61y x =+D .61y x =- 3.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .2B .4C .2D .2 4.在反比例函数13m y x-=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( ) A .13m > B .13m < C .13m ≥ D .13m ≤ 5.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数 C .-1 D .不能确定 6.已知(5,-1)是双曲线(0)k y k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 7.已知反比例函数ab y x =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根8.已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 9.同一坐标系中,函数()1y k x +=与k y x=的图象正确的是( ) A . B .C .D .10.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abc y x=在平面直角坐标系中的图象可能是( ).A .B .C .D .11.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y << 12.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D . 13.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 14.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .815.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题16.如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y =k x 的图象恰好经过 A′B 的中点 D ,则k _________.17.若点()()125,,3,A y B y --在反比例函数3y x =的图象上,则12,y y ,的大小关系是_________. 18.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0k y x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.19.已知()12,y -,()21,y -,()33,y 是反比例函数6y x=-的图象上的三个点,则1y ,2y ,3y 的大小关系是______.20.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.21.如图,点P ,Q 在反比例函数y=k x (k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________.22.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.23.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.24.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接) 25.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x =>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)26.如图,已知反比例函数y =k x(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题27.如图,一次函数3y x =-的图象与反比例函数(0)k y k x=≠的图象交于点A 与点(),4B a -.(1)求反比例函数的表达式;(2)根据图象,直接写出不等式3k x x>-的解集; (3)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若POC △的面积为3,求点P 的坐标. 28.如图,已知一次函数12y x b =+的图象与反比例函数()0k y x x=<的图象交于点A(-1,2)和点B .(1)求b 和k 的值;(2)请求出点B 的坐标,并观察图象,直接写出关于x 的不等式12k x b x+>的解集; (3)若点P 在y 轴上一点,当PA PB +最小时,求点P 的坐标.29.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x 的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式;(2)结合图象,直接写出满足kx +b >6x 的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.30.如图所示,一次函数y kx b =+的图象与反比例函数m y x=的图象交于A(-2,1),B(1,n)两点.(1)求反比例函数和一次函数的表达式;(2)求ABO ∆的面积; (3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围.。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D.第二、三、四象限
〔6〕函数

〔k≠0〕,它们在同一坐标系内的图象大致是〔 〕.
-
. word.zl-
..
-
A.
B.
C.
D.
3.函数的增减性
〔1〕在反比例函数
〔 〕.
A.正数
B.负数
的图象上有两点 C.非正数

,且
D.非负数
,那么
的值为
PQC 的面积为 .
图1
图2
5.说明:
〔1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个
分支分别讨论,不能一概而论.
〔2〕直线
与双曲线
的关系:

时,两图象没有交点;当
时,两图象必有两个交点,且这两个交点关于原点成中心对称.
〔3〕反比例函数与一次函数的联系.
〔四〕实际问题与反比例函数
1.求函数解析式的方法:
y 随 x 的增大而
〔填“增大〞或“减小〞〕.
注意,〔3〕中只有②是符合题意的,而③是在“每一个象限内〞 y 随 x 的增大而减小.
4.解析式确实定
〔1〕假设 与 成反比例, 与 成正比例,那么 y 是 z 的〔 〕.
A.正比例函数
B.反比例函数
C.一次函数
D.不能确定
〔2〕假设正比例函数 y=2x 与反比例函数 们的另一个交点为________.
-
. word.zl-
..
-
4.k 的几何意义
如图1,设点 P〔a,b〕是双曲线
上任意一点,作 PA⊥x 轴于 A 点,PB⊥y 轴于 B 点,那么矩形 PBOA 的面

反比例函数知识点与题型归纳非常全面

反比例函数知识点与题型归纳非常全面

-.反比例函数讲义第1节 反比例函数1、 反比例函数的定义以下函数中是反比例关系的有___________________〔填序号〕。

①3x y -=②131+=x y ③x y 2-=④2211x y -=⑤xy 23-=⑥21=xy ⑦28xy =⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k2、 反比例函数定义的应用〔重点〕由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。

(1) 求I 与R 的函数关系式;(2) 当R=5欧姆时,求电流强度。

本节作业:1、小明家离学校1.5km ,小明步行上学需x min ,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=。

函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例。

2、某工人打算利用一块不锈钢条加工一个面积为0.82m 的矩形模具,假设模具的长与宽分别为y 与x 。

〔1〕你能写出y 与x 之间的函数表达式吗?变量y 与x 之间是什么函数?〔2〕假设想使模具的长比宽多1.6m ,每米这种不锈钢条6元钱,求加工这个模具共花多少钱?3、假设函数满足023=+xy,那么y 与x 的函数关系式为______________,你认为y 是x 的______________函数。

4、y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。

-.5、y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例函数?6、函数xky =的图象经过点A 〔1,—2〕,那么k 的值为〔 〕。

初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。

反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。

本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。

一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。

一般地,反比例关系式可以表示为:y=k/x,其中k为常数。

二、反比例函数的性质1.反比例函数的定义域是非零实数集。

2.反比例函数的值域是非零实数集。

3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。

4.当自变量等于1时,反比例函数的值等于常数k。

5.反比例函数的平行于y轴的渐近线是x=0。

三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。

当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。

反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。

四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。

例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。

解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。

例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。

例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。

总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

反比例函数中考复习(知识点+题型分类练习)

反比例函数中考复习(知识点+题型分类练习)

1 / 8反比例函数知识点梳理1、反比例函数的概念:一般地,如果两个变量x ,y 之间的关系 可以表示成y=x k (k 为常数,k 不等于0)的形式,那么称y 是x 的反比例函数。

从y=xk中可知,x 作为分母,所以不能为零。

注:反比例函数的其他两种表达式: 或2、画反比例函数图象时要注意以下几点:⑴列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点; ⑵列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线; ⑶在连线时要用“光滑的曲线”,不能用折线。

3、反比例函数的性质注意:(1)反比例函数是轴对称图形和中心对称图形;(2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; (3)在利用图象性质比较函数值的大小时,前提应是“在同一象限”内。

2 / 84、反比例函数系数k 的几何意义如图,过双曲线上任意一点P (x ,y )作x 轴,y 轴的垂线PM ,PN ,所得矩形的面积为PNPM S ⋅=∵xk y =∴y x k ⋅=∴N M S ⋅=,即过双曲线上任一点作x 轴,y 轴的垂线,所得矩形的面积为k 注意:①若已知矩形的面积为k ,应根据双曲线的位置确定k 值的符号。

②在一个反比例函数图象上任取两点P ,Q ,分别过P ,Q 作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2,则有S 1=S 2。

反比例函数常见题型分类汇总考点一、反比例函数的概念及解析式求解 1.已知反比例函数y =的图象位于第一、第三象限,则k 的取值范围是( ). A.k >2 B.k ≥2 C.k ≤2 D.k <22.(2012黑龙江)在平面直角坐标系中,反比例函数y =22a a x-+的图象的两个分支分别在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 3.若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( )A.-1或1B.小于21的任意实数 C.-1 D.不能确定4.若函数是反比例函数,且它的图象在二、四象限内,则n 的值是( )A.0B.1C. 0或1D. 非上述答案 5.()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;6.已知y 与x -1成反比例,当x = 12 时,y = - 13,那么,当x = 2时,y 的值为 ;7.已知y 与x 成正比例,z 与y 成反比例,则z 与x 成__________关系,当1=x 时,2=y ;当2=y 时,z=-2,则当x=-2时,______=z ;8.已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。

本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。

一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。

反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

其一般形式为y = k/x,其中k为常数。

反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。

2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。

3. 对称性:反比例函数关于两个坐标轴都具有对称性。

二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。

对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。

2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。

三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。

例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。

解析:根据反比例函数的定义,有y = k/x。

代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。

因此,当x = 4时,y = 10/4 = 2.5。

例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。

已知当t = 0时,y = 100,即杆子的初始长度是100cm。

第1章 反比例函数 知识点清单 最新最全

第1章 反比例函数 知识点清单 最新最全

第1章反比例函数1.1反比例函数知识点1反比例函数的定义1.定义:一般地,如果两个变量y与x的关系可表示成y= k(k为常x数,k≠0)的形式,那么称y是x的反比例函数,其中x是自变量,常数k(k≠0)称为反比例函数的比例系数.2.反比例函数的三种形式:①y=kx②y= kx -1,③xy=k (其中k为常数,k≠0)三种基本形式要牢记,这是识别反比例函数的关键特别提醒:①形如y= 1+1,(x+1)y=3,y=(x+1)-1等的函数都不是y关于x的反x比例函数.②反比例函数的表达式y= k中无论变量x, y怎样变化,k的值始终x等于x与y的乘积.若k=0,则y= k=0恒成立,为常数函数,失去了x反比例函数x, y成反比例的意义,所以k≠0.知识点2 反比例关系与反比例函数的关系1.如果两个量x,y满足xy=k(k为常数,k≠0),那么x,y就成反比例关系,这里的x和y既可以代表单项式,也可以代表多项式;当x,y只代表一次单项式时,x,y这两个量才成反比例函数关系.2.成反比例关系不一定是反比例函数,但反比例函数中的两个变量必成反比例关系.示例:y= k(k为不等于0的常数),y与x²成反比例,x2但y不是关于x的反比例函数.3.反比例函数中有自变量和函数的区分,而反比例关系中的两个变量没有这种区分.示例解读( k为常数,k≠0);若y+2与x - 5成反比例,则y+2=kx − 5若y与x2成反比例,则y = k( k为常数, k≠0).x2知识点3求反比例函数表达式1.确定反比例函数表达式的方法是待定系数法,由于在反比例函数y=k(k≠0)中只有一个待定系数,因此只需要一对x,y的对应值或图×象上一个点的坐标,即可求出k的值,从而确定其表达式.2 用待定系数法求反比例函数表达式的一般步骤特别解读1.用待定系数法求反比例函数的表达式的实质是代入一对对应值,解一元一次方程.2.当题目中已经明确“y是x的反比例函数”或“y与x成反比例关(k为常数,k≠0).系”时,可直接设函数的表达式为y= kx1.2反比例函数的图象与性质知识点1 反比例函数的图象1.图象的画法(描点法):画实际问题中的反比例函数的图象时,要考虑自变量的取值范围,一般地,实际问题的图象是反比例函数图象,在第一象限内的一支或其中一部分.(1)列表:先取一些自变量的值,在原点的两边取三对或三对以上互为相反数的值,如1和-1,2和-2,3和-3等. 求y值时,只需计算原点一侧的函数值,另一侧的函数值可以随之得出.(2)描点:根据表中提供的数据,即点的坐标,在平面直角坐标系中描出对应的点.(3)连线:用平滑的曲线顺次把这些点连接起来并延伸,注意双曲线的两支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交.2.图象的特点:(1)反比例函数y= k(k为常数,k≠0)的图象是双曲线.x(2)反比例函数图象的两支分别位于第一、三象限或第二、四象限.(3)双曲线的两支都无限接近坐标轴,但永远不与坐标轴相交.(4)双曲线既是中心对称图形(对称中心是原点),又是轴对称图形(对称轴是直线y=x和直线y=-x).示意图(如图1.2-1).y知识点2 反比例函数的性质反比例函数的性质主要研究它的图象的位置和函数值的增减情况,如下表所示.特别提醒在描述反比例函数的增减性时,必须指明"在每个象限内"因为当k> 0(k<0)时,整个函数不是y随x的增大而减小(增大)的,而是函数在每个象限内,y随x的增大而减小(增大).知识点3 反比例函数y= kx(k≠0)中k 的几何性质1.矩形的面积如图所示,过双曲线y= kx(k≠0)上任意一点p(x,y)分别作x轴,y轴的垂线PM,PN ,所得得矩形PMON得面积为S=PM ·PN =I y I·I x I,因为y= kx, 所以xy= k ,所以S =y=I k I,即过双曲线y= kx(k≠0)上任意一点作x轴,y轴的垂线,所得得矩形面积为I k I.2.三角形的面积:如图1.2-3, 过双曲线y= kx(k≠0)上的任意一点E作EF垂直于y轴,垂足为F,连接EO,则S▲EOF= I k I2, 即过双曲线y= kx任意一点作一坐标轴的垂线,连接该点与原点,所得三角形的面积为I k I 2.因为y= kx( k≠0)中只有正、负之分,所以在利用函数表达式求矩形或三角形面积时,都要加上绝对值符号.1.3反比例函数的应用知识点1 建立反比例函数模型解实际问题1.在生活与生产中,如果某些问题的两个量成反比例关系,那么可以根据这种关系建立反比例函数模型,再利用反比例函数的有关知识解决实际问题.运用反比例函数解决实际问题时常用的两种思路:(1)通过问题提供的信息,明确变量之间的函数关系,设出相应的函数表达式,再根据题目条件确定函数表达式中待定系数的值;(2)已知反比例函数模型的表达式,运用反比例函数的图象及性质解决问题.2.建立反比例函数表达式常用的两种方法:(1)待定系数法:若题目提供的信息中明确此函数是反比例函数,则设函数表达式为y=k,( k为常数,k≠0),再求出k的值;x(2)列方程法:若题目所给的信息中两个变量之间的函数关系不明确,通常列出关于两个变量的方程,通过变形得到反比例函数表达式 .3.用反比例函数解决实际问题的一般步骤:(1)审:审清题意,找出题目中的常量、变量;(2)设:根据常量、变量间的关系,设出函数表达式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:用函数的图象和性质去解决实际问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数的复习
一、反比例函数的概念: 1、一般地,形如 y =
x
k
( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A )y =
x
k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1
(k ≠0) 例题讲解:有关反比例函数的解析式 例1、(1)下列函数,① 1)2(=+y x ②. 11+=
x y ③21x y = ④.x y 21
-=⑤2x y =-⑥13y x
= ;其中是y 关于x 的反比例函数的有:_________________。

(2)函数2
2)2(--=a x
a y 是反比例函数,则a 的值是( )
A .-1
B .-2
C .2
D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )
A .反比例函数
B .正比例函数
C .一次函数
D .反比例或正比例函数
二、反比例函数的图象和性质:
知识要点:
1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。

3、增减性:(1)当k>0时,_________________,y 随x 的增大而________;
(2)当k<0时,_________________,y 随x 的增大而______。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交
5、对称性:既是轴对称又是中心对称 例题讲解:
(一)反比例函数的图象和性质: 例2、(1)写出一个反比例函数,使它的图象经过第二、四象限 .
(2)若反比例函数
2
2
)12(--=m
x m y 的图象在第二、四象限,则m 的值是( )
A 、 -1或1;
B 、小于1
2
的任意实数; C 、-1; D、不能确定 (3)已知0k >,函数y kx k =+和函数k
y x
=在同一坐标系内的图象大致是( )
(4)正比例函数2x
y =和反比例函数2
y x
=的图象有
个交点.
(5)正比例函数5y x =-的图象与反比例函数(0)k
y k x
=≠的图象相交于点A (1,a ),则a
= .
x
x
x
x
例3、(1)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .1
23y x =-- C .4
y x
=- D .12y x =.
(2)已知反比例函数2
y x
-=
的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <, 则12y y -的值是( )
A .正数
B .负数
C .非正数
D .不能确定 (3)若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2
y x
=- 的图象上,且 1230x x x <<<,则下列判断中正确的是( )
A .123y y y <<
B .312y y y <<
C .231y y y <<
D .321y y y << (4)在反比例函数x
k y 1
+=
的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>,则k 的取值范围是 .
(5)正比例函数y=k 1x(k 1≠0)和反比例函数y=2
k x
(k 2≠0)的一个交点为(m,n),则另一个交点为_________.
6、已知反比例函数x
k
y =
(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )
A 、第一、第二、三象限
B 、第一、二、三象限
C 、第一、三、四象限
D 、第二、三、四象限 (二)反比例函数与图形面积结合题型。

例4、(1)矩形的面积为6cm 2
,那么它的长y (cm )与宽x (cm )之间的函数关系用图象表示为( )
(2).如图:A ,B 是函数x
y 1
=的图象上关于原点O 对称的任意两点。

AC 平行于y 轴,BC 平行于x 轴,求△ABC 的面积。

A
B
C
D
(3)、如图,正比例函数(0)y kx k =>与反比例函数2
y x
=的图象相交于A 、C 两点,过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( )
A .1
B .2
C .4
D .随k 的取值改变而改变. (4)、如图,Rt ΔABO 的顶点A 是双曲线k
y x
=与直线y x m =-+在第二象限的交点,AB 垂直x 轴于B ,且S △ABO =3
2
,则反比例函数的解析式 .
5. 如图,正比例函数y 1=kx 和反比例函数y 2=
2
k x
的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )
A.x <-1或x >1
B. x <-1或0<x <1
C. -1<x <0或 0<x <1
D. -1<x <0或x >
1
(6) 如图,已知一次函数)0(≠+=k b kx y 的图象与反比例函数x
y 8
-=的图象交于A 、B 两点,且点A 的横坐标与B 点的纵坐标都是-2。

(1)求一次函数的表达式; (2)求△AOB 的面积。

(第(4)题)
7.如图,一次函数y kx b =+的图象与反比例函数m
y x
=
的图象相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.
三、反比例函数的应用:
1.已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )
2.物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为S
F
P =
. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )
3.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v (米/分),所需时间为t (分) (1)则速度v 与时间t 之间有怎样的函数关系?
(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?
(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?
A B C D。

相关文档
最新文档