有机硅在医疗业的应用

合集下载

有机硅硅树脂的用途和作用

有机硅硅树脂的用途和作用

有机硅硅树脂的用途和作用
有机硅硅树脂是一种具有特殊化学结构的高分子材料,具有许多重要的用途和作用。

以下是其中的一些主要应用:
1. 电子行业:有机硅硅树脂可用作电子元件的封装材料,提供保护和绝缘功能,使得元件在恶劣环境中能够正常运行。

2. 光学行业:有机硅硅树脂具有高透明性和耐候性,被广泛用于光学镜片、光纤涂层、光学模具等领域,改善光学器件的性能。

3. 建筑行业:由于有机硅硅树脂具有耐热性、耐候性和耐化学腐蚀性,可以用于建筑密封材料、隔热材料、防水材料等,提高建筑物的性能和寿命。

4. 汽车工业:有机硅硅树脂可用于汽车部件的密封、润滑和防腐蚀,提高汽车的可靠性和耐久性。

5. 医药行业:有机硅硅树脂具有生物相容性和耐温性,可用于医疗器械、人工器官、药物控释系统等领域,提高医疗设备的性能和安全性。

6. 化妆品行业:有机硅硅树脂可用作化妆品中的稳定剂、增稠剂和
保湿剂,改善产品的质地和效果。

总之,有机硅硅树脂在各个领域都有广泛的应用,其特殊的化学结构和优异的性能使得它成为许多工业和科技领域不可或缺的材料。

有机硅化合物在材料领域中的应用

有机硅化合物在材料领域中的应用

有机硅化合物在材料领域中的应用有机硅化合物,是由碳-硅键组成的有机分子,具有许多独特的性质,包括高耐热性、耐腐蚀性、耐光性、柔韧性等。

这些性质使得有机硅化合物成为一种非常重要的材料,在诸多领域中发挥着至关重要的作用。

在本文中,我们将探讨有机硅化合物在材料领域中的应用。

一、封装和表面涂层有机硅化合物由于具有优异的耐热性和耐腐蚀性,因此通常用于电子产品的封装和表面涂层。

封装材料需要具有高温稳定性、高强度和耐腐蚀性,以保护电子元器件免受外界环境的影响。

有机硅化合物满足了这些要求,因此被广泛应用于电子封装中。

在电子产品的表面涂层方面,有机硅化合物通常被用作保护涂层,可以保护电子产品的表面免受刮擦、腐蚀等外界因素的影响。

此外,有机硅化合物的透明度很高,可以增强产品的美观度和观感效果。

二、复合材料有机硅化合物还常被用于制备复合材料。

复合材料是一种由两种或两种以上材料组成的材料,通常由基体材料和增强材料组成,能够获得更好的力学性能和物理性能。

有机硅化合物的高温稳定性和耐腐蚀性使其成为优秀的增强材料,可以大大提高复合材料的强度和耐久性。

三、生物医学材料有机硅化合物在生物医学领域的应用也得到了广泛关注。

由于其生物相容性好、生物可降解性佳等优势,有机硅化合物被用于制备人工骨骼、生物医学器械等医疗材料中。

人工骨骼是一种能够代替人体自身骨骼的材料,具有高强度、耐久性、生物相容性好等特点,可以用于各种骨折的修复。

有机硅化合物经过特殊处理后,可以被用作人工骨骼的增强材料。

此外,在生物医学器械的制备中,有机硅化合物可以用作材料表面的保护涂层,防止器械与人体组织发生不良反应。

同时,有机硅化合物可以与人体细胞相互作用,并促进细胞的再生和修复。

总的来说,有机硅化合物在材料领域中的应用十分广泛,涉及到电子、医学、航空航天等诸多领域。

其独特的性质使其成为众多高性能材料的重要组成部分。

随着科技的不断发展,有机硅化合物在材料领域中的应用前景将越来越广阔。

有机硅弹性体的性质及应用

有机硅弹性体的性质及应用

有机硅弹性体的性质及应用有机硅弹性体是一类由有机硅分子构成的高分子材料,在化学结构上,有机硅弹性体中的硅原子与有机物中的碳原子相互连接,形成与传统弹性体不同的分子结构。

有机硅弹性体具有多种独特的性质,广泛应用于工业、医疗、航天等领域。

首先,有机硅弹性体具有优异的弹性和拉伸性能。

由于有机硅弹性体中硅-碳键的存在,使得其分子链在拉伸和变形时可以自由运动,从而产生很高的可拉伸性和弹性恢复性,能够承受较大的拉伸力而不断形变。

这种性质使得有机硅弹性体常被用作弹性密封材料,例如汽车发动机密封件、机械密封圈等。

其次,有机硅弹性体具有良好的耐高温性能。

由于有机硅弹性体分子链中存在硅原子和氧原子的共价键,形成了一种稳定的结构,能够在高温环境下保持其原有的弹性和耐磨性。

因此,有机硅弹性体常被应用于高温环境下的密封和衬垫材料,例如石油化工设备、航天器件等。

此外,有机硅弹性体还具有良好的耐氧化性和耐腐蚀性。

有机硅弹性体中的硅原子与氧原子形成硅-氧键,具有很高的耐氧化性,能够在氧气环境下长时间使用而不老化。

同时,有机硅弹性体还能够抵抗一些强酸、强碱等腐蚀性介质的侵蚀,保持其原有的物理性能。

这些特点使得有机硅弹性体常被用作防腐材料、耐酸碱材料等。

另外,有机硅弹性体还具有良好的电绝缘性能和阻燃性能。

由于有机硅弹性体分子链中的碳原子和硅原子的存在,使得其材料具有较高的电绝缘性能,能够在电子元器件、电力设备等场合起到电绝缘的作用。

同时,有机硅弹性体中含有硅-氧键,使其具有一定的阻燃性,能够在火灾发生时减缓火势的蔓延,有助于提高人的逃生时间。

在应用方面,有机硅弹性体在工业领域具有广泛的应用。

例如,汽车行业中使用有机硅弹性体制作防火墙垫、悬挂系统等零部件;电子行业中使用有机硅弹性体制作电缆绝缘材料、半导体封装材料等;航天航空领域中使用有机硅弹性体制作航天器件的密封件、隔音材料等。

此外,有机硅弹性体还常被用于医疗器械、食品加工、建筑材料等领域。

有机硅压敏胶 医用 文章

有机硅压敏胶 医用 文章

有机硅压敏胶医用文章有机硅压敏胶是一种常见的医用材料,它在医疗领域发挥着重要的作用。

本文将介绍有机硅压敏胶在医疗中的应用以及其特点。

有机硅压敏胶是一种由有机硅聚合物制成的胶体材料。

它具有良好的柔韧性和可塑性,可根据需要制成不同形状和尺寸的产品。

在医疗领域,有机硅压敏胶被广泛应用于各种医疗器械和产品中。

有机硅压敏胶在医用胶带中得到了广泛应用。

医用胶带是医疗中常见的一种辅助材料,用于固定绷带、敷料等。

由于有机硅压敏胶具有良好的粘附性和可撕性,因此医用胶带可以牢固地粘附在皮肤上,不易脱落,同时又可以方便地撕下来,不会对皮肤造成损伤。

有机硅压敏胶还广泛应用于医用导管和贴片中。

医用导管是医疗中常见的一种辅助工具,用于引导药物或液体进入患者体内。

有机硅压敏胶可以用于固定导管,确保导管的稳定和安全。

同时,有机硅压敏胶还可以用于制作医用贴片,如心电贴片、血氧贴片等,用于监测患者的生理指标。

有机硅压敏胶还可用于制作医用胶囊。

医用胶囊是一种药物给药形式,可以将药物封装在胶囊中,通过口服的方式给药。

有机硅压敏胶可以用于制作胶囊外壳,保护药物不受外界环境的影响。

有机硅压敏胶作为医用材料,具有许多特点。

首先,它具有良好的生物相容性。

有机硅压敏胶不会对人体组织产生刺激或毒性反应,可以安全地应用于人体。

其次,有机硅压敏胶具有良好的耐候性和耐化学性。

它可以在不同环境条件下保持稳定性,不易受到湿度、温度等因素的影响。

此外,有机硅压敏胶还具有优异的物理性能,如耐磨性、耐腐蚀性等,可以满足医疗器械的使用要求。

有机硅压敏胶作为一种医用材料,在医疗领域发挥着重要的作用。

它在医用胶带、医用导管、医用贴片和医用胶囊等方面应用广泛,并具有良好的生物相容性和物理性能。

有机硅压敏胶的应用为医疗工作提供了便利,为患者的治疗和康复提供了保障。

随着科技的不断进步,相信有机硅压敏胶在医疗领域的应用会越来越广泛,为医疗事业做出更大的贡献。

有机硅的用处

有机硅的用处

有机硅的用处
有机硅具有许多优异的性能,如耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等。

因此,有机硅在许多领域都有广泛的应用。

在航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等行业,有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等领域。

此外,有机硅还可以用于制备太阳能电池组件的不可缺少的材料,如高透明硅树脂用于电池组件的抗磨损涂层,弹性体和凝胶体用于保护、灌封和装封,密封剂和粘合剂用于组件的装配等。

随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。

以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。

elkem有机硅成分_概述及解释说明

elkem有机硅成分_概述及解释说明

elkem有机硅成分概述及解释说明1. 引言1.1 概述本文旨在介绍elkem有机硅成分,并对其进行解释和说明。

有机硅是指含有碳-硅键的化合物,具有独特的化学性质和广泛的应用领域。

elkem有机硅作为一种重要的化工材料,在众多领域中都起着关键作用,如建筑材料、医药、化妆品等。

1.2 文章结构本文分为四个部分:引言、elkem有机硅成分概述、elkem有机硅成分解释说明和结论。

在引言部分,我们将简要介绍文章的内容及目的,并概括elkem有机硅的定义和用途。

1.3 目的本文旨在全面了解elkem有机硅成分,并对其进行详尽解释说明。

通过对其定义、特性、优势以及生产与合成方法进行阐述,我们可以更好地理解该物质在工业中的重要性和应用案例。

最后,我们将总结elkem有机硅成分的重要性和优势,并展望其未来发展前景与研究方向,为读者提供建议与启示。

2. elkem有机硅成分概述:2.1 elkem有机硅的定义和用途:elkem有机硅是一种由挥发性有机化合物和二氧化硅(SiO2)等无机材料制成的特殊材料。

它具有广泛的应用领域,被广泛应用于建筑、电子、食品加工、医药等行业。

其主要作用是增强产品的耐热性、抗腐蚀能力以及提供更好的粘附性能。

2.2 elkem有机硅的特性和优势:elkem有机硅具有多种独特的特性和优势。

首先,它具有优异的耐高温性能,可以在高温环境下保持稳定。

其次,elkem有机硅表现出出色的抗腐蚀能力,可抵御酸碱等各种化学物质的侵蚀,并具备良好的耐候性。

此外,elkem有机硅还具备良好的绝缘性能,适用于电子行业中电气绝缘方面的需求。

最后,它还具备良好的可塑性和粘附性,易于加工和应用于各类产品中。

2.3 elkem有机硅产品的分类和应用领域:elkem有机硅产品可以根据其组成和特性进行分类。

常见的分类包括硅酮油、硅烷偶联剂、硅橡胶等。

不同类型的elkem有机硅产品在不同领域中具备广泛的应用。

例如,在建筑行业,它被用作防水剂、密封胶等;在电子行业,它主要用于制造半导体和绝缘材料;在医药领域,elkem有机硅产品被应用于医疗器械制造等。

有机硅在医疗方面的应用

有机硅在医疗方面的应用

有机硅在医疗方面的应用
有机硅树脂在医用行业中有许多应用,它们具有优良的生物相容性、化学稳定性、透气性和耐湿性,被广泛用于各种医疗器械、器械涂层和医用敷料等。

以下是有机硅树脂在医用行业中的一些主要应用:
1.医用涂层:有机硅树脂可用于制造各种医疗器械的涂层,如手术器械、牙科器械、缝合线等。

有机硅涂层具有良好的生物相容性,不会引起过敏反应,同时具有良好的耐磨性、抗菌性和抗腐蚀性。

2.医用粘合剂:有机硅树脂可用作生物医学应用的粘合剂,如人工关节、骨骼固定装置等。

有机硅粘合剂具有良好的生物相容性、耐湿性和耐高低温性,能够在各种恶劣环境下保持良好的性能。

3.人工器官:有机硅树脂在人工器官领域也有广泛应用,如心脏瓣膜、肺膜、膀胱等。

有机硅材料具有良好的生物相容性、生物降解性和机械性能,能够满足人工器官的特殊要求。

4.医用敷料:有机硅树脂可用于制造各种医用敷料,如创面敷料、烧伤敷料、伤口护理膜等。

有机硅敷料具有良好的透气性、保湿性和抗菌性,能够有效促进伤口愈合。

5.医疗器械:有机硅树脂可用于制造各种医疗器械,如氧气面罩、医用手套、导管等。

有机硅器械具有良好的生物相容性、透气性和抗腐蚀性,能够确保医疗操作的安全性和有效性。

6.生物传感器:有机硅树脂可用于制造生物传感器,如葡萄糖传感器、肌电传感器等。

有机硅材料具有良好的生物相容性、化学稳定性和低背景电流,能够在生物医学应用中提供准确的测量结果。

有机硅胶用途

有机硅胶用途

有机硅胶用途
有机硅胶是一种高分子材料,具有很多优良的性能,因此在工业和民用领域中有着广泛的应用。

以下是有机硅胶的几个主要用途: 1. 电子工业:有机硅胶具有优异的绝缘性能,而且耐高温、耐寒、耐辐射,因此广泛应用于电子器件的封装、涂覆和粘接。

2. 汽车工业:有机硅胶耐高温、耐油、耐酸碱、耐老化,可以用于汽车制造中的密封、润滑、防水、防尘等方面。

3. 医疗保健:由于有机硅胶无毒、无味、无刺激性,因此可以用于医疗器械和假体的制造,如人工心脏瓣膜、乳房假体等。

4. 建筑和家居:有机硅胶可以用于防水、密封、隔音、减震等方面,在建筑和家居领域中有广泛的应用,如密封玻璃幕墙、防水屋顶、隔音地板等。

5. 化妆品:有机硅胶具有良好的亲水性、保湿性和光滑感,可以用于化妆品的生产中,如口红、粉底、护肤品等。

因为有机硅胶的优异性能和广泛用途,它在各行各业中都有着重要的地位。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17. Silicones in Medical ApplicationsX. Thomas, Dow Corning Europe SA, Seneffe (Belgium)Silicone materials celebrate 60 years of use in medical applications. Quickly after their commercial availability in 1946, methylchlorosilanes were described to treat glassware to prevent blood from clotting [1]. At the same time, Dr. F. Lahey implanted a silicone elastomer tube for duct repair in biliary surgery [2]. Since these pioneers, the interest for silicones in medical applications has remained because of their recognized biocompatibility. Silicones are used today in many life-saving medical devices like pacemakers or hydrocephalic shunts [3]. Silicones are also used in many pharmaceutical applications from process aids like tubing used to manufacture pharmaceuticals, to excipients in topical formulations or adhesives to affix transdermal drug delivery systems [4]. They also have found use as active pharmaceutical ingredients in products such as antacid and antiflatulent formulations [5-6].Polydimethylsiloxanes and BiocompatibilityIn medical devices and pharmaceutical applications, silicones are used because of their biocompatibility in a wide variety of physical forms. These forms range from volatile and low oligomers to high molecular weight polymers with viscosities from 0.65 cSt to 20x106 cSt to viscoelastic compounds and cross-linked elastomers.Biocompatibility is defined as “the ability of a material to perform with an appropriate host response in a specific situation” [7-8]. The impact of the biomaterial on its host environment is assessed according to approved standards (e.g., ISO 10993, USP and European monographs) aligned with the performance requirements for the intended applications. Overall, medical grade silicones, and in particular PDMS fluids or PDMS-based elastomers, satisfy the criteria of the above standards, including nonirritating and nonsensitizing behaviors, which explain their wide use in personal care and skin topical applications. A long history of use in medical devices, including long term implants, has made silicones widely recognized as biocompatible. These standards are yet addressing the impact from the host on the foreign material to a lesser extent, as data on biodurability are difficult to acquire. But again, silicones perform well as demonstrated by studies on PDMS-based elastomers explanted and showing good biodurability (Table 1, page 704 in [3]).Silicones with side-chain groups other than methyl (Me) are less used; PDMS polymers are the “preferred material,” even if some unlisted non Compendia/non Pharmacopoeia materials are now also well established (e.g., silicone pressure sensitive adhesives for transdermal systems). Potential improvements with new silicones are hindered by rigid regulatory requirements, and innovation is sometimes limited to the use of current materials in new applications.Linking physicochemical properties to biocompatibility is not yet fully understood for many materials. Various factors are involved to explain the successful use of PDMS-based materials in medical devices or pharmaceutical applications:•Because of their backbone flexibility, PDMS materials can preferably expose their low interacting Me group substituents at many interfaces, leading to low surfacetension, low surface energy and low intermolecular interactions, resulting in a lowoverall level of interactions at their surfaces. Therefore PDMS materials are amongthe most favored polymers when considering biocompatibility [9].•Their composition is well established. PDMS polymers do not require stabilizers because of their intrinsic stability. PDMS elastomers do not require plasticizersbecause of their low T g. Hemocompatibility studies have suggested that siliconetubing may be superior to PVC tubing [10]. Impurities are well characterized siloxane oligomers and the toxicology profile of these oligomers has been investigatedrecently in detail. Other impurities are catalyst traces, such as acids or bases used inpolymerization, but these are easy to eliminate and usually not an issue. Similarly,traces of platinum catalyst used at very low levels in cross-linking reactions may bepresent (platinum content 5 ppm to 20 ppm), and again this is usually not an issue.Only some tin catalysts used in room temperature curing materials or byproducts ofperoxides used as initiators in some high consistency rubbers (HCR) have raisedconcerns [3].Medical Devices and PharmaceuticalsApart from their prevailing biocompatibility, other properties contribute to the use of silicones in medical and pharmaceutical applications:•Because of their low liquid surface tension around 20.4 mN/m and slightly higher critical surface tension of wetting of 24 mN/m, PDMS polymers spread easily to form films over substrates like skin but also spread over their own absorbed film.•Because of their viscoelastic behavior, resin-reinforced silicones or partially cross-linked elastomers (e.g. gels) have pressure sensitive properties. Their soft, rubberybehavior makes such silicones very appropriate materials for contacting biologicaltissues by minimizing the risk of trauma at the interface (e.g., low skin strippingforce, gentle removability, no adhesion to wound bed). This allows their use intransdermal drug delivery and wound management applications to secure patches ordressings to the skin with minimum impact on the contacting area [11].•Because of their high permeability, silicones allow the diffusion of many substances such as gases (i.e., oxygen, carbon dioxide, water vapor) but also the diffusion ofvarious actives (i.e., plant extract, drug, or even protein). This explains their use inpersonal care, skin topical applications or wound dressings (nonocclusive properties, no maceration) [12]. It also explains their use as adhesives or elastomers in controlled drug delivery systems [13-14-15-16].Another practical aspect should not be ignored. Because of their stability, silicones are easy to sterilize by steam or ETO. Gamma or beta radiation sterilization require more precautions as they can induce radical reactions [17].Overall, it is often an association of properties that supports the use of silicones in medical applications (see Table 1) [18-19].Table 1. Correlations between Silicone Materials, Performance and ApplicationsSilicone Materials Key Physical Characteristicsand PerformanceMedical and PharmaceuticalApplicationsFluids•Polydimethylsiloxane•Organofunctionalsiloxane- Silicone polyether- Silicone alkyl wax •Spreadability, film-forming•Diluent, dispersing property•Substantivity•Controlled occlusivity•Hydrophobicity•Lubricant property•Emulsifying property•Siliconization of needles andsyringes•Medical device lubrication•Excipients for topicalformulations•Skin protecting composition•Drug carrierCompounds•Silica +polydimethylsiloxanes •Antifoam•Diluent, dispersing property•Antiflatulent (APIs)Gels (unreinforced elastomers) •Cross-linkedpolydimethylsiloxanes •Softness•Resilience•Tackiness•Transparency•Adjustable cure conditions:from ambient to elevatedtemperature•Foamable•Cushioning material•Gentle adhesive for skin(soft skin adhesive)•Wound interface(nonadherent wounddressing, foam dressing)•Soft matrix for drug releaseElastomers•Cross-linkedpolydimethylsiloxanes •Reinforced with silica•Various cure system:radical, hydrosilylation,condensation •Rubbery property•Mechanical resistance•Adjustable modulus•Adjustable cure conditions:from ambient to elevatedtemperature•Adjustable cross-linkingconditions•Foamable•In-situ film-forming•Soft and resilient material formedical device•Recognized biocompatibilityfor human implantation (e.g.,pacemaker)•Medical adhesive (sealant)•Film-formerPressure sensitive adhesives (PSAs)•Silicate resin inpolydimethylsiloxanes •Tacky material•Adhesion to skin andvarious substrates (e.g.,plastic films)•Substantive film-forming•Temporary fixation ofdevices on the skin (e.g.,wig, catheter)•Film-former•Transdermal drug deliverysystemMedical Devices. Contradictory to pharmaceuticals, medical devices are articles or associations of articles used in health care to support therapeutic treatments and assist patient life without pharmacological effects and interferences with biological processes. Silicones are used as components or fabricating materials in many such devices.Silicone fluids are used to lubricate or “siliconize” many medical surfaces like syringe pistons and barrels. The result is reduced “jerk” during injections or on needles, thus reducing pain [1-8, 10-20].Silicone polymers are easily converted into elastomers by creating covalent bonds between adjacent macromolecules to form three-dimensional networks [21]. Various chemical reactions are available to cross-link or cure silicone polymers:•Condensation cure between hydroxy, alkoxy or acetoxy groups in presence of tin or titanium catalysts, with liberation of water, alcohol or acetic acid and formation of Si-O-Si bonds•Radical initiated cure and reactions between alkyl and/or alkylene groups using peroxide to form Si-alkyl-Si bonds, but requiring post-cure to eliminate peroxidebyproducts•Addition cure or hydrosilylation of vinyl functional polymers by hydrogen functional siloxanes in the presence of platinum catalyst to form Si-CH2-CH2-Si bonds; in many applications, this reaction is preferred (addition reaction without byproducts; lowlevel of Pt catalyst: 5 ppm to 20 ppm as Pt)Physical properties are adjusted by controlling the cross-linking density and using reinforcing fillers, usually fume silica. Barium sulfate is added when radiopacity is required.Because cross-linking points are far apart, dimethylsiloxane segments are most likely to be exposed on the surface of these elastomers, so elastomers display the good biocompatibility associated with PDMS fluids.Various methods are used like casting, molding and injection to produce parts, or extrusion to produce tubing. Applications range from short term, noninvasive devices to critical, long term devices and are as diverse as long term implants like mammary implants (not without controversy), pacemaker leads, peristaltic tubing in heart-bypass machines or hydrocephalus shunts for regulating cerebrospinal brain fluid (see Figure 1) [3-22-23-24].Silicone coatings (solvent-based elastomer dispersion) are also used over other materials like natural latex to reduce adverse effects (see Figure 2).Figure 1. Long term implant: silicone elastomer valve and tubing of a hydrocephalic shunt (Picture courtesy of Medos, a Johnson & Johnson company).Figure 2. Short term implant: comparison of the incrustation on a silicone-coated latex catheter (top) vs.a latex catheter (bottom) (Picture courtesy Dow Corning).Silicone gels, adhesives and foams are part of various wound dressings used to reduce nursing costs, but also to improve comfort and therapy [25]. Silicone gels in particular have been successful in this case. These soft, relatively cohesive and tacky gels are platinum-cured elastomers without reinforcing fillers and are used:•As filling materials in cushions to prevent pressure sores•In wound dressings because of their permeability to oxygen and water vapor (no maceration dressing), with gentle adhesion to skin around a wound, but with •nonadherence to damaged tissues and the healing wound bed•In scar treatment where a dressing such as silicone gel sheeting has demonstrated its efficacy for the treatment of keloid and hypertrophic scars, as confirmed by variousstudies including a meta-study [26-27].•More recently, the release of actives from adhesives has been investigated with enzymes for the debridement of necrotic tissues [12].Pharmaceutical Process Aids. Silicones are commonly used as process aids in the production of pharmaceuticals like:•Silanes as temporary protective agents in the synthesis of complex molecules such as antibiotics (e.g., penicillin or cephalosporin). Specific groups are protected bysilylation (e.g., carbinols reacted with trimethylcholorosilanes to form a Si-O-C bond later easily hydrolyzed to recover the active molecule) [28-29]•Antifoams in fermentation process•Silicone tubing used to prepare drugs or vaccines in various fluid transfer operations,peristaltic pumping and filling operations. This tubing helps reduce investment costsin fixed stainless steel lines and, particularly for single-use applications, to eliminatecosts associated with validation of cleaning-in-place (CIP) or sterilization-in-place(SIP) and disposal of contaminated waste waters [30-31-32]. Innovative biotechprocesses take advantage of silicone elastomer properties such as their gaspermeability in fermentation cell systems, in which the oxygenation is directlyachieved via gas permeation through the silicone tubing wall [19].Pharmaceutical Ingredients. Silicones are present in many pharmaceutical finished drug products, and more than 350 products containing silicones are listed in various compendia [33].Cyclics (Cyclomethicone NF) are used in topical products because of their good spreading and volatility, with low heats of evaporation per gram of formulation (resulting in no cooling effect on the skin) [33].In the US, silicone fluids (Dimethicone NF) around 1,000 cSt are recognized as skin protectants for use in over-the-counter products [34]. This benefit is exploited in creams and ointments, and is most likely due to the high spreadability and high hydrophobicity of PDMS. Increasing the molecular weight, using PDMS gums (fluids with viscosity around or higher than 600,000 cSt) leads to interesting film-forming materials that are transparent, long-lasting on the skin and capable of improving the substantivity of personal care ingredients as sunscreens or active pharmaceutical ingredients (APIs) (e.g., ketoprofen) [35].Polydimethylsiloxanes alone (dimethicone) or compounded with silica (simethicone) are used in gastroenterology for their antifoam properties. They reduce foaming in the stomach without modifying the gastric pH, and are thus used in many antiflatulent/antacid products, in particular in countries using hot spices. They are considered an API, but their mode of action is physical; they are not metabolized but excreted as such [36].Silicone pressure sensitive adhesives (PSAs), which are PDMS/silicone resin networks, are used in numerous transdermal drug delivery systems (TDDS) to fix the drug device onto the skin (see Figure 3) [37]. These are viscoelastic compounds in which the PDMS fluid contributes to the wetting and spreadability of the adhesive and the resin, acting as the reinforcing agent, to the elastic rheological component. Because of the PDMS permeability, these PSAs allow the slow and controlled diffusion of various actives for various treatments: nitroglycerin (angina pectoris), estradiol (hormone replacement), fentanyl (pain management) and others. Both reservoir and matrix systems are known, the latter often considered because of its greater construction simplicity [37].Figure 3. Transdermal drug delivery system or patch with a silicone pressure sensitive adhesive (Picture courtesy Dow Corning).Silicone elastomers are used in drug-loaded pharmaceutical devices for the release of various APIs such as levonorgestrel in a subcutaneous contraceptive implant or 17 beta-estradiol in a vaginal ring for the treatment of urinary problems associated with menopause. In these reservoir devices, the release of the API is controlled by the permeability of the PDMS cross-linked network [36].In all the above applications, silicones have been considered because of their contribution to biocompatibility (medical devices), ease of use (pharmaceutical process aids) or improvement of comfort and/or treatment, allowing lower and local dosage forms with fewerside effects or making wound dressings easier to apply for potentially better compliance [37].References1 Jaques, L. B.; Fidlar, E.; Feldsted, E. T.; MacDonald, A. G. Can. Med. Assoc. J. 1946,55, 26.2 Lahey, F. H. Comments made following the speech “Results from using Vitallium tubes in biliarysurgery,” read by Pearse, H.E. before the American Surgical Association, Hot Springs, VA. Ann. Surg.1946, 124, 1027.3 Curtis, J. M.; Colas, A. Dow Corning(R) Silicone Biomaterials: History, Chemistry & MedicalApplications of Silicones, In Biomaterials Science, 2nd Edition; Ratner, B. D., Ed.; Elsevier: London, UK, 2004, 80.4 Leeper, H. M.; Wright, R. M. Rubber Chem. Technol. 1983, 56 (3), 523.5 Nickerson, M.; Curry, Coat over ulcers – new protection method; C. Sci. News Lett. 1953.6 Rider, J.; Moeller, H. JAMA. 1960, 174, 2052.7 Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility, Marcel Dekker: NewYork, 1992; 3-28.8 Remes, A.; Williams, D.F. Biomaterials 1992, 13 (11), 731.9 Owen, M. J. Chemtech. 198111, 288. This article has been updated and republished in Chimie Nouvelle2004, 85, 27.10 Harmand, M. F.; and Briquet, F. Biomaterials 1999, 20 (17), 1561.11Silicone Adhesives in Healthcare Applications, Dow Corning technical paper, Form No. 52-1057-01.12 Patent US20030180281. Preparation for topical use and treatment, Bott R.R., Gebert M.S., Klykken P.C.,Mazeaud I., Thomas, X, Sep 25, 2003.13 Liu, J. C.; Tan, E. L.; Chiang, C. C.; Tojo, K.; Chien, Y. W. Drug Dev. Ind. Pharm. 1985, 11 (6-7),1373.14 Etienne, A. S.T.P. Pharma. 1990, 6 (1), 33.15 Pfister, William R.; Sweet, Randall P.; Walters, Patrick A. Silicone-Based Sustained- and Controlled-Release Drug Delivery Systems, Natl. SAMPE Symp. Exhib., (Proc.), 30 (Adv. Technol. Mater.Processes), 1985, 490-8.16 Moreau, J. C.; Mazan, J.; Leclerc, B.; Avril, J. L.; Couarraze, G. Optimization of a Silicone Polymer forDrug Controlled Release. Congr. Int. Technol. Pharm., 6th, Volume 3, Assoc. Pharm. Galenique Ind.: Chatenay Malabry, Fr. 1992; 323-32.17 Rogers, W. Sterilisation of Polymer Healthcare Products, Rapra Tech. Ltd., 2005.18Dow Corning® Healthcare Selector Guide Form No. 51-988C-01.19 Colas, A. Silicones in Medical Applications, Medical Plastics 2005, Hexagon Holding ApS.:Copenhagen, Denmark - 15/17; Nov. 2005.20 Margulies, H.; Barker, N. W. Am. J. Med. Sci. 1973, 218, 42.21 Noll, W. Chemistry and Technology of Silicones; Academic Press: New York, 1968.22 LaFay, H. A Father’s Last-Chance Invention Saves His Son. Reader’s Digest, January 1957; 29.23 Baru, J. S.; Bloom, D. A.; Muraszko, K.; Koop, C. E. J. Am. Coll. Surgeons 2001,192, 79.24 Aschoff, A.; Kremer, P.; Hashemi, B.; Kunze, S. Neurosurg. Rev. 1999, 22, 67.25Dow Corning® Wound Management Solutions; CD ROM. Form No. 52-1071-01.26 Quinn, K. J.; Courtney, J. H.; Gaylor, J. D. S. Burns 1985, 12, 102.27Solutions for Scar Care - Skin Care Expertise for Wound Care Applications; Dow Corning Technical Brochure. Form No. 52-1049-01.28 Cooper, B. Chemistry & Industry Journal 1978, 20, 794.29 Treadgold, R. Process Biochemistry, 1983, (Jan/Feb), 18(1), 30-3.30 Colas, A.; Malczewski, R.; Ulman, K. PharmaChem 2004(Mar), 30-36.31 Schoenherr, B.; SeÅLneÅL, C. Manufacturing Chemist 2003 (Nov), 36.32 Aranha, H.; Haughney, H. Contract Pharma 2003(Jun), 68.33 Colas, A.; Rafidison, P. PharmaChem 2005(Oct), 46.34 United States Food and Drug Administration, Skin Protectant Drug Products for Over-the-CounterHuman Use; Final Monograph, 21 CFR 347.35 Patent EP 0966972. Aguadisch, L, Stalet, G, Mallard, C, Chavel, A.L., Caylus, G, June 18, 1999.36 Colas, A.; Aguadisch, L. Chimie Nouvelle 1997,15(58), 1779.37 Ulman, K.; Thomas, X. Silicone Pressure Sensitive Adhesives, In Advances in Pressure SensitiveAdhesive Technology-2. Satas, D., Ed.; Satas and Ass.: Warwick, Rhode Island, 1995; p 133.This article has been published in the chapter “Silicones in Industrial Applications” in Inorganic Polymers, an advanced research book by Nova Science Publishers (); edited by Roger De Jaeger (Lab. de Spechtrochimie Infrarouge et Raman, Univ. des Sciences and Tecn. de Lille, France) and Mario Gleria (Inst. di Scienze e Tecn. Molecolari, Univ. di Padoa, Italy). Reproduced here with the permission of the publisher.。

相关文档
最新文档