2011-2012北师大版七年级数学上册期末检测试卷

合集下载

北师大版七年级上册数学期末试卷(带答案)-百度文库

北师大版七年级上册数学期末试卷(带答案)-百度文库

北师大版七年级上册数学期末试卷(带答案)-百度文库一、选择题1.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力 D .调查某池塘中草鱼的数量2.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 3.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -4.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-5.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,66.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 7.在上午八点半钟的时候,时针和分针所夹的角度是( ) A .85° B .75° C .65° D .55° 8.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-1 9.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( )A .30B .35︒C .40D .4510.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+111.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .7612.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4二、填空题13.按下面程序计算,若开始输入x 的值为正整数,最后输出的结果为506,则满足条件的所有x 的值是___________.14.若()221x y -++=0,则x+y=_____.15.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________ 16.若∠α=35°16′28″,则∠α的补角为____________.17.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.18.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =12(AC +AF ),②BE =12AF ,③BE =12(AF ﹣CD ),④BC =12(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).19.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.20.已知254a b -=-,则13410a b -+的值为__________. 21.已知236(3)0x y -++=,则23y x -的值是_________.22.如图,一个正五边形的五个顶点依次编号为1,2,3,4,5,从某个顶点开始,若顶点编号是奇数,则一次逆时针走2个边长;若顶点编号是偶数,则一次顺时针走1个边长.若从编号2开始走,则第2020次后,所处顶点编号是_____________.三、解答题23.计算:(1)(12)(7)(5)(30)+--+--+ (2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 24.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少?②经过多长时间,P 、Q 两点相距5cm ?25.有A 、B 两家复印社,A 4纸复印计费方式如表:A 4纸复印计费方式A 复印社 复印页数不超过20页时,每页0.12元;复印页数超过20页时,超过部分每页收费0.09元. B 复印社不论复印多少页,每页收费0.1元.(1)若要用A 4纸复印30页,选哪家复印社划算?能便宜多少钱? (2)用A 4纸复印多少页时,两家复印社收费相同?26.如图,直线l 有上三点M ,O ,N ,MO =3,ON =1;点P 为直线l 上任意一点,如图画数轴.(1)当以点O 为数轴的原点时,点P 表示的数为x ,且点P 到点M 、点N 的距离相等,那么x 的值是________;(2)当以点M 为数轴的原点时,点P 表示的数为y ,当y = 时,使点P 到点M 、点N 的距离之和是5;(3)若以点O 为数轴的原点,点P 以每秒2个单位长度的速度从点O 向左运动时,点E 从点M 以每秒1个单位长度速度向左运动,点F 从点N 每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P 、点E 、点F 表示的数之和为-20.27.如图,C 是线段AB 上一点,5AC cm =,点P 从点A 出发沿AB 以3/cm s 的速度匀速向点B 运动,点Q 从点C 出发沿CB 以1/cm s 的速度匀速向点B 运动,两点同时出发,结果点P 比点Q 先到3s .()1求AB 的长;()2设点P Q 、出发时间为ts ,①求点P 与点Q 重合时(未到达点B ), t 的值; ②直接写出点P 与点Q 相距2cm 时,t 的值.28.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点; (2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =;(3)若点Q的运动速度是a个单位长度/秒,当点P,Q是AC边上的三等分点时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.2.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.3.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.4.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.5.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.6.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.7.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.8.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.9.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解. 【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得:()()39018020x x ---=解得35x = 故选B . 【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.10.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.11.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.12.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.二、填空题13.101或20 【解析】 【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案. 【详解】 ∵最后输出的解析:101或20 【解析】 【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程51506x +=,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案. 【详解】∵最后输出的结果为506,∴第一个数就是直接输出其结果时:51506x +=,则101x =>0; 第二个数就是直接输出其结果时:51101x +=,则20x =>0;第三个数就是直接输出其结果时:5120x +=,则 3.8x =,不是正整数,不符合题意; 故x 的值可取101、20这2个. 故答案为:101或20. 【点睛】本题主要考查了代数式的求值和解方程的能力,注意理解题意与逆向思维的应用是解题的关键.14.1 【解析】 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,x-2=0,y+1=0, 解得x=2,y=-1, 所以,x+y=2+(-1)=解析:1 【解析】 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.16.144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠=35°16′28″,∴的补角;故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的解析:144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠α=35°16′28″,∴α∠的补角18035162817959603516281444332''''''''''''=︒-︒=︒-︒=︒; 故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的计算,准确计算是解题的关键. 17.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.18.① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=,CE=EF=,再根据线段和与查的计算方法逐一推导即可.【详解】∵点是线段的中点,点是线段的中点,∴AB=BD=,C解析:① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=12AD ,CE=EF=12CF ,再根据线段和与查的计算方法逐一推导即可.【详解】∵点B 是线段AD 的中点,点E 是线段CF 的中点,∴AB=BD=12AD ,CE=EF=12CF ()()()()()()1211122211222112212AE AB BEAD BD CE CD AD AD CF CD AC CD AD CF CD AC CD AF CD AC CD AF CD =+=++-⎛⎫=++- ⎪⎝⎭=+++-=++-=++- ()12AC AF =+,故①正确; ()()11221212BE BD DE BD CE CDAD CF CD AD CF CD AF CD CD =+=+-=+-=+-=+- ()12AF CD =-,故②错误,③正确;()1212BC BD CDAD CD AC CD CD =-=-=+- ()12AC CD =-,④正确 故答案为①③④.【点睛】 此题考查的是线段的和与差,掌握各个线段之间的关系和中点的定义是解决此题的关键.19.(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G 5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11), G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),……∴从G 5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G 2000=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G 5开始每3次为一个周期循环的规律.20.21【解析】【分析】将所求式子变形为,然后利用整体代入的方法进行求解即可.【详解】因为,所以===21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题解析:21【解析】【分析】将所求式子变形为()13225a b --,然后利用整体代入的方法进行求解即可.【详解】因为254a b -=-,所以13410a b -+=()13225a b --=()1324-⨯-=21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题的关键.21.-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x -6|+(y+3)2=0,∴3x -6=0,y+3=0,即x=2,y=-3,则2解析:-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2y-3x=-6-6=-12.故答案为:-12.【点睛】此题考查了代数式求值以及非负数的性质,根据“几个非负数的和为0时,每个非负数都为0”进行求解是解本题的关键.22.5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到解析:5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到达点4,第4次移位到达点5,第5次移位到达点3,第6次移位到达点1,第7次移位到达点4,第8次移位到达点5,…依此类推,可以发现结果按四次移位为一次循环,即按照3,1,4,5循环,∵2020÷4=505,∴第2020次移位为第505个循环的第4次移位,到达点5.故答案为:5.【点睛】本题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.三、解答题23.(1)16-;(2)14-【解析】【分析】 (1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)()()()()127530+--+--+()()127530=++-+-1935=-16=-;(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 13(8)421184=-⨯-÷-⨯-⨯+ 13(8)42184=-⨯-÷-⨯-+ 14142=-⨯ 14=-. 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.25.(1)选B 复印社划算,能便宜0.3元;(2)复印42页时两家复印社收费相同.【解析】【分析】(1)根据题意得出两种复印社的代数式解答即可;(2)复印x 页时两家复印社收费相同.根据题意列出方程解答即可.【详解】解:(1)A 复印社:20×0.12+0.09×(30﹣20)=3.3(元),B 复印社:30×0.1=3(元),3<3.3,3.3﹣3=0.3(元),答:选B 复印社划算,能便宜0.3元.(2)设:复印x 页时两家复印社收费相同.可得:20×0.12+0.09×(x ﹣20)=0.1x ,解得:x =42,答:复印42页时两家复印社收费相同.【点睛】本题考查一元一次方程的应用,解题的关键是找到题目中的等量关系,设未知数列方程求解.26.(1)-1;(2)-0.5或4.5;(3)t =3【解析】【分析】(1)根据已知条件先确定点M 表示的数为3-,点N 代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y ∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5 ∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.27.(1)AB 的长为12cm ;(2)①52t =;②32t =或72t = 【解析】【分析】(1)设AB 的长,根据题意列出方程,求解即得;(2)①当P ,Q 重合时,P 的路程=Q 的路程+5,列出方程式即得; ②点P 与点Q 相距2cm 时,分P 追上Q 前,和追上Q 后两种情况,分别列出方程式求解即得.【详解】解:()1设AB xcm =,由题意得()533x x --= 解得12x =AB ∴的长为12cm ,()2①由题意得35=+t t解得52t = 52t ∴=时点P 与点Q 重合, 故答案为:52; ②P 追上Q 前,3t+2=t+5, 解得32t =, P 追上Q 后,3t-2=t+5, 解得72t =, 综上:32t =或72t =. 【点睛】 考查一元一次方程的应用,利用路程=速度⨯时间的关系式,找到变量之间的等量关系列出方程,求解,注意追及问题分情况讨论的情况.28.(1)2;(2)存在,t=125;(3)54或127【解析】【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可.【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒,∴当P 为AB 中点时, 42=2÷(秒);(2)由题意可得:当2BP BQ =时,P ,Q 分别在AB ,BC 上,∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动,∴BP=8-2t ,BQ=23t , 则8-2t=2×23t ,解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ ;(3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32,此时t=32÷2=16, ∵BC+CQ=16+4=20,∴a=20÷16=54, 当点P 为靠近点C 的三等分点时,如图,AB+BC+CP=8+16+4=28,此时t=28÷2=14,∵BC+CQ=16+8=24,∴a=24÷14=127.综上:a 的值为54或127. 【点睛】 本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.。

北师大版七年级数学上册期末测试卷及答案doc

北师大版七年级数学上册期末测试卷及答案doc

北师大版七年级数学上册期末测试卷及答案doc一、选择题1.下列说法错误的是()A.25mn-的系数是25-,次数是2B.数字0是单项式C.14ab是二次单项式D.23xyπ的系数是13,次数是42.方程114xx--=-去分母正确的是().A.x-1-x=-1 B.4x-1-x=-4 C.4x-1+x=-4 D.4x-1+x=-13.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种4.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A.中B.国C.梦D.强5.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A.方案一B.方案二C.方案三D.不能确定6.甲、乙两人分别从A B、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A B、两地的距离是()A.24千米B.30千米C.32千米D.36千米7.求1+2+22+23+...+22019的值,可令S=1+2+22+23+...+22019,则2S=2+22+23+...+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+ (52019)值为()A.52019-1 B.52020-1 C.2020514-D.2019514-8.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 9.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .710.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°11.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .100912.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.一个角的余角比这个角的12少30°,则这个角的度数是_____. 15.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.16.统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取组距为 10,可以分成 _______________组.17.若25m n a b 与569a b -是同类项,则m n +的值是____.18.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.19.将一列有理数1,2,3,4,5,6,---按如图所示有序排列,如:“峰1”中的封顶C 的位置是有理数4;“峰2”中C 的位置是有理数-9,根据图中的排列规律可知,2008应排在,,,,A B C D E 中的__________位置.20.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A…的方向行走,甲从A 点以5m/分钟的速度,乙从B 点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在_______边上。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-< D .a b b a -<-<<2.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 3.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .44.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种5.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .2536.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米 C .32千米 D .36千米 7.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°8.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >09.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -10.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________.16.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .17.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.18.一个角的余角为50°,则这个角的补角等于_____. 19.若25m n a b 与569a b -是同类项,则m n +的值是____.20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________ 21.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,⋯,若第n 个数为56,则n =_______.22.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________.三、解答题23.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了200元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出100元之后,超出部分按原价9折优惠.设某位顾客在元旦这天预计累计购物x 元(其中200x >). (1)当350x =时,顾客到哪家超市购物优惠;(2)当x 为何值时,顾客到这两家超市购物实际支付的钱数相同. 24.先化简再求值:222226(35)2(53)a b a b ab a b ab --+--其中12,2a b =-=25.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ;(2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值. 26.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① ﹣2x ,4x 2,﹣8x 3,16x 4,﹣32x 5…② 2x ,﹣3x 2,5x 3,﹣9x 4,17x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2020个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当x =12时,256(A +14)的值.27.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 28.(1)请你在下列数轴中标出点:3A ,点: 2.5B -,点:|2|C --;(2)观察数轴,与点A 的距离为6的点表示的数是____________;(3)若将数轴折叠,使得点A 与4-表示的点重合,则点B 与数_________表示的点重合;(4)若数轴上M 、N 两点之间的距离为2015(M 在N 的左侧),且M 、N 两点经过③中折叠后互相重合,则M 、N 两点表示的数分别是什么?(5)问:| 2.5||1|x x ++-的最小值为________;符合条件的整数x 有哪些?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.D解析:D 【解析】 【分析】根据单项式系数、次数的定义逐一判断即可得答案. 【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D . 【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.3.D解析:D 【解析】 【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.4.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.5.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.8.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.9.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b <0, ∴a <0,b <0. 故选:C . 【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.12.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b ca b c++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题13.-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,--=+-,解得x=-2.x x(16)39【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A´B+BC. 14.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(2x2+3y)=3=6x2+9y,∴6x2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.16.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.17.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.18.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.19.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.20.-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.21.50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第个数为时的值. 【详解】解:∵,,,,,,,,,,,可以写为:,(,),(,,),(,,,),,∴根据规律可知所在的括解析:50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第n个数为56时n的值.【详解】解:∵11,12,21,13,22,31,14,23,32,41,⋯,可以写为:11,(12,21),(13,22,31),(14,23,32,41),⋯,∴根据规律可知56所在的括号内应为(1234567891,,,,,,,,,109876543210),共计10个,56在括号内从左向右第5位, ∴第n 个数为56,则n =1+2+3+4+5+6+7+8+9+5=50. 故答案为:50.【点睛】 本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.22..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.三、解答题23.(1)甲超市;(2)300【解析】【分析】(1)根据超市的销售方式先用x 式表示在甲超市购物所付的费用和在乙超市购物所付的费用,然后将x=350代入确定到哪家超市购物优惠;(2)由(1)得到的购物所付的费用使其相等,求出x ,使两家超市购物所花实际钱数相同.【详解】解:(1)在甲超市购物所付的费用是:200+0.8(x-200)=(0.8x+40)元,在乙超市购物所付的费用是:100+0.9(x-100)=(0.9x+10)元;当x=350时,在甲超市购物所付的费用是:0.8×350+40=320元,在乙超市购物所付的费用是:0.9×350+10=325,所以到甲超市购物优惠;(2)根据题意由(1)得:0.8x+40=0.9x+10,解得:x=300,答:当x=300时,两家超市所花实际钱数相同.【点睛】此题考查的是一元一次方程的应用,关键是用代数式列出在甲、乙两超市购物所需的费用.24.22a b ab -+,52-【解析】【分析】先去括号,再合并同类项得到化简结果,再将a 和b 的值代入即可.【详解】解:原式22222635106a b a b ab a b ab =+--+ 22a b ab =-+, 把12,2a b =-=代入得: 22a b ab -+2211(2)(2)()22=--⨯+-⨯ 122=--52=-.【点睛】本题考查整式的化简求值,熟练运用去括号及合并同类项法则是解题的关键.25.(1)9;(2)a的值为10或-10;(3)见解析,c的值为6或60 7【解析】【分析】(1)依据|a-b|=15,a,b异号,即可得到a的值;(2)分点A在原点左、右两侧两种情况讨论,依据OA=2OB,即可得到a的值;(3)分点C在点B左、右两侧两种情况进行讨论,依据O为AC的中点,OB=3BC,设未知数列方程即可得到所有满足条件的c的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.26.(1)27x8;22020x2020;(2)(﹣1)n﹣1(2n﹣1+1)x n;(3)641 2【解析】【分析】(1)观察所给的第①与②行的式子可得它们的特点,第①行中第n个数是2n﹣1x n,第②行中第n个数是(﹣2)n x n;(2)观察第③行式子的特点,可得第n个数是(﹣1)n﹣1(2n﹣1+1)x n,即可求出解;(3)先求出A=28x9+(﹣2)9x9+(28+1)x9,再将x=12代入求出A,最后再求256(A+14)即可.【详解】解:(1)根据第①行式子的特点可得,第n个数是2n﹣1x n,∴第8个单项式是27x8;根据第②行式子的特点可得,第n个数是(﹣2)n x n,∴第2020个单项式是22020x2020;故答案为:27x8;22020x2020;(2)根据第③行式子的特点可得,第n个数是(﹣1)n﹣1(2n﹣1+1)x n,故答案为:(﹣1)n﹣1(2n﹣1+1)x n;(3)第①行的第9个单项式是28x9,第②行的第9个单项式是(﹣2)9x9,第③行的第9个单项式是(28+1)x9,∴A=28x9+(﹣2)9x9+(28+1)x9,当x=12时,A=28×(12)9+(﹣2)9×(12)9+(28+1)×(12)9=12﹣1+12+(12)9=(12)9,∴256(A+14)=256×[(12)9+14]=6412.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n个式子的代数式是解题的关键.27.(1)①10;3;②点P表示的数为-2+3t,点Q表示的数为8-2t;(2)1或3;(3)5【解析】【分析】(1)①根据点A表示的数为-2,点B表示的数为8,即可得到A、B两点间的距离以及线段AB的中点表示的数;②依据点P,Q的运动速度以及方向,即可得到结论;(2)由t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,于是得到|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,列方程即可得到结论;(3)依据PA的中点为M,N为PB的三等分点且靠近于P点,运用线段的和差关系进行计算,即可得到3||||4PM BN-的值.【详解】解:(1)①AB=8-(-2)=10,-2+12×10=3,故答案为:10,3;②由题可得,点P表示的数为-2+3t,点Q表示的数为8-2t;故答案为:-2+3t,8-2t;(2)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,又1||||2PQ AB==12×10=5,∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,1||||2PQ AB=;(3)∵PA的中点为M,N为PB的三等分点且靠近于P点,∴|MP|=12|AP|=12×3t=32t,|BN|=23|BP|=23(|AP|-|AB|)=23×(3t-10)=2t-203,∴3||||4PM BN -=32t-34(2t-203)=5. 【点睛】 本题考查了实数和数轴以及一元一次方程的应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.28.(1)见详解;(2)9和3-;(3)1.5;(4)M 、N 两点表示的数分别是1008-和1007;(5)3.5;符合条件的整数x 为:2-,1-,0,1.【解析】【分析】(1)在数轴上找出相应的数即可.(2)根据A 点的位置将A 点向左或向右平移6个单位即得;(3)根据点A 与4-表示的点重合确定点A 与4-表示的点的中间点表示的数,再确定中间点到B 点的距离,最后在中间点的另一侧取与到B 点距离相等的点表示的数即得. (4)由(3)中的中间点,根据M 、N 两点之间的距离为2015(M 在N 的左侧)可知点M 和点N 距离中间点的距离为20152且分别位于中间点的左右两侧即得. (5)先化简绝对值确定最小值时x 的取值范围,再根据范围确定符合条件的整数即可. 【详解】(1)∵:3A , 2.5B =-,:22C --=-∴如图所示:(2)∵点A 表示的数为3且3+6=9,363-=-∴与点A 的距离为6的点表示的数是9和3-故答案为:9和3-.(3)∵点A 与4-所在的点的中间点表示的数为:()340.52+-=-,点B 与中间点的距离为()0.5 2.52---=∴折叠后与点B 重合的点表示的数为:0.52 1.5-+=故答案为:1.5.(4)由(3)得:M 点与N 点的中间点所表示的数为-0.5∵数轴上M 、N 两点之间的距离为2015(M 在N 的左侧)∴点M 和点N 距离中间点的距离为20152 ∴点M 表示的数为:20150.510082--=-;点N 表示的数为:20150.5+10072-= ∴M 、N 两点表示的数分别是1008-和1007.(5)当 2.5x <-时| 2.5||1| 2.512 1.5 3.5x x x x x ++-=---+=-->当 2.51x -≤≤时| 2.5||1| 2.51 3.5x x x x ++-=+-+=当1x >时| 2.5||1|+2.5+12 1.5 3.5x x x x x ++-=-=+>∴当 2.51x -≤≤时,| 2.5||1|x x ++-有最小值为3.5;故答案为:3.5.∴符合条件的整数x 为:2-,1-,0,1【点睛】本题考查绝对值的几何意义及绝对值化简,解题关键是熟知:绝对值表示一个数到原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.。

北师大版七年级上学期数学《期末检测题》附答案

北师大版七年级上学期数学《期末检测题》附答案

北师大版数学七年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -13. ﹣2的绝对值是()A. 2B. 12C.12- D. 2-4.计算:(3)9-⨯的结果等于()A. 27- B. 6- C. 27 D. 65. 下列结果为负数的是( )A.-(-3)B. -32C. (-3)2D. |-3|6.若12m a b+-与323a b是同类项,则m=()A. 2 B. 3 C. 4 D. 5 7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) 星期 一 二 三 四 最高气温 21℃ 22℃ 14℃ 20℃ 最低气温 11℃14℃-1℃11℃A. 星期一B. 星期二C. 星期三D. 星期四9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在C 处,小强站在B 处,两人同时逆时针方向跑步,小斌每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A. 半圆跑道AB 上B. 直跑道BC 上C. 半圆跑道CD 上D. 直跑道AD 上10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 12.单项式232x y的次数是__________. 13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________.14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).18.计算: (1)21324()368-⨯-+ (2)22(3)|8|4-⨯---÷19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE =cm ; (2)若4AC cm =,求DE的长.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤<20第4组 6070x ≤<b第5组 5060x << 6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1500名学生,那么成绩低于70分的约有多少人?23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 月用水量(吨) 单价(元/吨) 不超过25吨 1.4 超过25吨的部分2.1另:每吨用水加收0.95元的城市污水处理费(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费 元; (2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简) (2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.【答案】C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -1【答案】D【解析】【分析】直接利用数轴得出结果即可.【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.3. ﹣2的绝对值是()A. 2B.12C. 12-D. 2-【答案】A 【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .4.计算:(3)9-⨯的结果等于( ) A. 27- B. 6-C. 27D. 6【答案】A 【解析】 【分析】根据有理数的乘法法则进行计算即可 【详解】解:(3)9=-27-⨯ 故选A【点睛】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则. 5. 下列结果为负数的是( ) A. -(-3) B. -32C. (-3)2D. |-3|【答案】B 【解析】试题分析:A 、-(-3)=3;B 、-23=-9;C 、2(3)-=9;D 、3-=3.考点:有理数的计算6.若12m a b +-与323a b 是同类项,则m =( ) A. 2 B. 3C. 4D. 5【答案】A 【解析】 【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同,据此列出方程m 13+=即可解答本题. 【详解】解:因为m 12a b +-与323a b 是同类项, 所以m 13+=,,所以m2故选:A.【点睛】本题考查的是同类项的定义,直接利用定义解决即可.7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校的每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查【答案】A【解析】【分析】抽取样本要注意样本必须有代表性.【详解】A. 从全校的每个班级中随机抽取几个学生作调查,有代表性,合适;B. 在低年级学生中随机抽取一个班级作调查,样本没有代表性,不合适;C. 在学校门口通过观察统计佩戴眼镜的人数,样本没有代表性,不合适;D. 从学校的男同学中随机抽取50名学生作调查,样本没有代表性,不合适.故选A【点睛】本题考核知识点:抽样调查.解题关键点:注意抽取的样本应该具有代表性.8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】C【解析】【分析】本题考查的是最大温差,先求出星期一、星期二、星期三、星期四的温差,再进行比较,找到最大的即可.【详解】解:星期一的温差是21-11=10,星期二的温差是22-14=8,星期三的温差是14-(-1)=15,星期四的温差是20-11=9,因为15>10>9>8,所以星期三的温差最大,故选:C.【点睛】本题考查的是温差,温差=最高温度-最低温度,依次计算这四天的温差,之后按照有理数的大小比较,找到最大的值就可以了.9.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小斌站在C处,小强站在B处,两人同时逆时针方向跑步,小斌每秒跑4m,小强每秒跑6m.当小强第一次追上小斌时,他们的位置在()A. 半圆跑道AB上B. 直跑道BC上C. 半圆跑道CD上D. 直跑道AD上【答案】D【解析】【分析】本题考查是一元一次方程,设小强第一次追上小彬的时间为x秒,根据小强的路程-小彬的路程=BC的长度,也就是85米,再进一步判断即可求解本题.【详解】解:设小强第一次追上小彬的时间为x秒,-=,根据题意,得:6x4x85解得x=42.5,则4x=170>115,170-115=55,所以他们的位置在直跑道AD上,故选:D.【点睛】本题主要考查一元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强的路程-小彬的路程=路程差BC 直跑道的长.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.【答案】C 【解析】 【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得. 【详解】由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有:故选C .【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 【答案】1 【解析】 【分析】本题要注意有理数运算中的加法法则:异号两数相加,取绝对值较大数的符号,并把绝对值相减. 【详解】解:-2+3=3-2=1, 故答案为:1.【点睛】解题的关键是理解加法的法则,先确定和的符号,再进行计算. 12.单项式232x y 的次数是__________. 【答案】3 【解析】【分析】本题考查的是单项式的次数,一个单项式中,所有字母的指数的和叫做单项式的次数,注意指数为1时省略不写.【详解】解:因为x 的指数为2,y 的指数为1, 所以单项式的次数是2+1=3, 故答案为:3.【点睛】本题正确理解单项式的次数,注意到y 的指数为1即可.13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________. 【答案】74.3110⨯ 【解析】 【分析】本题考查的是科学记数法,直接将题目中的数据43100000数出位数,位数-1即为10的指数就可以解答本题. 【详解】解:因为43100000是8位数, 所以43100000=4.31×107, 故答案为:74.3110⨯.【点睛】本题考查的是科学记数法,是指把一个数表示成a ×10的n 次幂的形式(1a 10≤<,n 为正整数). 14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 【答案】两点确定一条直线 【解析】 【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线, 故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________ 【答案】甲班 【解析】 【分析】分别求出甲班与乙班成绩为D 等级的人数进行比较即可. 【详解】由频数分布直方图知甲班成绩为D 等级的人数为13人, 由扇形统计图知乙班成绩为D 等级的人数为40×30%=12, ∴D 等级较多的人数是甲班, 故答案为甲班.【点睛】本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键. 16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________. 【答案】2134a b + 【解析】 【分析】认真读题可知,本题的规律是:从第3个数开始,每个数均为前两个数的和,从而可以得出答案. 【详解】解:由题意可知第7个数是5a+8b, 第8个数是8a+13b, 第9个数是13a+21b, 第10个数是21a+34b, 故答案为:21a+34b .【点睛】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).【答案】【解析】【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.18.计算:(1)21324()368-⨯-+(2)22(3)|8|4-⨯---÷【答案】(1)-21;(2)10 【解析】【分析】本题为基础的计算题:(1) 需要注意可以先算括号内,也可以运用运算律直接拆开,注意负号的存在; (2) 注意到绝对值,减数这部分要先算绝对值再算除法. 【详解】(1)原式213242424368=-⨯+⨯⨯- 1649=-+-21=-(2)原式4384=-⨯--÷()122=-10=【点睛】本题考查的是有理数的混合运算,这里掌握它们的运算法则是解题的关键. 19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 【答案】22a ab -+,-5 【解析】 【分析】根据去括号、合并同类项,可化简整式,之后将题目中的数值代入,即可求得答案. 【详解】原式22426a ab a ab =--+22a ab =-+当1a =-,2b =时原式21212=--+⨯-⨯()()14=-- 5=-【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前面是正数去括号不变号,括号前面是负数去括号都变号. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=【答案】(1)5x =;(2) 1.3x = 【解析】 【分析】根据一元一次方程的解法:(1) 去括号、移项,即可解答;(2) 先利用等式的性质去分母,之后去括号、移项,即可解答. 【详解】(1)4260x -+=246x -=--210x -=- 5x =(2) ()()341622x x --=+123624x x --=+ 122436x x -=++ 1013x =1.3x =【点睛】本题是一元一次方程的解法,属于基础题目,在解题的时候,需要注意:括号前面是负号去掉括号要变号;去分母的时候要注意每一项都要乘,不要漏项.21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE = cm ; (2)若4AC cm =,求DE 的长. 【答案】(1)6DE cm =;(2)6cm 【解析】 【分析】(1)C 是AB 的中点,先求AC 和CB ,再根据D 、E 是AC 和BC 的中点,即可求解; (2)由AC 和AB 可求BC ,再根据D 、E 分别是AC 和BC 的中点,即可求解. 【详解】(1)因为AB=12cm,C 是AB 的中点,所以AC=BC=6cm,因为D 、E 是AC 和BC 的中点,所以CD=CE=3cm, 所以DE=3+3=6cm, 所以DE=6cm .(2)1248BC AB AC =-=-=114222CDAC ==⨯= 118422CE BC ==⨯= ∴246DE DC CE cm =+=+=【点睛】本题考查的是线段的中点问题,注意线段中点的计算即可.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤< 20第4组 6070x ≤<b第5组 5060x <<6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1500名学生,那么成绩低于70分的约有多少人?【答案】(1)80,24,14;(2)27︒;(3)375人【解析】【分析】(1)抽取学生人数我们找到一组数据以及所占整体的百分率即可求解,之后可依次求出a、b的值;(2)由第5组学生的人数为6人,即可求得所占圆心角为63602780︒⨯=︒;(3)由样本估计整体,根据抽查学生中低于70分的学生占80名学生的比,即可求得答案.【详解】(1)20÷25%=80(人),b=20-6=14(人),a=80-16-20-20=24(人)(2)∵6 3602780︒⨯=︒∴“第五组”所在扇形的圆心角为27︒(3)∵614 150037580+⨯=∴成绩低于70分的约有375人.【点睛】本题主要考查的是数据的统计和分析,我们在解题的时候,需要注意认真计算,同时需要牢固掌握统计表和扇形统计图.23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费元;(2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?【答案】(1)42.3;(2)40吨;(3)74元【解析】分析】本题是一个实际应用题:(1)小明家用水量没有超过25吨,直接单价×数量即可;(2)设小明家2月份用水量为x 吨,可列方程()25 1.4x 25 2.10.95x 104.5⨯+-⨯+=,求出x 的值即可; (3)应先算出水表中3月的用水量,再计算实际的用水量,最后根据收费标准计算应缴纳水费. 【详解】(1)18×(1.4+0.95)=42.3(元) (2)∵25(1.40.95)58.75104.5⨯+=< ∴小明家2月份用水超过25吨. 设小明家2月份用水x 吨根据题意得:25 2.35(25)(2.10.95)104.5x ⨯+-⨯+= 解这个方程得:40x = 答:小明家2月份用水40吨 (3)水表计数:56.4 2.3524÷= 实际用水:2480%30÷=应缴水费:25 2.35(3025) 3.05⨯+⨯-74=(元) 答:小明家3月份实际应交水费74元.【点睛】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程;易错点是忽略污水处理费.24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE ∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.【答案】(1)45︒;(2)ACE BCF ∠=∠,理由见解析;(3)45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒ 【解析】 【分析】(1)根据角平分线的性质求出∠FCA ,即可求出∠ACE ; (2)根据同角的余角相等即可求出;(3)∠ACD 和∠BCF 都和∠ACF 关系紧密,分别表示它们与∠ACF 的关系即可求解. 【详解】(1)∵CF 平分ACB ∠ ∴11904522ACF ACB ∠=∠=⨯= ∴90ACE ACF ∠=︒-∠904545=︒-︒=︒(2)猜想:ACE BCF ∠=∠ 理由:∵90ACF BCF ∠=︒-∠90ACE ACF ∠=︒-∠∴9090ACE BCF ∠=︒-︒-∠()9090BCF =︒-︒+∠ BCF =∠(3)因为CA 在∠DCF 内侧,所以∠DCA=∠DCF -∠ACF=45°-∠ACF ,∠BCF=∠BCA -∠ACF=90°-∠ACF , 所以45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒【点睛】本题考查了角平分线的性质,角和角之间的关系,同角的余角相等的性质,要善于观察顶点相同的角之间的关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大? /x cm 12 3 4 5 3/cm V160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.【答案】(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.。

北师大版七年级上学期数学《期末测试卷》及答案

北师大版七年级上学期数学《期末测试卷》及答案
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
22.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.
15.已知 ,则 ______.
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.
三、解答题
17.计算
(1)3-(-8)+(-5)+6
(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP
(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的 ;
(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的
答案与解析
一、选择题
1. 的相反数是()
A. B.2C. D.
[答案]D
[解析]
[详解]因为- + =0,所以- 的相反数是 .
故选D.2. 小星同学在“”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()
A.617×105B.6.17×106C.6.17×107D.0.617×108
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.

数学期末测试题(一)北师大版七年级上册

数学期末测试题(一)北师大版七年级上册

数学期末测试题(一)北师大版七年级上册题号一二三四总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题(本大题共8小题,共16分。

在每小题列出的选项中,选出符合题目的一项)1. 下列说法:锐角的补角一定是钝角;一个角的补角一定大于这个角;如果两个角是同一个角的余角,那么它们相等;锐角和钝角互补.其中,正确的说法有( )A. 个B. 个C. 个D. 个2. 纳米是一种长度单位,纳米米.已知某种植物的花粉的直径约为纳米,那么用科学记数法表示该种花粉的直径为( )A. B. C. D.3. 如果,,那么下列不等式成立的是( )A. B. C. D.4. 下列调查中,适合用全面调查的是( )A. 了解万只节能灯的使用寿命B. 了解某班名学生的视力情况C. 了解某条河流的水质情况D. 了解全国居民对“垃圾分类”有关内容的认识程度5. 下列运算正确的是( )A. B. C. D.6. 如图.直线,直线分别与直线、交于点、,则的度数为( )A.B.C.D.7. 如图,将边长为的正方形纸片,剪去一个边长为的小正方形纸片.再沿着图中的虚线剪开,把剪成的两部分和拼成如图的平行四边形,这两个图能解释下列哪个等式( )A.B.C.D.8. 在一次数学活动课上,王老师将共八个整数依次写在八张不透明的卡片上每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下他先像洗扑克牌一样打乱这些卡片的顺序.然后把甲、乙、丙、丁四位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:;乙:;丙:;丁:则拿到数字的同学是( )A. 甲B. 乙C. 丙D. 丁第II卷(非选择题)二、填空题(本大题共8小题,共16分)9. 今年高考第一天月日日平区最高气温是,最低气温是,请用不等式表示这一天气温的变化范围:____________.10. 分解因式:______ .11. 如果是二元一次方程的解,那么的值是______.12. 计算:______.13. 下列命题是真命题的有______填写相应序号.对顶角相等;两个锐角的和是钝角;两直线平行,同旁内角互补;一个正数与一个负数的和是负数.14. 在居家学习期间,某中学要求学生积极参加体育锻炼,坚持参加“仰卧起坐”、“跳绳”等项目,小雨连续记录了自己天一分钟“仰卧起坐”的个数:、、、、则这组数据的平均数为______.15. 已知,,则______.16. 某中学为积极开展校园足球运动,计划购买和两种品牌的足球,已知一个品牌足球价格为元,一个品牌足球价格为元.学校准备用元购买这两种足球两种足球都买,并且元全部用完.请写出一种购买方案:买______个品牌足球,买______个品牌足球.三、计算题(本大题共2小题,共9.0分)17. 计算:.18. 解方程组.四、解答题(本大题共10小题,共59.0分。

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2012学年度上期期末调研测试七年级数学试题全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟 题号 A 卷B 卷 一 二三四 五总分一二三四 总分得分A 卷(共100分)一、选择题(每小题3分,共30分,请将每题后唯一正确答案填在空格内) 1.3-的相反数是( ) A.31B.31-C.3D.3-2.下列事件中,为必然事件的是( )A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球3.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.4. 近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) A. 20.3×104人 B. 2.03×105人 C. 2.03×104人 D. 2.03×103人5.“x 的21与y 的和”用代数式可以表示为( ) A.()y x +21 B.y x ++21C.y x 21+D.y x +216. 若代数式b a y x 2131--与423y x 是同类项,则b a -的值为( )A.1B.2C.3D.4 7. 数轴上的点A ,B 位置如图所示,则线段AB 的长度为( ) A.3- B.5C.6D.78. 下列说法中,正确的是( )A.经过两点,有且只有一条直线B.连结两点的线段叫做两点间的距离C.两点之间,直线最短D.若AB =BC ,则点B 是线段AC 的中点 9.下列各题中正确的是( )A.由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x x D.由7)1(2+=+x x 移项、合并同类项得x =510. 把一张长方形的纸片按如右图所示的方式折叠,EM 、FM 为折痕, 10题图 折叠后的C 点落在M B '或M B '的延长线上,那么∠EMF 的度数是( ) A.85° B.90° C.95° D.100° 二、填空题(每小题3分,共15分)11. 如图,若点C 为线段AB 的中点,则AC= =21。

12. 在同一平面内,有三条直线a ,b ,c ,如果,,c b c a ⊥⊥那么a 与b 的位置关系是 13. 如图是一个正方体的展开图,若正方体相对面上标注的值相等,那么=x ,=y 。

14. 如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是 度12题图 13题图 14题图 15. 请你把这五个数:23,()32-,0,21-,101-按从小到大....,从左到右....串成葫芦状(数字写在圆圈内) 三、解答题(共22分) 16. (1) 计算:()[]2442611-+⨯-- (5分)8y 88102x(2)化简:()()[]y x x x x x x 43276323233--+-+- (6分)(3)解方程:14126110312-+=---x x x (6分)(4)下面是一排一些可以自由转动的转盘,请你用第二排的语言描述转出白色的可能性的大小,并用线连接起来 (5分)四、解答题(每题8分,共16分) 17. 已知点C 为AB 上一点,AC =12cm, CB =32AC ,D 、E 分别为AC 、AB 的中点。

求DE 的长。

d c ba18. 如图,已知∠AOC=90°,∠COD 比∠DOA 大28°,OB 是∠AOC 的平分线.求∠BOD 的度数.五、解答题(19题8分。

20题9分,共17分)19. 蒲江县某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有 人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?20. 右边是一个数表,现用一个长方形在数表中任意框出4个数 ,则(1)c a ,的关系是 ;(2分) (2)当32=+++d c b a 时,=a (2分)(3)d c b a +++能等于38吗?若能,求出相应的a 的值;若不能,说明理由。

(5分)不含x 项?绝对值的计算和化简 28272625242322212019181716151413121110987654B 卷(50分)一、填空题(每小题4分,共20分)21. 若x 的相反数是3,5=y ,则y x += 。

22.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,则这种商品定价是 元。

23.如图,点C 、D 是线段AB 上任意两点,点E 、F 分别是线段AC 、BD 的中点,若m CD =,n EF =,用含有n m ,的代数式表示线段=AB .22..按如图所生意的程序运算,若开始输入的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,…,请你探索第2012次得到的结果为 。

25. 如图,已知064=∠AOB ,1OA 平分AOB ∠,2OA 平分1AOA ∠,3OA 平分3AOA ∠,4OA 平分3AOA ∠, ,按这一规律,n OA 平分1-∠n AOA ,则4AOA ∠= ,n AOA ∠= 。

24题图 25题图 一、(本题满分9分)26. 将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n 等分呢?(请填写下表):棱等分数 4等分n 等分3面涂色的正方体 个 个 2面涂色的正方体个个1面涂色的正方体个个各个面都无涂色的正方体个个(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.(9分)三、27. 列方程解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?四、28. 如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM-∠NOC的度数.2011—2012学年度上期期末调研测试 七年级数学试题参考答案及评分标准A 卷(100分)一、选择题1—5:CDCBD 6—10:ADADB 二、填空题11. BC,AB 12. 平行(或a ∥b ) 13. 4,10 14.120° 15. 依次填()233,21,0,101,2--- 三、解答题16解(1)原式=[]162611+⨯-- ----------2分=18611⨯-- -------------------3分 =431-=-- --------------5分(2)原式=[]y x x x x x x 86276323233--+-+- -----------3分 =[]y x x x 873333--- ------------------4分 =y x x x 873333++- ------------------5分 =y x 87+ ------------------------6分 (3)去分母,得:()()()121231102124-+=---x x x -----------2分 去括号,得:123622048-+=+--x x x -------------4分 移项、合并同类项,得:718-=-x ----------------5分 系数化为1,得: 187=x ----------------6分 (4)-----连对一条线1分四、解答题17.解:∵AC =12cm, CB =32AC ∴CB=81232=⨯cm -------------------2分 ∴AB=AC+BC=12+8=20cm --------------------3分∵D 、E 分别为AC 、AB 的中点∴AD=cm AC 6122121=⨯=,cm AB AE 10202121=⨯==--------6分 ∴cm AD AE DE 4610=-=-= -------------------- 8分18.解:设0x DOA =∠,则028+=∠x COD --------------------1分∵090=∠+∠=∠DOA COD AOC∴9028=++x x ∴031=x ----------------------4分00592831=+=∠COD∵OB 是∠AOC 的平分线∴0045902121=⨯=∠=∠AOC COB ----------------------6分 ∴000144559=-=∠-∠=∠COB COD BOD ----------------------8分五、解答题 19. 解:(1)成绩一般的学生占的百分比=1-20%-50%=30%, 测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人, 所补充图形如下所示:---------各2分,共4分(2)该校被抽取的学生中达标的人数=36+60=96. -------------6分 (3)1200×(50%+30%)=960(人).答:估计全校达标的学生有960人. ----------------------------8分 20.解:(1)5+=a c ---------2分 (2)5---------------------4分(3)d c b a +++不能等于38. -------------------------------5分 ∵1+=a b ,5+=a c ,6+=a d ------------------------------7分 ∴()()()124651+=++++++=+++a a a a a d c b a 当38=+++d c b a 时,38124=+a ,∴213=a ---------8分 ∵a 为整数,∴d cb a +++不能等于38. -----------------9分B 卷(50分)一、填空题二、解答题三、解答题27. 解:(1)设去了x 个成人,则去了()x -12个学生,-------------------1分依题意得40x+20(12-x)=400,---------------------4分解得x=8,12-x=4;---------------------5分答:小明他们一共去了8个成人,4个学生.---------------------6分(2)若按团体票购票:16×40×0.6=384 ---------------------8分∵384<400,∴按团体票购票更省钱.---------------------9分四、解答题1.下面四个几何体中,主视图与其它几何体的主视图不同的是()A. B. C. D.2.如图,立体图形由小正方体组成,这个立体图形有小正方体 个1、下图是正方体展开图的一部分,请你在这个图形的基础上,添加两个小正方形,让它成为完整的正方体展开图.2.计算31432÷-=22.如果代数式12-+x x 的值为0,那么代数式7223-+x x 的值为 。

相关文档
最新文档