初中化简求值训练试题
七年级数学化简求值题

20 道七年级数学化简求值题题目一:化简并求值:3x + 2x - 5,当x = 3。
解析:-先化简式子,3x + 2x - 5 = 5x - 5。
-当x = 3 时,代入式子得5×3 - 5 = 15 - 5 = 10。
题目二:化简并求值:4y - 2y + 3,当y = -2。
解析:-化简式子为4y - 2y + 3 = 2y + 3。
-把y = -2 代入,2×(-2) + 3 = -4 + 3 = -1。
题目三:化简并求值:2a - 3a + 4a,当 a = 2。
解析:-化简式子,2a - 3a + 4a = 3a。
-当a = 2 时,3×2 = 6。
题目四:化简并求值:5b - 2b - 3b + 6,当 b = 4。
解析:-化简式子,5b - 2b - 3b + 6 = 6。
-当b = 4 时,结果仍为6。
题目五:化简并求值:3m - 2(m - 1),当m = 5。
解析:-先展开式子,3m - 2(m - 1)= 3m - 2m + 2 = m + 2。
-当m = 5 时,5 + 2 = 7。
题目六:化简并求值:2(n + 3) - 3n,当n = -3。
解析:-展开式子,2(n + 3) - 3n = 2n + 6 - 3n = -n + 6。
-当n = -3 时,-(-3)+6 = 3 + 6 = 9。
题目七:化简并求值:4(p - 2) + 3p,当p = 1。
解析:-展开式子,4(p - 2) + 3p = 4p - 8 + 3p = 7p - 8。
-当p = 1 时,7×1 - 8 = 7 - 8 = -1。
题目八:化简并求值:5q - 3(q + 2),当q = 2。
解析:-展开式子,5q - 3(q + 2)= 5q - 3q - 6 = 2q - 6。
-当q = 2 时,2×2 - 6 = 4 - 6 = -2。
题目九:化简并求值:2(r - 1) + 3(r + 1),当r = -1。
化简求值专项练习试题20题

化简求值专项练习题1、化简,求值:111(11222+---÷-+-m m m m m m ), 其中m =3.2、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4503、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x4、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .5、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.6、先化简,再求值:13x -·32269122x x x x x x x-+----,其中x =-6.7、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =.11、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)12、22221(1)121a a a a a a +-÷+---+.13、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.14、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。
部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。
初中化简求值训练试题

初中化简求值训练试题1.先化简,再求解不等式组:$$\begin{cases}x+4>2x+2\cdot\frac{3x+4}{2x-5}\\2\cdot\frac{2x+5}{x-1}1$的负整数解。
2.先化简,再求值:$$\frac{(-4)}{2x}+\frac{1}{x+2}-\frac{5x}{(x-2)(x+1)}$$ 其中$x=-1$。
3.先化简,再求值:$$\frac{x^2+4x^2-4}{4}$$ 其中$a,b$满足$a+b=2,ab=1$。
4.先化简,再求值:$$\frac{(-4)}{2x}+\frac{1}{x(x+2)}$$ 其中$x=-1$。
5.先化简,然后代入$x$的值求值,再从$-2\leq x\leq 2$中选择一个合适的整数。
6.先化简,再求值:$$\frac{x^2+1}{x^2-4}$$7.已知$a=\frac{1}{x}$,求代数式$\frac{a+2}{a^2-4a}$的值,其中$x$是方程$2x^2+x-1=0$的根。
8.先化简,再求值:$$\frac{a+28}{a^2-4}$$ 其中$x$满足方程$x^2-x-2=0$。
9.先化简,再求值:$$\frac{2}{a+2}$$ 其中$a$满足方程$a+4a+1=2a^2-2a$。
10.先化简,再求值:$$\frac{x-2}{x-1}\div\frac{4x^2-5x+1}{2x-7}$$ 其中$x$满足$2x-2x-7=0$。
11.先化简,再求值:$$\frac{x^2+3x-1}{x-9}$$12.先化简,再求值:$$\frac{x+1}{x-4}\div\frac{2x^2-5x+1}{x-1}$$ 其中$x$满足$x$是不等式$3x+7>1$的负整数解。
13.先化简,再求值:$$\frac{x^3-4x}{x^2-2x+2}\div\frac{2x-2}{1-x}$$ 其中$x$为方程$x-1=3(x-1)$的解。
化简求值经典练习五十题(带答案解析)

化简求值经典练习五十题一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()的值是( )A.﹣3 B.3 C.﹣7 D.7二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a 2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=2 4.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab2,其中a=﹣1,b=﹣2.5.(2017秋•巢湖市期中)先化简,再求值:﹣3[y﹣(3x 2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再求值:柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),其中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再求值:蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再求值:安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期末)先化简下式,再求值:淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.9.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.的值.10.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),其中x=﹣1.11.(2015秋•淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中,.12.(2015秋•包河区期末)先化简,再求值:包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],其中a=﹣3.13.(2014秋•成县期末)化简求值:成县期末)化简求值:)的值.若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.14.(2014秋•合肥期末)先化简,再求值:合肥期末)先化简,再求值:3a 2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.的值.18.(2013秋•蜀山区校级期末)先化简,再求值蜀山区校级期末)先化简,再求值(4x 3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),其中x=.20.(2013秋•包河区期末)先化简,再求值:包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简求值:合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.23.(2012秋•包河区期末)先化简,后求值:包河区期末)先化简,后求值:(3x 2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b﹣2(b﹣a)+2a]的值.的值. 25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:瑶海区期末)化简并求值:3(x2﹣2xy)﹣)﹣[[(﹣xy+y2)+(x2﹣2y2)],其中x,y的值见数轴表示:28.(2012秋•泸县期中)先化简,再求值(1)5a 2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a (2)(3)若单项式与﹣2x m y3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)31.(2010秋•包河区期中)先化简,后求值:包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:,y=﹣3.5x 2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•丰台区期末)先化简,再求值:丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期末)先化简,再求值:惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期末)先化简再求值:翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.4(3x 2y ﹣xy 2)﹣2(xy 2+3x 2y ),其中x=,y=﹣1 37.(2017秋•鄞州区期末)先化简,再求值:鄞州区期末)先化简,再求值:2(a 2﹣ab )﹣3(a 2﹣ab ﹣1),其中a=﹣2,b=3 38.(2017秋•埇桥区期末)先化简,再求值:埇桥区期末)先化简,再求值:2(x 2y ﹣y 2)﹣(3x 2y ﹣2y 2),其中x=﹣5,y=﹣.39.(2017秋•南平期末)先化简,再求值:(5x +y )﹣(3x +4y ),其中x=,y=.40.(2016秋•武安市期末)求2x ﹣[2(x +4)﹣3(x +2y )]﹣2y 的值,其中.(8mn﹣3m 2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a 2﹣2b+4ab的值.的值.47.(2017秋•岑溪市期中)先化简下式,再求值,岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)蚌埠期中)先化简再求值:先化简再求值:先化简再求值:求求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右爬行2个单位长度到达点B,点A表示的数n为﹣,设点B所表示的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣)﹣[[m2﹣5(mn﹣m2)+2mn]化简,再求值.参考答案与试题解析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b =9a2b﹣7ab2,当a=﹣,b=时,原式=+=.3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣22 4.解:原式=3a 2b﹣2a2b+2ab﹣a2b+4a2﹣ab2=4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.5. 解:原式=﹣3y +9x 2﹣9xy ﹣y ﹣8x 2+8xy=x 2﹣xy ﹣4y当x=﹣3,y=时,原式=9+1﹣=6. 解:2xy ﹣(4xy ﹣8x 2y 2)+2(3xy ﹣5x 2y 2)=2xy ﹣2xy +4x 2y 2+6xy ﹣10x 2y 2=6xy ﹣6x 2y 2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7. 解:原式=2a 2﹣ab +2a 2﹣8ab ﹣ab=4a 2﹣9ab ,当a=﹣1,b=时,原式=4+3=7.8. 解:原式=3x 2﹣(7x ﹣4x +2x 2)=3x 2﹣7x +4x ﹣2x 2=x 2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9. 解:5(3a 2b ﹣ab 2)﹣4(﹣ab 2+3a 2b ),=15a 2b ﹣5ab 2+4ab 2﹣12a 2b=3a 2b ﹣ab 2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣x+y2,当x=﹣2,y=﹣2时,原式=.17.解:(1)∵a2+a=0,∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.25.解:6x 2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=时,原式=﹣42+4×﹣6=﹣21.26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣xy+y2,根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.30. 解:(1)3a 2﹣2a ﹣a 2+5a ,=(3﹣1)a 2+(5﹣2)a ,=2a 2+3a ;(2)(﹣8x 2+2x ﹣4)﹣(x ﹣1),=﹣2x 2+x ﹣1﹣x +,=﹣2x 2﹣;(3)∵单项式与﹣2x m y 3是同类项,∴m=2,n=3, (m +3n ﹣3mn )﹣2(﹣2m ﹣n +mn )=m +3n ﹣3mn +4m +2n ﹣2mn=(1+4)m +(﹣3﹣2)mn +(3+2)n=5m ﹣5mn +5n ,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31. 解:(3x 2y ﹣xy 2)﹣3(x 2y ﹣xy 2), =3x 2y ﹣xy 2﹣3x 2y +3xy 2,=2xy 2;当x=,y=﹣3时,原式=2xy 2=2××(﹣3)2=9.32. 解:原式=5x 2﹣(x 2+5x 2﹣2x ﹣2x 2+6x )=x 2﹣4x当x=时,上式=33. 解:原式=3a ﹣3a +abc ﹣c 2+c 2﹣c=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x 2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x 2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1 时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=.40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计算的结果也是正确的.45.解:原式=2x 2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;a=,×﹣﹣+2=;m=,﹣时,原式=×(﹣)﹣.。
七年级化简求值题50道

七年级化简求值题50道一、整式化简求值题(30道)1. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据完全平方公式公式,可得公式。
- 根据平方差公式公式,可得公式。
- 则原式公式。
- 再代入求值:- 当公式,公式时,公式。
2. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式。
- 根据完全平方公式公式。
- 则原式公式。
- 再代入求值:- 当公式,公式时,公式。
3. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
4. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
5. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据完全平方公式展开得:公式。
- 再代入求值:- 当公式,公式时,公式。
6. 化简求值:公式,其中公式。
- 解析:- 先化简式子:- 根据完全平方公式公式。
- 根据平方差公式公式。
- 根据单项式乘多项式公式。
- 则原式公式。
- 再代入求值:- 当公式时,公式。
7. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:。
8. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
9. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:。
10. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式,这里公式,公式,则原式公式。
- 再代入求值:- 当公式,公式时,公式。
11. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式。
- 根据完全平方公式公式。
- 则原式公式。
初一上册整式化简求值60题(含答案)

整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a 2.)45(2)45(332-+---+-x x x x ,其中2-=x 3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.8.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 9.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中10.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2. 11.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1. 12.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5. 13.先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2. 14.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2. 15.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 16.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.17.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13. 18.化简求值:2111(428)(1),422x x x x -+---=-其中 19.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a = 20.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 21.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.22.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=23.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.24.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.25.先化简,再求值:22223()3x x x x ++-,其中x=-1226.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.27.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y = 28.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣129.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 30.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
化简求值初二练习题

化简求值初二练习题化简求值是初中数学中的一个重要知识点,它既要求我们熟练掌握化简运算的方法,又要求我们能够准确地求出给定表达式的值。
本文将为大家介绍一些初二级别的化简求值练习题,并给出详细解答,希望能够帮助大家更好地理解这一知识点。
一、化简求值练习题1. 化简并求值:4a + 2b - 3a + 5b2. 化简并求值:3(x - 2y) - 2(x + 3y)3. 化简并求值:2(3a - 4b) + 5(2a + 3b) - 3(4a - b)4. 化简并求值:-2(5x - 3y) + 3(2x + 4y) - 4(3x + 2y)5. 化简并求值:4(x - y) + 6(y - x) - 5(x + 2y)6. 化简并求值:-3(2a - b + 3c) + 4(3b - 2c) - 5(4a - 3b + c)二、解答及详细步骤1. 化简并求值:4a + 2b - 3a + 5b解答:首先,合并同类项。
合并4a和-3a得到a,合并2b和5b得到7b。
化简后的表达式为:a + 7b2. 化简并求值:3(x - 2y) - 2(x + 3y)解答:首先,用分配律展开括号。
得到3x - 6y - 2x - 6y。
然后,合并同类项。
合并3x和-2x得到x,合并-6y和-6y得到-12y。
化简后的表达式为:x - 12y3. 化简并求值:2(3a - 4b) + 5(2a + 3b) - 3(4a - b)解答:首先,用分配律展开括号。
得到6a - 8b + 10a + 15b - 12a + 3b。
然后,合并同类项。
合并6a、10a和-12a得到4a,合并-8b、15b和3b得到10b。
化简后的表达式为:4a + 10b4. 化简并求值:-2(5x - 3y) + 3(2x + 4y) - 4(3x + 2y)解答:首先,用分配律展开括号。
得到-10x + 6y + 6x + 12y - 12x - 8y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 先化简,再求值:,其中x 是不等式3x+7>1的负整数解.2. 先化简,再求值:1221214322+-+÷⎪⎭⎫⎝⎛---+x x x x x x ,其中x 是不等式组⎩⎨⎧<+>+15204x x 的整数解。
3. 先化简,再求值:,其中,a ,b 满足。
4. 先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x ,其中x =-15. 先化简,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 先化简,再求值:,其中是方程的根.7. 已知a=,求代数式的 值8. 先化简,再求值:,其中x 满足方程x 2﹣x ﹣2=0.9. 先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .10. 先化简,再求值:11454)1221(22----÷----+x x x x x x x x ,其中x 满足07222=--x x .11. 先化简,再求值:,其中满足.12. 先化简,再求值:2319()369x x x x x x x +---÷--+,其中x 是不等式173>+x 的负整数解.13. 先化简,再求值:22222÷142x x x x x x --⎛⎫-+ ⎪-+⎝⎭,其中x 为方程()213(1)x x -=-的解.14. 先化简,再求值: 12413123+--÷⎪⎭⎫ ⎝⎛--+x x x x x x ,其中2=x15. 先化简,再求值:212311x x x x -⎛⎫--÷ ⎪--⎝⎭,其中x 满足分式方程34322x xx+⎧⎪⎨-⎪⎩≤<的整数解。
16. 先化简,再求值:2269491()42m m m m m m m-+-÷-⋅--,其中m 是方程22410m m +-= 的解.17. 先化简,再求值:24)2122(+-÷+--x x x x ,其中x 满足方程123x x =+.18. 先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.19. 先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a 是满足12≤<-a 的整数.20. 先化简,再求值:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组⎪⎩⎪⎨⎧<-≤+4212321x x 的整数解.21. 先化简,再求值。
24)44122(22--÷+----+a a a a a a a a ,其中0122=--a a 。
22. 先化简,再求值:22816121(2)224x x x x x x x -+÷---+++,其中x 为不等式组20512(1)x x x -<⎧⎨+-⎩>的整数解.23. 先化简,再求值:)3933(99622+---÷-+-x x x x x x ,其中x 是不等式组102(2)1x x x+<⎧⎨++⎩,≥ 的整数解.24. 先化简,再求值:144)113(2++-÷+-+a a a a a ,其中a 是不等式组2+315(-1)+2<12a a ⎧⎨⎩≥的整数解.25. 先化简,再求值:969232322+--÷⎪⎭⎫ ⎝⎛---+x x x x x x xx ,其中032=-+x x .26. 先化简,再求值:111(112+---÷--m m m m m ),其中01222=--m m .27. 先化简,再求值:2211211x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭,其中x 满足方程220x x --=。
28. 先化简,再求值:,其中x 满足方程.29.先化简,再求值:222221(),11a a aa aa a-+-÷-+-其中a是方程09222=--xx的解30.先化简,再求值:222216214x x xxx x x⎛⎫---÷⎪+-⎝⎭,其中x满足2310x x--=.31.先化简,再求值:222141121424a aa a a a⎛⎫+⎛⎫-÷-⎪⎪++⎝⎭⎝⎭,其中a是不等式4113xx-->32.先化简再求值:,其中x≠y且x,y满足(x﹣y)(x+y﹣12)=0.33.先化简,再求值:,其中x满足x2+7x=0.34. 化简求值:⎪⎭⎫⎝⎛---÷--225232a a a a a ,其中4-=a .35. 先化简,再求值。
24)44122(22--÷+----+a a a a a a a a ,其中0122=--a a 。
36. 先化简,再求值:1)1212(2-÷+--+a a a aa ,其中a 是方程121=--x x x 的解.37.先化简,再求值:,其中为不等式组的整数解.38. (8分)先化简,再求值:(2a 12a a 2---)÷2a 1a 2a 2-+-,其中a=339. 先化简,再求值。
224422111m m m m m m -+-÷+---,其中x=240. 先化简,再求值:231839x x ---,其中3x =41. 已知实数a 满足015a 2a 2=-+,求1a 2a )2a )(1a (1a 2a 1a 122+-++÷-+-+的值.42. 先简化,再求值:,其中x=.43. 先化简,再求代数式2122121a a a a a a +-÷+--+的值,其中6tan 602a =-44. 先化简,后求值:224222aa a a a a+⎛⎫-÷ ⎪--⎝⎭,其中a = 3.45. 先化简,再求值:(x +l)(2x -1)一(x -3)2,其中x =一2.46. 先化简,再求值:()()()33482x y x y x y xy xy +---÷,其中1x =-,y =47. 先化简,再求值:22111121x x x x x x x ++⎛⎫+÷⎪---+⎝⎭其中2x =.48. 化简,再求值:xx x x x +÷++--224)1111(,其中x =-249. 先化简,后计算:11()ba b b a a b ++++,其中12a =,12b =50. 先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x xx,其中12+=x51. 先化简,再求值:y x y x y x y x ++-++222222,期中12+=x ,222-=y52. 先化简,再求值:24()44a a a a -÷+--,其中53. 先化简,再求值:,其中x=﹣154. 先化简,再求值:22113()24x x x x x --÷--,其中x =455. 先化简,再求值:12·1441222+-÷-+-+-a a a a a a ,其中21+=a56. 先化简211()1122aa a a -÷-+-,然后从11-中选取一个你认为合适的数作为a 的值代入求值.57. 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根.58. 先化简,再求值:13181++÷⎪⎭⎫ ⎝⎛+--x x x x ,其中23-=x59. 先化简,再求值24--x x ÷(x+2- 212-x ),其中x= 3 -4.60. 先化简,再求值:2422-+-x x x ,其中23-=x61. 先化简(1+1x-1)÷xx 2-1,再选择一个恰当的x 值代人并求值62. 先化简,再求值:2443x x x x x--÷+,其中01)x =63. 先化简,然后请你选择一个合适的x 的值代入求值:2443x x xx x--÷+64. 先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°65. 先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值66. 先化简:121a a a a a --⎛⎫÷- ⎪⎝⎭,并任选一个你喜欢的数a 代入求值67. 先化简.再求代数式的值.1a a)1a 2a 1a 2(2-÷-+++ 其中a =tan60°-2sin30°68. 先化简:⎪⎪⎭⎫ ⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.69. 先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.70. 化简求值:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中a =2010,b =2009.71. 先化简,再求值21a 3a 1a +÷++其中a =2sin60°-3.72. 先化简:(a - 2a —1a )÷ 1-a 2a 2+a ,然后给a 选择一个你喜欢的数代入求值.73. 先化简,再求值:)2522(422---+÷-+x x x xx ,其中︒+=60tan 1x 。
74. 先化简,再求值:13181++÷⎪⎭⎫ ⎝⎛+--x x x x ,其中23-=x75. 先化简,再求值24--x x ÷(x+2- 212-x ),其中x= 3 -4.76. 先化简,再求值:2422-+-x x x ,其中23-=x77. 先化简(1+1x-1)÷xx 2-1,再选择一个恰当的x 值代人并求值78. 先化简,再求值:2443x x x x x--÷+,其中01)x =79. 先化简,然后请你选择一个合适的x 的值代入求值:2443x x xx x--÷+80. 先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°81. 先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值82. 先化简:121a a a a a --⎛⎫÷- ⎪⎝⎭,并任选一个你喜欢的数a 代入求值83. 先化简.再求代数式的值.1a a)1a 2a 1a 2(2-÷-+++ 其中a =tan60°-2sin30°84. 先化简:⎪⎪⎭⎫⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.85. 先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.86. 化简求值:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中a =2010,b =2009.87. 先化简,再求值21a 3a 1a +÷++其中a =2sin60°-3.88. 先化简:(a - 2a —1a )÷ 1-a 2a 2+a ,然后给a 选择一个你喜欢的数代入求值.89. 先化简,再求值:)2522(422---+÷-+x x x xx ,其中︒+=60tan 1x 。