2018-2019学年最新浙教版数学八年级上册期末考试知识点汇总及试卷含答案-精品试卷

合集下载

浙教版八年级2018--2019学年度第一学期期末考试数学试卷

浙教版八年级2018--2019学年度第一学期期末考试数学试卷

绝密★启用前 浙教版八年级2018--2019学年度第一学期期末考试 数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计30分) 1.(本题3分)下列美丽的车标中,轴对称图形的个数是( ) A . 1 B . 2 C . 3 D . 4 2.(本题3分)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( ) A . B . C . D . 3.(本题3分)已知P 1(-3,y 1),P 2(2,y 2)是一次函数y=2x+1的图象上的两个点,则y 1, y 2的大小关系是( ) A . y 1>y 2 B . y 1<y 2 C . y 1= y 2 D . 不能确定 4.(本题3分)(题文)如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A . 2a B . (1+2)a C . 3a D . 5a5.(本题3分)已知如图所示的两个三角形全等,则∠α的度数是( ) A . 72° B . 60° C . 50° D . 58° 6.(本题3分)如图,△ABC 中,AB=AC,∠BAC=120°,DE 垂直平分AC 交BC 于D,垂足为E,若DE=2cm,则BC 的长为( )A . 6cmB . 8cmC . 10cmD . 12cm7.(本题3分)不等式组的最小整数解是( )A . ﹣3B . ﹣2C . 0D . 1 8.(本题3分)如图,Rt △ABC 中,∠B=90〬,AB=9,BC=6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,则线段AN 的长等于( )A . 5B . 6C . 4D . 39.(本题3分)在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是( )A . (3,2)B . (-3,-2)C . (-3,2)D . (3,-2)10.(本题3分)如图,点A 的坐标为(-1,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为( )A . (0,0)B . (-21,-21)C . (22,-22)D . (-22,-22) 二、填空题(计32分)11.(本题4分)(3分)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上 . 12.(本题4分)点()34P -,关于x 轴对称的点的坐标是___________. 13.(本题4分)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A 的面积为 . 14.(本题4分)已知:如图所示,M (3,2),N (1,-1).点P 在y 轴上使PM +PN 最短,则P 点坐标为_________. 15.(本题4分)在平面直角坐标系中,点A 1,A 2,A 3和B 1,B 2,B 3分别在直线y=5451+x.16.(本题4分)如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段________(填一组即可).17.(本题4分)不等式组的整数解是_______;18.(本题4分)在平面直角系中,已知直线l与坐标轴交于A、B (0,-5)两点,且直线l与坐标轴围成的图形面积为 10,则点A的坐标为.三、解答题(计58分)19.(本题8分)解不等式组:,并把它的解集在数轴上表示出来.20.(本题8分)解不等式,并在数轴上表示不等式组的解.21.(本题8分)已知:如图19,AB=AD ,BC=CD ,∠ABC=∠ADC .求证:OB=OD .22.(本题8分)两种移动电话计费方式表如下: (1)一个月内某用户在本地通话时间为x 分钟,请你用含有x 的式子分别写出两种计费方式下该用户应该支付的费用; (2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算? (3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.23.(本题8分)甲、乙两轮船同时从港口A 开出,各自沿固定方向航行,其中甲轮船每小时航行12海里,乙轮船每小时航行16海里,它们离开港口半小时后分别位于B ,C 两处,且相距10海里,如果甲轮船的航行方向为北偏西,请你计算确定乙轮船的航行方向.24.(本题9分)“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶.如果每盒饼干和每袋牛奶的标价分别设为x 元,y 元,请你根据以上信息:(1)找出x 与y 之间的函数关系式; (2)请利用不等关系,求出每盒饼干和每袋牛奶的标价. 25.(本题9分)如图,在等边△ABC 中,BD =CE ,AD 与BE 相交于点P.求证:∠APE=60°.参考答案1.C【解析】试题分析:根据轴对称图形的概念求解.解:第1,2,3个图形是轴对称图形,共3个.故选C.考点:轴对称图形.2.A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.视频3.B【解析】【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.4.D【解析】分析:把正方体的侧面展开,再根据勾股定理求解即可.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2018-2019学年最新浙教版数学八年级上学期期末考试模拟检测及答案解析-精编试题

2018-2019学年最新浙教版数学八年级上学期期末考试模拟检测及答案解析-精编试题

八年级(上)期末模拟数学试卷一、选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.1,2,3 B.4,5,10 C.7,8,9 D.9,10,202.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≠0 C.x>﹣2且x≠0 D.x≠﹣24.直角三角形两锐角的平分线相交所夹的钝角为()A.125°B.135°C.145°D.150°5.下列说法中,正确的是()A.斜边对应相等的两个直角三角形全等B.底边对应相等的两个等腰三角形全等C.面积相等的两个等边三角形全等D.面积相等的两个长方形全等6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形ABCD,正方形CEFG,正方形KHIJ,正方形JLMN的边长分别是3,5,2,3,则最大正方形ROPQ的面积是()A.13 B.26 C.47 D.947.如果不等式组的解集是x>7,则n的取值范围是()A.n≤7 B.n≥7 C.n=7 D.n<78.在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP 最短,则点P的坐标为()A.(0,0)B.(﹣,0)C.(﹣1,0)D.(﹣,0)9.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤10.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有()个:(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,);(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为S=m2.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y= .12.在直角坐标系中,若点A(m+1,2)与点B(3,n)关于y轴对称,则m+n= .13.已知△ABC是等腰三角形,若∠A=50°,则∠B= .14.命题“直角三角形斜边上的中线是斜边的一半”的逆命题是命题(填“真”或“假”).15.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为.16.如图,函数y=﹣2x和y=kx+4的图象相交于点A(m,3),则关于的x不等式kx+4+2x ≥0的解集为.17.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是.18.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE= .三、解答题(第19题6分,第20、21、22题8分,第23题12分,第24题各10分,第25题14分,共66分)19.解不等式2(x﹣1)≥4﹣3(x﹣3),并把解在数轴上表示出来.20.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.21.在平面直角坐标系中,已知一条直线经过点A(1,1),B(﹣2,7)和C(a,﹣3),求a的值.22.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.23.荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.24.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s 和所用的时间t之间的关系如图所示,根据图象回答下列问题:(1)写出这个情景中的变量是;(2)小灰灰的速度是每分钟米;(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)25.如图,△OAB是等边三角形,过点A的直线l:y=﹣x+m与x轴交于点E(4,0)(1)求m的值及△OAB的边长;(2)在线段AE上是否存在点P,使得△PAB的面积是△OAB面积的一半?若存在,试求出点P的坐标,若不存在,请说明理由;(3)在直线AE上是否存在点M,使得MA=MB?若存在,请求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.1,2,3 B.4,5,10 C.7,8,9 D.9,10,20【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能够组成三角形;B中,5+4=,9<10,不能组成三角形;C中,7+8=15>9,能组成三角形;D中,9+10=19<20,不能组成三角形.故选C.2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣2,3)在第二象限.故选B.3.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≠0 C.x>﹣2且x≠0 D.x≠﹣2【考点】函数自变量的取值范围.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由y=中,得x+2≠0,解得x≠﹣2,自变量x的取值范围是x≠﹣2,故选:D.4.直角三角形两锐角的平分线相交所夹的钝角为()A.125°B.135°C.145°D.150°【考点】三角形内角和定理.【分析】作出图形,根据直角三角形两锐角互余可得∠BAC+∠ABC=90°,再根据角平分线的定义可得∠OAB+∠OBA=45°,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∵AD、BE分别是∠BAC和∠ABC的平分线,∴∠OAB+∠OBA=×90°=45°,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.故选B.5.下列说法中,正确的是()A.斜边对应相等的两个直角三角形全等B.底边对应相等的两个等腰三角形全等C.面积相等的两个等边三角形全等D.面积相等的两个长方形全等【考点】全等图形.【分析】只有一边和一直角对应相等的两个三角形不能判定全等;只有一对对应边相等的两个等腰三角形不一定全等;面积相等的两个等边三角形边长一定相等,因此一定全等;面积相等的两个长方形边长不一定相等,故不一定全等.【解答】解:A、斜边对应相等的两个直角三角形全等,说法错误;B、底边对应相等的两个等腰三角形全等,说法错误;C、面积相等的两个等边三角形全等,说法正确;D、面积相等的两个长方形全等,说法正确;故选:C.6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形ABCD,正方形CEFG,正方形KHIJ,正方形JLMN的边长分别是3,5,2,3,则最大正方形ROPQ的面积是()A.13 B.26 C.47 D.94【考点】勾股定理.【分析】由勾股定理得出DG2=32+52,KN2=22+32,PO2=DG2+KN2,即可得出最大正方形的面积.【解答】解:由勾股定理得:DG2=32+52,KN2=22+32,PO2=DG2+KN2即最大正方形E的面积为:PO2=32+52+22+32=47.故选:C.7.如果不等式组的解集是x>7,则n的取值范围是()A.n≤7 B.n≥7 C.n=7 D.n<7【考点】解一元一次不等式组.【分析】求出每个不等式的解集,根据不等式的解集和不等式组的解集即可求出答案.【解答】解:,∵解不等式①得:x>7,∵不等式②的解集是x>n,不等式组的解集为x>7,∴n≤7.故选:A.8.在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP 最短,则点P的坐标为()A.(0,0)B.(﹣,0)C.(﹣1,0)D.(﹣,0)【考点】轴对称-最短路线问题;坐标与图形性质.【分析】根据题意画出坐标系,在坐标系内找出A、B两点,连接AB交x轴于点P,求出P 点坐标即可.【解答】解:如图所示,连接AB交x轴于点P,则P点即为所求点.∵A(﹣1,﹣1),设直线AB的解析式为y=kx+b(k≠0),∴,解得,∴直线A′B的解析式为y=x+,∴当y=0时,x=﹣,即P(﹣,0).故选D.9.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤【考点】一次函数的性质.【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【解答】解:将A(1,1)代入直线中,可得+b=1,解得b=;将B(3,1)代入直线中,可得+b=1,解得b=﹣;将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选B.10.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有()个:(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,);(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为S=m2.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;坐标与图形性质;等边三角形的性质.【分析】(1)易证∠OBC=∠ABD,即可证明△OBC≌△ABD,即可解题;(2)根据(1)容易得到∠OAE=60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE=2,从而得到E的坐标是固定的.(3)根据∠OAE=60°可得∠DAC=60°,可得∠DAC的度数不会随着点C位置的变化而改变;即可证明该结论错误;(4)根据△OBC≌△ABD,可得四边形ABDC的面积S=S△ACD +S△ABD=S△ACD+S△OBC,即可解题.【解答】解:(1)∵△AOB是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,又∵△CBD是等边三角形∴BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(1)正确;(2)∵△OBC≌△ABD,∵∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°﹣∠OAB﹣∠BAD=60°,∴Rt△OEA中,∵∠OAE=60°,∴∠AEO=30°,∴AE=2OA=2,∴OE==,∴点E的位置不会发生变化,E的坐标为E(0,);(2)正确;(3)∵∠OAE=60°,∴∠DAC=60°,∴∠DAC的度数不会随着点C位置的变化而改变;(3)错误;(4)∵△OBC≌△ABD,∴四边形ABDC的面积S=S△ACD +S△ABD=S△ACD+S△OBC=AC•ADsin∠DAC+OB•OCsin∠BOC=×(m﹣1)m×+×1×m×=m2,故(4)正确;故选.二、填空题(每小题3分,共24分)11.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y= ﹣6 .【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.12.在直角坐标系中,若点A(m+1,2)与点B(3,n)关于y轴对称,则m+n= ﹣2 .【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m+1,2)与点B(3,n)关于y轴对称,∴m+1=﹣3,n=2,解得:m=﹣4,n=2,则m+n=﹣4+2=﹣2.故答案为:﹣2.13.已知△ABC是等腰三角形,若∠A=50°,则∠B= 50°或65°或80°.【考点】等腰三角形的性质.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B 为顶角,∠A为底角.【解答】解:∵∠A=70°,△ABC是等腰三角形,∴分三种情况:①当∠C为顶角时,∠B=∠A=50°,②当∠A为顶角时,∠B=÷2=65°,③当∠B为顶角时,∠B=180°﹣50°×2=80°,综上所述:∠B的度数为50°、65°、80°,故答案为:50°或65°或80°.14.命题“直角三角形斜边上的中线是斜边的一半”的逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.然后判断真假即可.【解答】解:命题“直角三角形斜边上的中线是斜边的一半”的逆命题是一边上的中线等于这边的一半的三角形是直角三角形,为假命题,故答案为:假.15.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为24 .【考点】勾股定理;勾股定理的逆定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB===5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,∴阴影部分的面积=△ABD的面积﹣△ABC的面积=AB×BD﹣BC×AC=30﹣6=24.故答案为:24.16.如图,函数y=﹣2x和y=kx+4的图象相交于点A(m,3),则关于的x不等式kx+4+2x ≥0的解集为x≤﹣1.5 .【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式kx+4+2x ≥0的解集即可.【解答】解:将点A(m,3)代入y=﹣2x得,﹣2m=3,解得,m=﹣,所以点A的坐标为(﹣1.5,3),由图可知,不等式kx+4+2x≥0的解集为x≤﹣1.5.故答案为x≤﹣1.5.17.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是(6,4).【考点】坐标与图形性质.【分析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【解答】解:设点P的横坐标为x,则点P的纵坐标为x﹣2,由题意得,x+x﹣2=10,解得x=6,x﹣2=4,∴P(6,4).故答案为:(6,4).18.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE= 39°.【考点】全等三角形的判定与性质.【分析】连接AE、BD,证△DAB≌△BCF,得出BD=BF,关键等腰三角形的性质推出∠BDF=∠BFD,求出∠ADF=∠CFD,求出∠ABF=∠BFC+2∠CFD,∠BAF=∠AFC+2∠CFE,代入求出即可.【解答】解:连接BD、AE,∵DA⊥AB,FC⊥AB,∴∠DAB=∠BCF=90°,在△DAB和△BCF中,,∴△DAB≌△BCF(SAS),∴BD=BF,∴∠BDF=∠BFD,又∵AD∥CF,∴∠ADF=∠CFD,∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又∵∠AFB=51°,∴∠ABF+∠BAF=129°,∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,∴∠DFE=39°,故答案为:39°.三、解答题(第19题6分,第20、21、22题8分,第23题12分,第24题各10分,第25题14分,共66分)19.解不等式2(x﹣1)≥4﹣3(x﹣3),并把解在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】去括号、移项、合并同类项、系数化为1即可求解,然后在数轴上表示出来即可.【解答】解:去括号,得2x﹣2≥4﹣3x+9,移项,得2x+3x≥4+9+2,合并同类项,得5x≥15,洗漱化成1得x≥3..20.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.【解答】解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF,BF=CE.21.在平面直角坐标系中,已知一条直线经过点A(1,1),B(﹣2,7)和C(a,﹣3),求a的值.【考点】一次函数图象上点的坐标特征.【分析】设直线AB解析式为y=kx+b,将A与B坐标代入求出k与b的值,确定出直线AB 解析式,代入C坐标即可求得a的值.【解答】解:设直线AB解析式为y=kx+b,将点A(1,1),B(﹣2,7)代入得:,解得:k=﹣2,b=3,∴直线AB解析式为y=﹣2x+3,∵直线AB经过点C(a,﹣3),∴﹣3=﹣2a+3∴a=3.22.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.【考点】勾股定理.【分析】(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)设CD的长为x,然后用x表示出DB、DE、BF利用勾股定理得到有关x的方程,解之即可.【解答】解:(1)画角平分线正确,保留画图痕迹(2)设CD=x,作DE⊥AB于E,则DE=CD=x,∵∠C=90°,AC=6,BC=8.∴AB=10,∴EB=10﹣6=4.∵DE2+BE2=DB2,∴x2+42=(8﹣x)2,x=3,即CD长为3.23.荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.【考点】二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.【解答】解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.24.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s 和所用的时间t之间的关系如图所示,根据图象回答下列问题:(1)写出这个情景中的变量是时间t和路程S ;(2)小灰灰的速度是每分钟100 米;(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)【考点】一次函数的应用.【分析】(1)根据图中信息得出变量即可;(2)根据图中信息得出速度即可;(3)根据题意画出图象即可.【解答】解:(1)这个情景中的变量是时间t和路程S,故答案为:时间t和路程S;(2)小灰灰的速度是米/每分钟,故答案为:100;(3)灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象如图,故函数表达式为:y=200x﹣400.25.如图,△OAB是等边三角形,过点A的直线l:y=﹣x+m与x轴交于点E(4,0)(1)求m的值及△OAB的边长;(2)在线段AE上是否存在点P,使得△PAB的面积是△OAB面积的一半?若存在,试求出点P的坐标,若不存在,请说明理由;(3)在直线AE上是否存在点M,使得MA=MB?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)将E坐标代入直线l解析式求出m的值,确定出直线l,根据三角形AOB为等边三角形,且A在直线l上,设等边三角形边长为2a,表示出A坐标,代入直线l方程求出a的值,即可确定出等边三角形边长;(2)求出三角形AOB面积,由△PAB的面积是△OAB面积的一半,确定出三角形PAB面积,求出B到AE的距离BD,确定出AP长,由P在直线l上,设出P坐标,利用两点间的距离公式求出p的值,确定出P坐标即可;(3)首先求得AB的解析式,然后求得经过AB的中点且与AB垂直的直线的解析式,然后求得与AE的交点即可.【解答】解:(1)将E(4,0)代入直线l方程得:0=﹣4×+m,即m=,∴直线l解析式为y=﹣x+,过A作AC⊥OB,∵△ABC为等边三角形,∴OC=BC=OB,设等边△ABC边长为2a,则有OC=a,AC==a,即A(a, a),代入直线l方程得: a=﹣a+,解得:a=1,即A(1,),则OAB边长为2;(2)过B 作BD ⊥AE ,∵直线l 的斜率为﹣,即倾斜角为150°,AB=BE=2, ∴∠AEB=∠BAE=30°,∴BD=1,∵S △PAB =S △OAB ,S △OAB =×2×=,∴S △PAB =AP •BD=AP=,即AP=,设P 坐标为(p ,﹣p+),∴AP 2=(1﹣p )2+(+p ﹣)2=3,解得:p=或p=﹣,则P 的坐标为(,)或(﹣,);(3)∵A 的坐标是(1,),△OAB 是等边三角形, ∴B 的坐标是(2,0).∴AB 的中点的坐标是(,). 设AB 的解析式是y=kx+b ,根据题意得:,解得:,则AB 的解析式是y=﹣x+2.设经过AB 的中点且与AB 垂直的直线的解析式是y=x+c ,则×+c=,解得:c=0,则解析式是y=x .代入y=﹣x+得x=﹣x+,解得:x=2.则y=.则M的坐标是(2,).。

最新浙教版八年级2018----2019学年度第一学期期末复习数学试卷

最新浙教版八年级2018----2019学年度第一学期期末复习数学试卷

绝密★启用前最新浙教版八年级2018----2019学年度第一学期期末复习数学试卷一、单选题(计30分)1.(本题3分)下列四个图标中,属于轴对称图形的是( )A .B .C .D .2.(本题3分)如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E .若OD=12,OP=15,则PE 的长为( )A . 9B . 10C . 11D . 123.(本题3分)如图,∠A+∠B+∠C+∠D+∠E 的度数为( )A . 90°B . 180°C . 270°D . 360°4.(本题3分)如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =3,A . 5B . 13C . 17D . 185.(本题3分)有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A . 3B .C .和3 D . 不确定6.(本题3分)不等式组的解集在数轴上可表示为( )A .B .C .D .7.(本题3分)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A . 11 B . 8 C . 7 D . 58.(本题3分)在平面直角坐标系中,点P (﹣2,﹣3)向右移动3个单位长度后的坐标是( )A . (﹣5,﹣3)B . (1,﹣3)C . (1,0)D . (﹣2,0) 9.(本题3分)如图,已知表示棋子“馬”和“車”的点的坐标分别为(4,3)、(﹣2,1),则表示棋子“炮”的点的坐标为( )A . (1,3)B . (﹣3,3)C . (0,3)D . (3,2) 10.(本题3分)若点A (x 1,y 1)和B (x 2,y 2)是直线y=﹣21x+1上的两点, 且x 1>x 2,则y 1与y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能确定二、填空题(计32分)11.(本题4分)已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.12.(本题4分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A=68°,则∠1+∠2=____°.13.(本题4分)如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有_____.14.(本题4分)如图,∠1=∠2,∠C=∠B ,下列结论中正确的是__________.(写出所有正确结论的序号)①△DAB ≌△DAC ;②CD=DE ;③∠CFD=∠CDF ;④∠BED=2∠1+∠B .15.(本题4分)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第_______块去配,其依据是定理_______(可以用字母简写).16.(本题4分)如图,在中的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,则的长____________.17.(本题4分)若x <y ,且(m ﹣2)x >(m ﹣2)y ,则m 的取值范围是_____. 18.(本题4分)如图,一次函数与的图像交于点,则由函数图像得不等式的解集为________.三、解答题(计58分)19.(本题7分)解不等式(组)(1)2(5x+3)≤x ﹣3(1﹣2x ) (2)20.(本题7分)如图,已知AB=AD ,AC=AE ,∠1=∠2,求证:BC=DE .21.(本题7分)如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=3,BC=2.求AB 的长.22.(本题7分)已知:如图,在边长为1的小正方形网格中,△ABC 的顶点都在格点上,建立适当的平面直角坐标系xOy ,使得点A 、B 的坐标分别为(2,3)、(3,2). (1)画出平面直角坐标系;(2)若点P 是y 轴上的一个动点,则P A +PC 的最小值为 .(直接写出结果)23.(本题7分)已知与成正比,且当时,.(1)求函数关系式;(2)它的图像与直线的交点坐标是(,)24.(本题7分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价25.(本题8分)△ABC 在直角坐标系内的位置如图所示.(1)分别写出A 、B 、C 的坐标;(2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标.26.(本题8分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高 cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的函数关系式; (3)当量桶中水面上升至距离量桶顶部3cm 时,应在量桶中放入几个小球?本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

浙教版-学年度第一学期八年级期末数学试卷(含解析)

浙教版-学年度第一学期八年级期末数学试卷(含解析)

绝密★启用前浙教版2018-2019学年八年级第一学期期末数学试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题,3*12=36)1.下列各图中,属于轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.等腰三角形的两边长分别为2和7,则它的周长是()A.9B.11C.16D.11或164.对于函数y=k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.经过一、三象限或二、四象限B.过点(,k)C.是一条直线D.y随着x的增大而增大5.如图,等边△ABC在平面直角坐标系中的位置如图所示,其中顶点A(﹣1,﹣1),B(3,﹣1),则顶点C的坐标为()A.(1,2)B.(0,2)C.(1,2﹣1)D.(1,2﹣2)6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC ≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠E D.BC=EF,AC=DF8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°9.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.已知△ABC中,AC=BC,∠C=Rt∠.如图,将△ABC进行折叠,使点A落在线段BC上(包括点B和点C),设点A的落点为D,折痕为EF,当△DEF是等腰三角形时,点D可能的位置共有()A.2种B.3种C.4种D.5种11.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.x>1B.1<x<C.1<x<2D.1<x<312.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有()个:(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,);(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为S=m2.A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)13.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是.14.已知点P的坐标为(3,﹣2),则点P到y轴的距离为.15.如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为度.16.已知点P(a,b)在直线y=x﹣1上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1的值为.17.在平面直角坐标系中,O是坐标原点,点A的坐标是(0,2),点M在直线y=﹣2x+b上,且AM=OM=2,则b的值为.18.平面直角坐标系中,已知△A1B1C1、△C1B2C2、△C2B3C3…△C n﹣1B n∁n(n≥2)都是等腰直角三角形.现按如图的方式放置,斜边A1C1、C1C2、C2C3、…、C n﹣1∁n依次在x轴上,点B1坐标为(0,1)且B1、B2、B3…B n都是一次函数y=x+b图象上的点,则点B2的坐标是,点B n的坐标是.评卷人得分三.解答题(共8小题,66分)19.(6分)解不等式(组)(1)3(x﹣)>2x(并把解集表示在数轴上)(2).20.(6分)在△ABC和△DEF中,A、D、C、F在同一条直线上,且AB=DE,AD=CF,另外只能再在给出的三个条件:①∠B=∠E;②AB∥DE;③∠ACB=∠DFE 中选择其中一个用来证明△ABC与△DEF全等,这个条件应该是(填写编号),并证明△ABC≌△DEF.21.(6分)如图,已知∠β和线段a,c.(1)用直尺和圆规作△ABC,使∠B=∠β,BC=a,AB=c(不写作法,作出图形,并保留痕迹);(2)在(1)的条件下,若∠β=45°,a=3,c=2,求AC的长.22.(8分)如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,﹣3),B(5,﹣1),C(﹣1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出△ABC;(2)画出△ABC关于x轴对称的△A'B'C',并写出△A'B'C'各顶点坐标;(3)在x轴上找一点P,使P A+PB的值最小.请画出点P,并求出点P坐标.23.(8分)已知:如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=45°,CE是AB边上的中线.(1)CD=AB;(2)若CG=EG,求证:DG⊥CE.24.(10分)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y (人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?25.(10分)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.26.(12分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC 为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列各图中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形.故错误;B、不是轴对称图形.故错误;C、不是轴对称图形.故错误;D、是轴对称图形.故正确.故选:D.【点评】此题主要考查了轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个图形是轴对称图形.2.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣2,3)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.等腰三角形的两边长分别为2和7,则它的周长是()A.9B.11C.16D.11或16【分析】在三角形中,两边之和大于第三边.所以,据此很容易找到等腰三角形的腰与底边.【解答】解:(1)假设等腰三角形的腰是2,则2+2=4,4<7,也就是说两边之和小于第三边,所以假设不成立;(2)假设等腰三角形的腰是7,则7+7=14,14>7,也就是说两边之和大于第三边;7﹣7=0,则0<2,即两边之差小于第三边,所以假设成立,所以等腰三角形的周长是7+7+2=16,即等腰三角形的周长是16.故选:C.【点评】解答本题的难点是分清等腰三角形的腰的长度与底边的长度,如何来区分呢?根据三角形中的三边关系,即两边之和大于第三边,两边之差小于第三边.4.对于函数y=k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.经过一、三象限或二、四象限B.过点(,k)C.是一条直线D.y随着x的增大而增大【分析】根据正比例函数的性质求解.【解答】解:对于函数y=k2x(k是常数,k≠0)的图象,∵k2>0,∴直线y=k2x经过第一、三象限,y随x的增大而增大,∵当x=时,y=k,∴直线y=k2x经过点(,k).故选:A.【点评】BE题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象是直线,当k>0,经过第一、三象限,y随x的增大而增大;当k<0,经过第二、四象限,y随x 的增大而减小.5.如图,等边△ABC在平面直角坐标系中的位置如图所示,其中顶点A(﹣1,﹣1),B(3,﹣1),则顶点C的坐标为()A.(1,2)B.(0,2)C.(1,2﹣1)D.(1,2﹣2)【分析】过C点作CD⊥AB于D,交x轴于E点,如图,由A点和B点坐标得AB=4,DE=1,再利用等边三角形的性质得到AD=AB=2,∠ACD=30°,则根据含30度的直角三角形三边的关系得到CD=AD=2,则CE=CD﹣DE=2﹣1,然后根据第一象限内点的坐标特征即可得到C点坐标.【解答】解:过C点作CD⊥AB于D,交x轴于E点,如图,∵A(﹣1,﹣1),B(3,﹣1),∴AB=3﹣(﹣1)=4,DE=1,∵CD⊥AB,∴AD=AB=2,∠ACD=30°,∴CD=AD=2,∴CE=CD﹣DE=2﹣1,而OE=2﹣1=1,∴C点坐标为(1,2﹣1).故选:C.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了坐标与图形的性质.通过解直角三角形求得AD、CD的长度是关键.6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.7.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC ≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠E D.BC=EF,AC=DF【分析】将所给的选项逐一判断、分析,即可解决问题.【解答】解:不能添加的一组条件是B;理由如下:在△ABC与△DEF中,∵∠A=∠D,BC=EF,AB=DE,即在两个三角形中满足:有两边和其中一边所对的对应角相等,∴这两个三角形不一定全等,故选:B.【点评】该题主要考查了全等三角形的判定定理及其应用问题;牢固掌握全等三角形判定定理的本质内容是解题的关键.8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.9.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:由①得,x≤3;由②得,x>﹣;所以,不等式组的解集为﹣<x≤3.故选:A.【点评】本题考查了解一元一次不等式组的方法:分别解几个不等式,它们解的公共部分即为不等式组的解;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”得到公共部分.10.已知△ABC中,AC=BC,∠C=Rt∠.如图,将△ABC进行折叠,使点A落在线段BC上(包括点B和点C),设点A的落点为D,折痕为EF,当△DEF是等腰三角形时,点D可能的位置共有()A.2种B.3种C.4种D.5种【分析】根据等腰三角形的判定可以得出,存在不同的边之间相等,有EF=DF,DE=FD,EF=ED,即可得出答案.【解答】解:∵将△ABC进行折叠,使点A落在线段BC上(包括点B和点C),设点A的落点为D,折痕为EF,当△DEF是等腰三角形时,∴点D可能的位置共有:①当A点与D点(C点)重合时,∵AC=BC,AE=DE,∴EF=DE,△EDF是等腰三角形;②当A点与B点(D点)重合时,C点与E点重合,∵AC=BC,AF=DF,∴CF=DF,△EDF是等腰三角形;③如图当ED=FD时,△EDF是等腰三角形.故选:B.【点评】此题主要考查了等腰三角形的判定与翻折变换,找出特殊点A点与B,C分别重合时的两点是解决问题的关键.11.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.x>1B.1<x<C.1<x<2D.1<x<3【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m﹣3,接着解(m﹣3)x+3>mx﹣2得x<,然后利用函数图象可得不等式组mx>kx+b>mx ﹣2的解集.【解答】解:把P(1,m)代入y=kx+3得k+3=m,解得k=m﹣3,解(m﹣3)x+3>mx﹣2得x<,所以不等式组mx>kx+b>mx﹣2的解集是1<x<.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABO,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .下列结论正确的有( )个: (1)△OBC ≌△ABD ;(2)点E 的位置不随着点C 位置的变化而变化,点E 的坐标是(0,);(3)∠DAC 的度数随着点C 位置的变化而改变;(4)当点C 的坐标为(m ,0)(m >1)时,四边形ABDC 的面积S 与m 的函数关系式为S =m 2.A .1个B .2个C .3个D .4个【分析】(1)易证∠OBC =∠ABD ,即可证明△OBC ≌△ABD ,即可解题;(2)根据(1)容易得到∠OAE =60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE =2,从而得到E 的坐标是固定的.(3)根据∠OAE =60°可得∠DAC =60°,可得∠DAC 的度数不会随着点C 位置的变化而改变;即可证明该结论错误;(4)根据△OBC ≌△ABD ,可得四边形ABDC 的面积S =S △ACD +S △ABD =S △ACD +S △OBC ,即可解题.【解答】解:(1)∵△AOB 是等边三角形, ∴OB =AB ,∠OBA =∠OAB =60°, 又∵△CBD 是等边三角形 ∴BC =BD ,∠CBD =60°, ∴∠OBA +∠ABC =∠CBD +∠ABC , 即∠OBC =∠ABD , 在△OBC 和△ABD 中,,∴△OBC ≌△ABD (SAS );(1)正确;(2)∵△OBC ≌△ABD , ∵∠BAD =∠BOC =60°, 又∵∠OAB =60°,∴∠OAE =180°﹣∠OAB ﹣∠BAD =60°, ∴Rt △OEA 中, ∵∠OAE =60°, ∴∠AEO =30°, ∴AE =2OA =2, ∴OE ==,∴点E 的位置不会发生变化,E 的坐标为E (0,);(2)正确;(3)∵∠OAE =60°, ∴∠DAC =60°,∴∠DAC 的度数不会随着点C 位置的变化而改变;(3)错误; (4)∵△OBC ≌△ABD ,∴四边形ABDC 的面积S =S △ACD +S △ABD =S △ACD +S △OBC =AC •AD sin ∠DAC +OB •OC sin ∠BOC =×(m ﹣1)m ×+×1×m ×=m 2,故(4)正确;故选:C .【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、面积相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△OBC ≌△ABD 是解题的关键. 二.填空题(共6小题)13.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是 到角的两边距离相等的点在角平分线上 .【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.已知点P的坐标为(3,﹣2),则点P到y轴的距离为3.【分析】根据点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:(3,﹣2)到y轴的距离为3,故答案为:3.【点评】本题考查了点的坐标,点到y轴的距离是横坐标的绝对值是解题关键.15.如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为94度.【分析】由△MAK≌△KBN,推出∠AMK=∠BKN,由∠BKM=∠A+∠AMK=∠MKN+∠BKN,推出∠A=∠MKN=43°,推出∠A=∠B=43°,由此即可解决问题.【解答】解:∵P A=PB,∴∠A=∠B,在△MAK和△KBN中,,∴△MAK≌△KBN,∴∠AMK=∠BKN,∵∠BKM=∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=43°,∴∠A=∠B=43°,∴∠P=180°﹣2×43°=94°.故答案为94.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16.已知点P(a,b)在直线y=x﹣1上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1的值为1.【分析】将点的坐标代入直线中可得出关于a、b的二元一次方程组,解方程即可得出a、b的值,将其代入代数式a2﹣4b2﹣1中,即可得出结论.【解答】解:由已知得:,解得:.∴a2﹣4b2﹣1=﹣4×﹣1=1.故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征以及解二元一次方程组,解题的关键是求出a、b的值.本题属于基础题,难度不大,解决该题型题目时,由点在直线上得出方程(或方程组)是关键.17.在平面直角坐标系中,O是坐标原点,点A的坐标是(0,2),点M在直线y=﹣2x+b上,且AM=OM=2,则b的值为1﹣2或1+2.【分析】根据题意画出图形,∴△OAM是等边三角形,易知M(,1)或(﹣,1,利用待定系数法即可解决问题.【解答】解:如图,∵AM=OM=OA=2,∴△OAM是等边三角形,易知M(,1)或(﹣,1)当M(,1)时,1=2+b,解得b=1﹣2,当M(﹣,1)时,1=﹣2+b,解得b=1+2,故答案为:1﹣2或1+2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.平面直角坐标系中,已知△A1B1C1、△C1B2C2、△C2B3C3…△C n﹣1B n∁n(n≥2)都是等腰直角三角形.现按如图的方式放置,斜边A1C1、C1C2、C2C3、…、C n﹣1∁n依次在x轴上,点B1坐标为(0,1)且B1、B2、B3…B n都是一次函数y=x+b图象上的点,则点B2的坐标是(3,2),点B n的坐标是(3(2n﹣1﹣1),2n﹣1).【分析】过B2作B2D⊥x轴于D,过B3作B3E⊥x轴于E,根据等腰直角三角形的性质可得出B2D=DC1、B3E=EC2,由点B1的坐标可得出直线B1B2的解析式,再利用一次函数图象上点的坐标特征可得出点B2、B3、…、B n的坐标,此题得解.【解答】解:过B2作B2D⊥x轴于D,过B3作B3E⊥x轴于E,如图所示.∵△A1B1C1、△C1B2C2、△C2B3C3是等腰直角三角形,∴B2D=DC1,B3E=EC2.∵B1坐标为(0,1),∴y=x+1,OC1=B1O=1.设B2D=m,则OD=m+1,∵点B2是一次函数y=x+1图象上的点,∴m=(m+1)+1,解得:m=2,∴点B2的坐标为(3,2).设B3E=n,则OE=1+2×2+n=5+n,∵点B3是一次函数y=x+1图象上的点,∴n=(5+n)+1,解得:n=4,∴点B3的坐标为(9,4).同理可得出:B4(21,8),B5(45,16),…,B n(3(2n﹣1﹣1),2n﹣1).故答案为:(3,2);(3(2n﹣1﹣1),2n﹣1).【点评】本题考查了一次函数图象上点的坐标特征以及等腰直角三角形,根据等腰直角三角形的性质结合一次函数图象上点的坐标特征求出点B2、B3、…、B n的坐标是解题的关键.三.解答题(共8小题)19.解不等式(组)(1)3(x﹣)>2x(并把解集表示在数轴上)(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去括号,得:3x﹣1>2x,移项,得:3x﹣2x>1,系数化为1,得:x>1,将解集表示在数轴上如下:(2)解不等式4x+7>2(x+3),得:x>﹣,解不等式2(1﹣x)﹣x≥,得:x≤﹣,则不等式组无解.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键20.在△ABC和△DEF中,A、D、C、F在同一条直线上,且AB=DE,AD=CF,另外只能再在给出的三个条件:①∠B=∠E;②AB∥DE;③∠ACB=∠DFE中选择其中一个用来证明△ABC与△DEF全等,这个条件应该是②(填写编号),并证明△ABC≌△DEF.【分析】根据全等三角形的判定进行解答即可.【解答】解:②AB∥DE为条件;∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故答案为:②【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABC≌△DEF是解题的关键.21.如图,已知∠β和线段a,c.(1)用直尺和圆规作△ABC,使∠B=∠β,BC=a,AB=c(不写作法,作出图形,并保留痕迹);(2)在(1)的条件下,若∠β=45°,a=3,c=2,求AC的长.【分析】(1)根据∠B=∠β,BC=a,AB=c,先作∠B=∠β,在∠B的两边上分别截取AB=c,BC=a,最后连接AC即可;(2)先过A作AD⊥BC于D,在Rt△ACD中,根据勾股定理即可得出AC长.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,过A作AD⊥BC于D,∵∠B=45°,AB=2,∴AD=BD=,又∵BC=3,∴CD=2,∴Rt△ACD中,AC==.【点评】本题主要考查了复杂作图以及勾股定理的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,﹣3),B(5,﹣1),C(﹣1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出△ABC;(2)画出△ABC关于x轴对称的△A'B'C',并写出△A'B'C'各顶点坐标;(3)在x轴上找一点P,使P A+PB的值最小.请画出点P,并求出点P坐标.【分析】(1)在坐标系内描出各点,顺次连接各点即可;(2)分别作出各点关于x轴的对称点,再顺次连接,并写出各点坐标即可;(3)连接AB′交x轴于点P,则点P即为所求,利用待定系数法求出直线AB′的解析式,进而可得出P点坐标.【解答】解:(1)如图,△ABC即为所求;(2)如图,△A′B′C′即为所求,A′(2,3),B′(5,1),C′(﹣1,﹣3);(3)连接AB′交x轴于点P,则点P即为所求.设直线AB′的解析式为y=kx+b(k≠0),∵A(2,﹣3),B′(5,1),∴直线AB′的解析式为y=x﹣,∴P(,0).【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.已知:如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=45°,CE是AB边上的中线.(1)CD=AB;(2)若CG=EG,求证:DG⊥CE.【分析】(1)含30°角的直角三角形的性质得出AD=AB,证得△ACD是等腰直角三角形,得出CD=AD,即可得出结论;(2)连接DE,证得DE是Rt△ABD斜边AB上的中线,得出DE=AB,证得DE=CD,即可得出结论.【解答】证明:(1)∵AD是BC边上的高,∴AD⊥BC,∵∠B=30°,∴AD=AB,∵∠ACB=45°,∴△ACD是等腰直角三角形,∴CD=AD,∴CD=AB;(2)连接DE,如图所示:∵CE是AB边上的中线,AD⊥BC,∴DE是Rt△ABD斜边AB上的中线,∴DE=AB,∵CD=AB,∴DE=CD,∵CG=EG,∴DG⊥CE.【点评】本题主要考查了含30度角的直角三角形的性质、等腰三角形的判定与性质、直角三角形斜边上的中线定理等知识;熟练掌握直角三角形中,斜边上的中线等于斜边的一半、等腰三角形的三线合一是解决问题的关键.24.“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?【分析】(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=520建立方程求出其解就可以;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+15分进站人数≤n个检票口15分钟检票人数建立不等式,求出其解即可.【解答】解:(1)由图象知,640+16a﹣2×14a=520,∴a=10;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,y=﹣26x+780,当x=20时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15解得:n≥4,∵n为整数,∴n=5.最小答:至少需要同时开放5个检票口.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,解答的过程中求出函数的解析式是关键,建立一元一次不等式是重点.25.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出AD =BE;(2)∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(3)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(3)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.26.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.(写对第一个(2分),二个(3分),3个且不多写(4分),写对4个且多写得(3分).)【点评】本题主要考查对于一次函数图象的应用以及等腰三角形和全等三角形的判定的掌握.。

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

2018-2019浙教版八年级上数学期末综合练习试题3姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B. AO=BO C. AB=CD D. AC=BD2.若Rt△ABC中,∠C=90°且c=13,a=12,则b=()A.11 B.8 C.5 D.33.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3) C.(1,﹣3) D.(﹣5,﹣1)4.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°5.如图,△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于点D、E,则△ABC的周长()cmA、 6B、 7C、 8D、96.已知直线a∥b,将一块含30°的直角三角尺按如图方式放置(∠ABC=60°),其中A,C两点分别落在直线a,b上,若∠1=20°,则∠2的度数为()A. 20° B. 30° C. 40° D. 50°7.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.8.已知不等式≤<,其解集在数轴上表示正确的是()A. B.C. D.9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°10.如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AED C.∠CDE=∠BAD D.∠AED=2∠ECD二、填空题(本大题共6小题,每小题3分,共18分)11.如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点____________.12.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数分别为_____度.13.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.14.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2017的值为.15.某次数学测试,共有20道选择题,评分标准:每题答对得5分,答错倒扣2分,不答得0分,某同学有两题未答,要使得分在60分以上,则该同学至少要答对________题.16.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.三、解答题(本大题共8小题,共52分)17.某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.18.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.19.如图,李伯伯承包了一块四边形的土地ABCD,他让小亮帮他测量一下这块地的面积.先量得AC的长为120米,BC的长为60米,BD的长为240米.当要测量AD的长度时,小亮说:“不用量了,我已经测得BA恰好平分∠CAB,公路AC和BC是互相垂直的,有了这些条件,就能求出这块土地的面积了.”小亮说得对吗?你会计算这块土地的面积吗?20.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

浙教版-学年度上学期八年级期末数学试卷(含解析)

浙教版-学年度上学期八年级期末数学试卷(含解析)

浙教版2018-2019学年八年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.32.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>5.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为()A.6cm2B.5cm2C.4cm2D.3cm26.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°7.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个8.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2B.k>2C.0<k<2D.0≤k≤29.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.如图,过点A0(2,0)作直线l:y=x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A.()2015B.()2016C.()2017D.()2018二.填空题(共6小题,满分18分,每小题3分)11.命题“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是,它是命题.12.直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为.13.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为14.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=°.15.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.16.在Rt△ABC中,∠C=90°,AC=4,BC=3.以AC为边在Rt△ABC的外部拼接一个合适的直角△ACD,使得拼成的图形是一个以AB为腰的等腰△ABD,则AD=.三.解答题(共7小题,满分52分)17.(6分)对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?18.(6分)如图,已知AB=CD,AC=DB.求证:∠A=∠D.19.(6分)图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.20.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?21.(8分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=;方案二:y2=.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到个文具盒(直接回答即可).22.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.(1)当t为多少时,△ABD的面积为6cm2?(2)当t为多少时,△ABD≌△ACE,并说明理由(可在备用图中画出具体图形).23.(10分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B 重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC故选:B.2.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.3.解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.4.解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.5.解:延长AP 交BC 于E , ∵AP 垂直∠B 的平分线BP 于P , ∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°, 在△ABP 与△BEP 中,∴△ABP ≌△BEP (ASA ), ∴S △ABP =S △BEP ,AP=PE , ∴△APC 和△CPE 等底同高, ∴S △APC =S △PCE , 设△ACE 的面积为m , ∴S △ABE =S △ABC +S △ACE =10+m ∴S △PBC=S △ABE ﹣S △ACE =﹣=5故选:B .6.解:∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB )=70°. ∵CE 是△ABC 的角平分线, ∴∠ACE=∠ACB=35°. 故选:B .7.解:①对顶角相等,相等的角不一定是对顶角,①假命题; ②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题; ④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题; 真命题的个数为0,8.解:由一次函数y=(k﹣2)x+k的图象不经过第三象限,则经过第二、四象限或第一、二、四象限,只经过第二、四象限,则k=0.又由k<0时,直线必经过二、四象限,故知k﹣2<0,即k<2.再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.当k﹣2=0,即k=2时,y=2,这时直线也不过第三象限,故0≤k≤2.故选:D.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:由y=x,得l的倾斜角为30°,点A0坐标为(2,0),∴OA0=2,∴OA1=OA0=,OA2=OA1═,OA3=OA2═,OA4=OA3═,…,∴OA n=()n OA n﹣1=2()n.∴OA2016=2×()2016,A2016A2107的长×2×()2016=()2016,故选:B.11.解:“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,是真命题.故答案为在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,真12.解:根据题意知xy=3,则xy=6,故答案为:y=.13.解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣114.解:∵∠ACB=90°,∠B=55°,∴∠A=35°,∵∠ACB=90°,D是AB的中点,∴DA=DC,∴∠ACD=∠A=35°,故答案为:35.15.解:如图所示:∵正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴=,∴=,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣AP﹣DE=15,∴EG==5,∴小正方形的边长为.故答案为:.16.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.当如图1所示时,AD==2;当如图2所示时,AD=AB=5.故答案为:5或2.17.解:(1)①,解得,;②,解得≤m<,因为原不等式组有2个整数解,所以2<≤3,解得,﹣4≤p<﹣;(2)T(x,y)=ax+2by﹣1,T(y,x)=ay+2bx﹣1,所以ax+2by﹣1=ay+2bx﹣1,所以(a﹣2b)(x﹣y)=0所以a=2b.18.证明:在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D.19.解:(1)以AB为对角线的正方形AEBF如图所示,正方形的周长为4 .=×4 ×=4.(2)等腰△EFG如图所示,S△EFG20.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当s1=s2时,﹣1.5t+330=t,解得t=132.即行驶132分钟,A、B两车相遇.21.解:(1)由题意,可得y1=40×5+10(x﹣5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为40.22.解:(1)作AH⊥BC于H,∵AB=AC,∴BH=CH.∵∠BAC=90°,∴AH=BC.∵BC=6cm,∴AH=3cm.当点D在线段BC上时,BD=6﹣2t,∴,解得:t=1.点D在CB的延长线上时,BD=2t﹣6,∴解得:t=5.∴综上所知:当t=1或5时,△ABD的面积为6;(2)∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图2,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图3,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,∴当t=2或6时,△ABD≌△ACE.23.解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).。

2018-2019学年最新浙教版八年级数学上学期期末考试模拟测试及答案解析-精品试题

2018-2019学年最新浙教版八年级数学上学期期末考试模拟测试及答案解析-精品试题

八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形是轴对称图形的是()A.B.C.D.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣410.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为.12.用不等式表示:a与b的和不大于1.13.命题“对顶角相等”的逆命题为.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为.15.等腰三角形的两边长分别为2和4,则其周长为.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:,使△ABD≌△ACE.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答即可.解答:解:点P(1,﹣2)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>考点:不等式的性质.分析:根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.解答:解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x2即可得出结论.解答:解:∵正比例函数y=﹣3x中,k=﹣3<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点考点:三角形的外接圆与外心;勾股定理的逆定理.专题:应用题.分析:了解直角三角形的判定及三角形的外心的知识,是解答的关键.解答:解:因为AB=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P的位置应在△ABC三边垂直平分线的交点处,也就是△ABC外心处,又因为△ABC是直角三角形,所以它的外心在斜边AB的中点处,故选A.点评:本题比较容易主要考查直角三角形的判定及三角形的外心的知识.6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处考点:方向角.分析:根据方向角的定义进行判断,即可解答.解答:解:A.因为C在A的北偏东60°方向的15米处,故本选项错误;B.因为A在C的南偏西60°方向的15米处,故本选项错误;C.C在B的北偏东60°方向的10米处,正确;D.因为B在A的北偏东60°方向的5米处,故本选项错误;故选C.点评:本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等考点:全等三角形的判定.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、斜边相等的两个等腰直角三角形,根据ASA或者HL均能判定它们全等,故此选项正确;D、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;故选:C.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°考点:平行线的性质.分析:先根据平行线的性质求出∠ACB的度数,再由CE是△ABC的角平分线得出∠ECF的度数,根据三角形外角的性质即可得出结论.解答:解:∵EF∥BC,∠AFE=64°,∴∠ABC=∠AFE=64°.∵CE是△ABC的角平分线,∴∠ECF=∠ACB=×64°=32°,∴∠FEC=∠AFE﹣∠ECF=64°﹣32°=32°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4考点:解二元一次方程组;解一元一次不等式组.分析:理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.解答:解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.点评:当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.10.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40考点:一次函数的应用.分析:根据甲60分走完全程40千米,求出甲的速度,再由图中两图象的交点可知,两人在走了30千米时相遇,从而可求出甲此时用了45分,则乙用了(45﹣10)分,所以乙的速度为:10÷35,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的10分,即可求出答案.解答:解:因为甲60分走完全程0千米,所以甲的速度是千米/分,由图中看出两人在走了30千米时相遇,那么甲此时用了30=45分,则乙用了(45﹣10)=35分,所以乙的速度为:(40﹣30)÷35=千米/分,所以乙走完全程需要时间为:40÷=140分,此时的时间应加上乙先前迟出发的10分,现在的时间为14:点30分;故选C点评:本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为65°.考点:直角三角形的性质.分析:根据直角三角形两锐角互余可得∠A+∠B=90°,再代入∠A的度数可得答案.解答:解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=25°,∴∠B=90°﹣25°=65°,故答案为:65°.点评:此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,两个锐角互余.12.用不等式表示:a与b的和不大于1a+b≤1.考点:由实际问题抽象出一元一次不等式.分析: a与b的和为a+b,不大于即≤,据此列不等式.解答:解:由题意得,a+b≤1.故答案为:a+b≤1.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为﹣2.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.解答:解:由点A(2,﹣3)与点B(a,﹣3)关于y轴对称,得a+2=0.解得a=﹣2,故答案为:﹣2.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.等腰三角形的两边长分别为2和4,则其周长为10.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:根据等腰三角形的性质,本题要分情况讨论:当腰长为2或是腰长为4两种情况.解答:解:等腰三角形的两边长分别为2和4,当腰长是2时,三角形的三边是2,2,4,由于2+2=4,所以不满足三角形的三边关系;当腰长是4时,三角形的三边是4,4,2,满足三角形的三边关系,则三角形的周长是10cm.故答案为:10.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为3<y<9.考点:一次函数的性质.专题:计算题.分析:先分别计算自变量为﹣2和1时的函数值,然后根据一次函数的性质确定函数值的取值范围.解答:解:当x=﹣2时,y=2x+7=﹣4+7=3;当x=1时,y=2x+7=2+7=9,所以当﹣2<x<1时,y的取值范围为3<y<9.故答案为3<y<9.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为或5.考点:勾股定理.专题:分类讨论.分析:分两种情况解答:①AC为斜边,BC,AB为直角边;②BC为斜边,AC,AB为直角边;根据勾股定理计算即可.解答:解::①AC为斜边,BC,AB为直角边,由勾股定理得BC===;②BC为斜边,AC,AB为直角边,由勾股定理得BC===5;所以BC的长为或5.故答案为:或5.点评:本题考查了勾股定理在直角三角形中的正确运用,注意分类讨论解决问题.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为y=1(1≤x ≤4).考点:坐标与图形性质.分析:由两点的坐标可知两点在直线y=1上,然后再写出满足题目的条件的x的取值范围即可.解答:解:∵以(1,1),(4,1)为端点的线段在直线y=1上,∴在两点为端点的线段上任意一点可表示为:y=1(1≤x≤4).故答案为:y=1(1≤x≤4).点评:本题主要考查坐标与图形性质,此题涉及到函数思想,注意线段上的点包括两端点是解题的关键.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:BD=EC,使△ABD≌△ACE.考点:全等三角形的判定.专题:开放型.分析:根据等腰三角形性质求出∠ADE=∠AED,推出∠ADB=∠AEC,根据全等三角形的判定推出即可.解答:解:BD=EC,理由是:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=180°,∠AED+∠AEC=180°,∴∠ADB=∠AEC,在△ABD和△ACE中∴△ABD≌△ACE故答案为:BD=EC.点评:本题考查了等腰三角形的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,此题是一道开放型的题目,答案不唯一.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).考点:坐标与图形变化-平移.分析:分两种情况:①B在AC左边;②B在AC右边;进行讨论,根据等边三角形的性质即可得到点C′的坐标.解答:解:①如图1,B在AC左边;C′在第一象限,点C′的坐标是(,2);C′在第四象限,点C′的坐标是(,﹣2);②B在AC右边;C′在第二象限,点C′的坐标是(﹣,2);C′在第三象限,点C′的坐标是(﹣,﹣2).故点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).故答案为:(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).点评:考查了坐标与图形变化﹣平移,解题关键是熟练掌握等边三角形的性质,以及分类思想的运用.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.考点:解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.分析:先解不等式然后把解集在数轴上表示出来,求出负整数解.解答:解:解不等式得:x≥﹣2,在数轴上表示为:,负整数解为:﹣1,﹣2.点评:本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:由全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证,所以通过证∠A=∠C,那么就需证明这两个角所在的三角形全等.解答:解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.点评:本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:(1)根据角平分线的基本作图作法作图即可;(2)连接PQ,作PQ的垂直平分线交∠BAC的平分线于点M即可.解答:解:(1)(2)如图所示:点评:此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等是解题关键.24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?考点:一次函数的应用.分析:(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去3人后的学生票金额;优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论解答:解:(1)按优惠方案一可得y1=25×3+(x﹣3)×15=15x+30(x≥3),按优惠方案二可得y2=(15x+25×3)×80%=12x+60(x≥3);(2)∵y1﹣y2=3x﹣30(x≥3),①当y1﹣y2=0时,得3x﹣30=0,解得x=10,∴当购买10张票时,两种优惠方案付款一样多;②当y1﹣y2<0时,得3x﹣30<0,解得x<10,∴3≤x<10时,y1<y2,选方案一较划算;③当y1﹣y2>0时,得3x﹣30>0,解得x>10,当x>10时,y1>y2,选方案二较划算.点评:本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.考点:等边三角形的判定与性质;等边三角形的性质.专题:计算题.分析:(1)根据等边三角形的判定得出△ABC是等边三角形,即可得出∠ABC的度数;(2)根据BE=FE得出∠F=∠CEF=30°,再等边三角形的性质得出∠EBC=30°,即可证明;(3)过E点作EG⊥BC,根据三角形面积解答即可.解答:解:(1)∵BE⊥AC于E,E是AC的中点,∴△ABC是等腰三角形,即AB=BC,∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°;(2)∵BE=FE,∴∠F=∠CEF,∵∠ACB=60°=∠F+∠CEF,∴∠F=30°,∵△ABC是等边三角形,BE⊥AC,∴∠EBC=30°,∴∠F=∠EBC,∴BE=EF;(3)过E点作EG⊥BC,如图:∵BE⊥AC,∠EBC=30°,AB=BC=2,∴BE=,CE=1=CF,在△BEC中,EG=,∴.点评:此题考查了等边三角形的判定与性质,等腰直角三角形的性质,以及含30度直角三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.考点:一次函数综合题.分析:(1)根据线段中点的性质,可得B点,A点坐标,根据待定系数法,可得函数解析式;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)当△ACD≌△AP1D时,根据C、P点关于D点对称,可得P点坐标,当△ACD≌△DP2A时,根据全等三角形的判定与性质,可得答案;当△ACD≌△DP3A时,根据线段中点的性质,可得答案.解答:解:(1)设A点坐标为(a,0),B点坐标为(0,b),由线段AB的中点为D(3,2),得=3,=2,解得a=6,b=4.即A(6,0),B(0,4)(2)如图1:连接BC,设OC=x,则AC=CB=6﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,42+x2=(6﹣x)2,解得x=,即C(,0);(3)①当△ACD≌△APD时,设P1(c,d),由D是PC的中点,得=3,=2,解得c=,d=4,即P1(,4);如图2:,②当△ACD≌△DP2A时,做DE⊥AC与E,P2F⊥AC与F点,DE=2,CE=3﹣=,由△CDE≌△AP2F,AF=CE=,P2F=DE=2,OF=6﹣=,∴P2(,﹣2);③当△ACD≌△DP3A时,设P3(e,f)A是线段P2P3的中点,得=6,=0,解得e=,f=2,即P3(,2),综上所述:P1(,4);P2(,﹣2);P3(,2).点评:本题考查了一次函数综合题,利用了轴对称的性质,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.。

最新浙教版2018-2019学年八年级数学上册《一次函数》高频考点专训及答案解析-精品试题

最新浙教版2018-2019学年八年级数学上册《一次函数》高频考点专训及答案解析-精品试题

专项训练一:巧用分段函数解实际问题名师点金:函数在自变量不同的取值范围内所对应的函数关系也不同,我们把这样的函数称为分段函数.学习一次函数中的分段函数,通常应注意以下几点:(1)要特别注意相应的自变量的变化区间,在表达式和图象上都要反映出自变量的相应取值范围;(2)分段函数的图象是由几条线段(或射线)组成的折线,其中每条线段(或射线)代表某一个阶段的情况;(3)分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解,尤其要理解折线中横、纵坐标表示的实际意义.分段计费问题(分类讨论思想)(第1题)1.(中考·哈尔滨)梅凯种子公司以一定的价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( )A.1个B.2个C.3个D.4个2.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即每月用水10吨以内(包括10吨)的用户,每吨收水费a元;每月用水超过10吨的用户,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?(第2题)(2)求b的值,并写出当x>10时,y与x之间的函数表达式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨.几何图形中的分段函数(数形结合思想)3.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P 与点A或D重合时,y=0)(1)写出y与x的函数表达式;(2)画出此函数的图象.(第3题)专项训练二:巧用一次函数的最值解决方案设计问题名师点金:一次函数的图象是一条直线,好像与最值“无缘”,如果给出自变量的一定取值范围,由一次函数的增减性可知,存在最值.一次函数的最值可以解决实际生活中一些最大利润问题、最低费用问题等,解题的过程中,要将实际问题转化为数学问题,建立函数模型,利用函数的性质解决问题.最大利润问题(函数思想、分类讨论思想)1.(中考·绥化)为了迎接十一假期的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双) m m-20售价(元/双) 240 160已知:用3 000元购进甲种运动鞋的数量与用2 400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21 700元,且不超过22 300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?最低费用问题(函数思想)2.(中考·齐齐哈尔)在国道202公路改建工程中,某路段长4 000米,由甲、乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天、乙工程队3天共修路350米.(1)试问甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两个工程队需各修多少天?最低费用为多少?方案设计(分类讨论思想)3.(中考·黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲、乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩) 薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33 500乙 3 7 43 500(1)试求玫瑰花、薰衣草每亩卖花的平均收入各是多少;(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花卉的种植面积均为整数亩),花卉基地对种植玫瑰花的种植户给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127 500元,则他们有几种种植方案?专项训练三:一次函数与几何的综合名师点金:本章中一次函数与几何的综合主要体现在利用一次函数解决几何中与面积有关的问题,或者是探究几何中符合某种特殊条件的点的存在性问题等.而解决与几何图形面积有关的问题一般情况都是已知函数表达式求点的坐标或图形的面积,或已知图形的面积求函数表达式或待定系数的值,解决这类问题通常将线段长度作为联系点的坐标和图形面积的桥梁.利用一次函数表达式求面积1.(中考·北京)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求△ABP的面积.(第1题)利用面积求一次函数表达式中待定系数的值2.如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过C(1,0), 且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值;(2)若△AOB被分成的两部分面积比为1∶5,求k和b的值.(第2题)3.如图,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且FA∶FO =1∶2,S△FAE∶S四边形AOCE=1∶3.(1)求出点E的坐标;(2)求直线EC的表达式.(第3题)利用一次函数解决动点探究问题4.(中考·西宁)如图,直线y=kx-1与x轴、y轴分别交于B,C两点,OB∶OC =1∶2.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点.在点A运动过程中,试写出△AOB的面积S与x的函数表达式;(3)探索:①当点A运动到什么位置时,△AOB的面积是1 4;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.(第4题)专项训练四:思想方法荟萃名师点金:本章主要涉及的数学思想有:数形结合思想、分类讨论思想、函数思想(函数与方程、不等式相互转化).数形结合思想1.(中考·苏州)如图,已知函数y=-12x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-12x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.(第1题)分类讨论思想2.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,试求k的值.函数思想3.5月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n 之间的关系如图所示.(1)试求第几天销售量最大;(2)直接写出P关于n的函数表达式(注明n的取值范围);(3)经研究,该品牌衬衣的日销售量超过150件的时间为该品牌的流行期,请问:该品牌衬衣本月在市面上的流行期为多少天?答案专项训练一1.D 点拨:①由题图可知,一次购买种子数量不超过10千克时,销售价格为50÷10=5(元/千克),正确;②由题图可知,超过10千克的部分种子的价格为(150-50)÷(50-10)=2.5(元/千克),所以,一次购买30千克种子时,付款金额为50+2.5×(30-10)=100(元),正确;③由于一次购买10千克以上种子时,超过10千克的部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要付款50+2.5×(40-10)=125(元), 分两次购买且每次购买20千克种子需要2×[50+2.5×(20-10)]=150(元), 而150-125=25(元),所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.本题利用了分类讨论思想,解决本题的关键是从图象中读取信息,求出种子数量不超过10千克的销售价格及超过10千克部分的销售价格.2.解:(1)当x ≤10时,有y =ax.将x =10,y =15代入,得15=10a ,a =1.5.故当x ≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应收水费12元.(2)当x >10时,设y =bx +m.将x =10,y =15和x =20,y =35分别代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,故当x >10时,y =2x -5.(3)∵1.5×10+1.5×10+2×4<46,∴甲、乙两家上月用水均超过10吨. 设甲、乙两家上月用水量分别为n 吨、t 吨, 则⎩⎪⎨⎪⎧t =n -4,2t -5+2n -5=46,解之,得⎩⎪⎨⎪⎧n =16,t =12. 故居民甲上月用水16吨,居民乙上月用水12吨.点拨:本题体现了数形结合思想,解题的关键是从图象中找出有用的信息,用待定系数法求出表达式,再解决问题.3.解:(1)①当点P 在边AB 上,即0≤x <3时,y =12×4x=2x ;②当点P 在边BC 上,即3≤x <7时,y =12×4×3=6;③当点P 在边CD 上,即7≤x ≤10时,y =12×4(10-x)=-2x +20.∴y=⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x ≤10). (2)函数图象如图所示.(第3题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想.分点P 在边AB ,BC ,CD 上,其所对应的函数表达式不相同.分段求出相应的函数表达式,再画出相应的函数图象.专项训练二1.解:(1)依题意得,3 000m =2 400m -20,整理得,3 000(m -20)=2 400m , 解得m =100.经检验,m =100是原分式方程的解, 所以m =100.(2)设购进甲种运动鞋x 双,则购进乙种运动鞋(200-x)双, 根据题意得⎩⎪⎨⎪⎧(240-100)x +(160-80)(200-x )≥21 700,①(240-100)x +(160-80)(200-x )≤22 300,②解不等式①得x ≥95, 解不等式②得x ≤105,所以不等式组的解集是95≤x ≤105. 因为x 是正整数,105-95+1=11, 所以该专卖店有11种进货方案.(3)设总利润为W 元,则W =(240-100-a)x +80(200-x)=(60-a)x +16 000(95≤x ≤105).①当50<a <60时,60-a >0,W 随x 的增大而增大, 所以,当x =105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a =60时,60-a =0,W =16 000,(2)中所有方案获利都一样; ③当60<a <70时,60-a <0,W 随x 的增大而减小, 所以,当x =95时,W 有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.点拨:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到关于所求的量的相等关系或不等关系;(3)题要根据一次项系数的情况分类讨论.2.解:(1)设甲工程队每天修路x 米,乙工程队每天修路y 米, 依题意得⎩⎪⎨⎪⎧x +2y =200,2x +3y =350,解得⎩⎪⎨⎪⎧x =100,y =50.答:甲工程队每天修路100米,乙工程队每天修路50米. (2)依题意得10×100+20×10-m10×100+30×50≥4 000, 解得m ≤52.∵0<m <10,∴0<m ≤52,又∵m 为正整数,∴m=1或2. ∴甲队可以抽调1人或2人.(3)设甲工程队修a 天,乙工程队修b 天, 依题意得100a +50b =4 000, ∴b=80-2a.∵0≤b ≤30,∴0≤80-2a ≤30, 解得25≤a ≤40,又∵0≤a ≤30,∴25≤a ≤30. 设总费用为W 万元,依题意得: W =0.6a +0.35b =0.6a +0.35(80-2a) =-0.1a +28.∵-0.1<0,∴W 随a 的增大而减小,∴当a =30时,W 取得最小值,最小值为-0.1×30+28=25, 此时b =80-2a =80-2×30=20.答:要使该工程的施工费用最低,甲工程队需修30天,乙工程队需修20天,最低费用为25万元.点拨:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用.读懂题目信息,理清题中数量关系,准确找出等量关系与不等量关系分别列出方程组和不等式是解题的关键,(3)题先根据总工作量表示出甲、乙两个工程队修的天数的关系是解题的关键.3.解:(1)设玫瑰花、薰衣草每亩卖花的平均收入分别为x 元、y 元,依题意得:⎩⎪⎨⎪⎧5x +3y =33 500,3x +7y =43 500,解得⎩⎨⎧x =4 000,y =4 500.答:玫瑰花、薰衣草每亩卖花的平均收入分别为4 000元、4 500元. (2)设种植玫瑰花m 亩,则种植薰衣草的面积为(30-m)亩,依题意得m >30-m ,解得m >15.当15<m ≤20时,有4 000m +4 500(30-m)+15×100+(m -15)×200≥127 500,解得m ≤20,故15<m ≤20(m 为正整数).当m >20时,有4 000m +4 500(30-m)+15×100+5×200+(m -20)×300≥127 500,解得m ≤20,不合题意.综上所述,有5种种植方案.种植方案如下:种植类型种植面积(亩)方案一方案二方案三方案四方案五玫瑰花16 17 18 19 20薰衣草14 13 12 11 10 专项训练三1.解:(1)令y=0,得x=-32,∴A点的坐标为⎝⎛⎭⎪⎫-32,0.令x=0,得y=3,∴B点的坐标为(0,3).(2)设P点坐标为(a,0),依题意,得a=±3.∴P点的坐标为P1(3,0)或P2(-3,0).∴S△ABP1=12×⎝⎛⎭⎪⎫32+3×3=274,S△ABP 2=12×⎝ ⎛⎭⎪⎫3-32×3=94.∴△ABP 的面积为274或94. 2.解:(1)根据题意得A(2,0),B(0,2).(第2题)∵C 是OA 的中点,S △OBC =S △ABC .∴y=kx +b 经过B(0,2),把(0,2),(1,0)分别代入y =kx +b ,解得k =-2,b =2.(如图(1))(2)设直线y =kx +b 与OB 交于M(0,h),如图(2),△AOB 被分成的两部分的面积比为1∶5,得S △OMC =16S △AOB ,则12×1×h=16×12×2×2.∴h=23,∴M(0,23).经过点M 作直线MN∥OA,交AB 于N ⎝ ⎛⎭⎪⎫a ,23,则S △OMC =S △CAN .∵N ⎝ ⎛⎭⎪⎫a ,23在直线y =-x +2上,∴a=43,∴N ⎝ ⎛⎭⎪⎫43,23.∴y=kx +b 经过M ⎝ ⎛⎭⎪⎫0,23,C(1,0)或N ⎝ ⎛⎭⎪⎫43,23,C(1,0),将M ,C 或N ,C的坐标分别代入y =kx +b ,可解得⎩⎪⎨⎪⎧k =-23,b =23或⎩⎨⎧k =2,b =-2.3.解:(1)∵S △FAE ∶S 四边形AOCE =1∶3,∴S △FAE ∶S △FOC =1∶4. ∴12AE·AF ∶12OC·OF=1∶4. ∵AF OF =12, ∴AE OC =12. ∵OA=OC =6,∴AE=3,∴点E 的坐标为(3,6). (2)设直线EC 的表达式为y =kx +b. ∵直线y =kx +b 过点E(3,6)和C(6,0), ∴⎩⎪⎨⎪⎧3k +b =6,6k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =12. ∴直线EC 的表达式为y =-2x +12.4.解:(1)∵直线y =kx -1与y 轴相交于点C ,∴OC=1. ∵OB ∶OC =1∶2,∴OB=12,∴B 点的坐标为点⎝ ⎛⎭⎪⎫12,0.把B 点的坐标⎝ ⎛⎭⎪⎫12,0代入y =kx -1得k =2.(2)由(1)知y =2x -1,∴S=12×OB×y=12×12(2x -1)=12x -14.(3)①当S =14时,由12x -14=14,得x =1,y =2x -1=1.∴当A 点的坐标为(1,1)时,△AOB 的面积为14.②存在,满足条件的所有P 点的坐标为:P 1(1,0),P 2(2,0),P 3(2,0),P 4(-2,0).专项训练四1.解:(1)∵点M 在函数y =x 的图象上,且横坐标为2,∴点M 的纵坐标为2.∵点M(2,2)在一次函数y =-12x +b 的图象上, ∴-12×2+b =2.∴b=3. ∴y=-12x +3. 令y =0,得x =6,∴点A 的坐标为(6,0).(2)由题意得C ⎝ ⎛⎭⎪⎫a ,-12a +3,D(a ,a). ∵OB=CD ,∴a-⎝ ⎛⎭⎪⎫-12a +3=3. ∴a=4.2.解:(第2题)把点A(1,0),B(4,0)的横坐标分别代入y =x +k ,得C(1,1+k),D(4,4+k),则梯形ACDB 的面积=12(AC +BD)·AB=9,即12(|1+k|+|4+k|)×3=9,即|1+k|+|4+k|=6.(1)当k >-1时,1+k +4+k =6,解得k =12(如图(1)); (2)当-4<k ≤-1时,-1-k +4+k =3≠6;(3)当k ≤-4时,-1-k -4-k =6,解得k =-112(如图(2)). 综上可知,k 的值为12或-112. 3.解:(1)设第a 天的销售量最大,所以日销售量从最大开始减小到0的天数为(31-a),依题意得10+25(a -1)=15(31-a),解得a =12.故第12天销售量最大.(2)P =⎩⎪⎨⎪⎧25n -15(1≤n ≤12,且n 为整数),-15n +465(12<n ≤31,且n 为整数). (3)由题意,得⎩⎪⎨⎪⎧25n -15>150,-15n +465>150,解得6.6<n <21.整数n的值可取7,8,9,…,20,共14个.所以该品牌衬衣本月在市面上的流行期为14天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章三角形的初步知识 (2)典例分析 (5)基础练习 (8)第二章特殊三角形 (14)典例分析 (16)基础练习 (18)第三章一元一次不等式 (22)典例分析 (24)基础练习 (27)期中测试卷(A) (35)期中测试卷(B) (40)参考答案 (43)第四章图形与坐标.................................................... . (47)典型分析.................................................... .. (48)基础练习.................................................... (50)第五章一次函数.................................................... .. (55)典型分析.................................................... . (57)基础练习.................................................... . (60)期末测试卷(A)................................................... (65)期末测试卷(B)................................................... . (71)参考答案.................................................... (76)第一章三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线D C B A2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法知识点概要1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、三角形的分类:(1)按角分类:(2)按边分类:3、三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段.表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. _C _B _A 三角形 等腰三角形 不等边三角形底边和腰不相等的等腰三角形等边三角形21D C B A D C B A 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(2)三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)(3)全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

中考规律盘点及预测三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。

典例分析例1如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA考点:全等三角形的判定。

分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:证明:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD (ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.例21、在△ABC中,已知∠B=40°,∠C=80°,则∠A= 60 (度)2、在△ABC中,∠A=60°,∠C=50°,则∠B的外角= 110°。

考点:1、2两题均为三角形的内角之和为180°点评:三角形内角之和等于180°是学生必掌握的知识点,这两题是基础题3、下列长度的三条线段能组成三角形的是(C)A.3cm,4cm,8cmB.5cm,6cm,11cmC.5cm,6cm,10cmD.3cm,8cm,12cm4、小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ 6 .___11___.____16___.考点:3、4两题是三角形的两边之和大于第三边的性质点评:三角形两边之和大于第三边的性质是关于判定能否组成三角形的一个重要知识点,属于基础题例3如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A、11B、5.5C、7D、3.5考点:角平分线的性质;全等三角形的判定与性质。

分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF ,将三角形EDF 的面积转化为三角形DNM 的面积来求. 解答:解:作DM=DE 交AC 于M ,作DN ⊥AC ,∵DE=DG ,∴DM=DE ,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DE=DN ,∴△DEF ≌△DNM ,∵△ADG 和△AED 的面积分别为50和39,∴S △MDG =S △ADG ﹣S △AMG =590﹣39=11,S △DNM =S △DEF =21S △MDG =21×11=5.5 故选B .点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确的作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求. 例4如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A.BD=DC ,AB=ACB.∠ADB=∠ADC ,BD=DCC.∠B=∠C ,∠BAD=∠CADD.∠B=∠C ,BD=DC考点:全等三角形的判定.分析:两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:解:∵AD=AD,A.当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B.当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C.当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D.当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD ≌△ACD,错误.故选D.点评:本题考查了全等三角形的几种判定方法.关键是根据图形条件,角与边的位置关系是否符合判定的条件,逐一检验.例5如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得AC=DF.考点:全等三角形的判定与性质.分析:要使AC=DF,则必须满足△ABC≌△DEF,已知AB∥DE,BF=CE,则可得到∠B=∠E,BC=EF,从而添加AB=DE即可利用SAS 判定△ABC≌△DEF.解答:解:添加:AB=DE∵AB ∥DE ,BF=CE ,∴∠B=∠E ,BC=EF , ∵AB=DE ,∴△ABC ≌△DEF ,∴AC=DF . 故答案为:AB=DE .点评:此题主要考查学生对全等三角形的判定与性质的综合运用能力. 基础练习一、精心选一选(每小题3分,共30分) 1、在下列各组图形中,是全等的图形是() A 、B 、C 、D 、2、下列各图中,正确画出AC 边上的高的是() A 、B 、C 、D 、3、如图1,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是() A 、两点之间的线段最短; B 、三角形具有稳定性; C 、长方形是轴对称图形;D 、长方形的四个角都是直角;4、图2中的三角形被木板遮住了一部分,被遮住的两个角不可能是()图1 2A 、一个锐角,一个钝角;B 、两个锐角;C 、一个锐角,一个直角;D 、一个直角,一个钝角;5、以下不能构成三角形三边长的数组是() A 、(1,3,2)B 、(3,4,5)C 、(23,24,25)D 、(3,4,5)6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A 、115°B 、120°C 、125°D 、130°7、小明不慎将一块三角形的玻璃碎成如图3所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去 A 、第1块;B 、第2块; C 、第3块;D 、第4块;8、如图4,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=()A 、150°B 、130°C 、120°D 、100°12 3 4图3ADE9、用12根火柴棒(等长)拼成一个三角形,火柴 棒不允许剩余、重叠和折断,则能摆出不同的 三角形的个数是() A 、1B 、2C 、3D 、410、如图5,在△ABC 中,D 、E 分别是AC 、BC 边上的 点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为()A 、15°B 、20°C 、25°D 、30° 二、耐心填一填(每小题3分,共30分)11、在△ABC 中,若∠A -∠B=90°,则此三角形是________三角形;若C B A ∠=∠=∠3121,由此三角形是_______三角形; 12、如图6,已知AC=BD ,要使△ABC ≌△DCB , 只需增加的一个条件是________________; 13、设△ABC 的三边为a 、b 、c ,化简______________|b a c ||a c b ||c b a |=--+--+--14、已知三角形的两边长分别是3cm 和7cm ,第三边长是偶数,则这个三角形的周长为___________cm ;15、如图7,在△ABC 中,已知AD=DE ,AB=BE ,∠A=80°,则∠CED=________BCPABC E D图4 图5ABCDO 图616、如图8,把矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=35cm ,DM=5cm ,∠DAM=30°,则AN=_____cm ,NM=______cm , ∠BNA=_________度;17、如图9,△ABC 中,AB=AC ,BD 、CE 分别是AC 、AB 边上的高,BD 、CE交于点O ,且AD=AE ,连结AO对全等三角形;18、如图10,已知∠B=∠C ,AD=AE ,则AB=AC ,请说明理由(填空)解:在△ABC 和△ACD 中, ∠B=∠______(__________)∠A=∠______(________________) AE=________(__________) ∴△ABE ≌△ACD(______________)∴AB=AC(______________________________) 19、如图11所,∠A+∠B+∠C+∠D+∠E=________; 20、用一副三角板可以直接得到30°、45°、60°、 90°四种角,利用一副三角板可以拼出另外一些特殊角,DA BEC图7ABCDNM 图8图9A BCDE图10AB E如75°、120°等,请你拼一拼,用一副三角板还能拼 还能拼出哪些小于平角的角?这些角的度数是: ____________________; 三、细心做一做(共60分)21、(8分)七年级某班的篮球啦啦队同学,为了在明天比赛中给同学加油助威,提前制作了同一规格的彩旗。

相关文档
最新文档