苏教版九年级数学圆复习学案

合集下载

-苏科版九年级寒假复习教案:2.1:圆1——圆的基本概念和性质(含答案)

-苏科版九年级寒假复习教案:2.1:圆1——圆的基本概念和性质(含答案)

初中数学一对一教学辅导教案)突破·重点难点突破一、垂径定理的应用例:1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为1cm2,则该半圆的直径为____________.2、如图为桥洞的形状,其正视图是由圆弧和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.(1)求所在⊙O的半径DO;(2)若河里行驶来一艘正视图为矩形的船,其宽6米,露出水面AB的高度为h米,求船能通过桥洞时的最大高度h.突破二、圆中的分类讨论例:1、直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P 以1cm/s的速度沿由A向B的方向移动,那么秒钟后⊙P与直线CD相切。

2、如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.突破三、圆与函数的综合应用例:1、如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.2、如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.3、如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(﹣1,0),(0,﹣2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧上的点F作FH ⊥AD于点H,且FH=1.5(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.4、如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离。

苏教版九年级数学圆复习学案

苏教版九年级数学圆复习学案

图2 O B Q A PRO RB Q A P 图1 第五章 中心对称图形(二)小结与思考(二)班级 姓名 学号 学习目标: 1、梳理本章所学的知识,复习直线和圆的位置关系. 2、了解切线的概念,会利用切线的性质与判定进行有关计算和证明,发展推理能力. 3、了解三角形的内切圆、切线长的概念,能利用切线长的性质解决有关问题. 基础练习: 1、⊙O 的半径为5㎝,点A 在直线l 上,如果OA=5㎝,那么直线l 与⊙O的位置关系() A 、相切 B 、相交 C 、相离 D 、相切或相交2、直角坐标系中,以P (2,1)为圆心,r 为半径的圆与坐标轴恰好有三个公共点,则r 的值为 .3、下列说法正确的是 ( )A 、垂直于圆的半径的直线是圆的切线B 、经过半径外端的直线是圆的切线C 、直线上一点到圆心的距离等于圆的半径的直线是圆的切线D、到圆心的距离等于圆的半径的直线是圆的切线4的直径,点D 在AB 的延长O 的切线,切点为C ,若∠______.5、为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm ,则铁环的半径是 cm . 6、如图,⊙O 内切于ABC △,切点分别为D 、E 、F .已知∠A=70°,连结DE 、DF 、BO 、CO ,,那么∠EDF = ;∠BOC= . 典型例题: 问题一、在同一平面内,已知点O 到直线l 的距离为5.以O 为圆心,r 为半径画圆.探索、归纳: (1)当r = 时,⊙O 上有且只有1个点到直线l 的距离等于3; (2)当r = 时,⊙O 上有且只有3个点到直线l 的距离等于3;(3)随着r 的变化,⊙O 上到直线l 的距离等于3的点的个数有哪些变化? 问题二、一位小朋友在粗糙不打滑的“Z ”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与C D 是水平的,BC 与水平面的夹角为600,其中AB=60cm ,CD=40cm ,BC=40cm ,请你作出该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线的示意图,并求出此路线的长度. 问题三、有这样一道习题:如图1,已知OA 和OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,过Q 点作⊙O 的切线交OA 的延长线于R .说明:RP =RQ . 请探究下列变化: 变化一:交换题设与结论. 已知:如图1,OA 和OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,R 是OA 的延长线上一点,且RP =RQ .说明:RQ 为⊙O 的切线.变化二:运动探求. 1.如图2,若OA 向上平移,变化一中的结论还成立吗?(只需交待判断) 2.如图3,如果P 在OA 的延长线上时,BP 交⊙O 于Q ,过点Q 作⊙O 的切线交OA 的延长线于R ,原题中的结论还成立吗?为什么?3.若OA 所在的直线向上平移且与⊙O 无公共点,4,并判断结论是否) M 与x 轴M 的直径,过点C 的直,已知点M 的坐标为OB图3第4题第5题A P 60° 30°第2题ABO第3题 图1 (0,直线CD 的函数解析式为y =-+(1)求点D 的坐标和BC 的长; (2)求点C 的坐标和⊙M 的半径; (3)说明:CD 是⊙M 的切线.课后作业:1、若边长为2的等边三角形ABC 内接于⊙O,外切于⊙I ,则⊙O的半径是_______,⊙I 的半径是_______.2、如图,PA 切 ⊙O 于点A,PO 交⊙O于B ,延长PO 交⊙O于C, OB=PB=1,OA 绕点O 逆时针方向旋转60°到OD ,则PD 的长为 .3、如图,已知直线l 的解析式是434-=x y ,并且与x 轴、y 轴分别交于A 、B 两点.一个半径为1.5的⊙C,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为 .4、如图,AC ⊥BC 于点C ,BC =a ,CA =b ,AB =c ,⊙O 与直线AB 、 BC 、CA 都相切,则⊙O 的半径等于 .5、如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA CB ,分别相交于点P Q ,,则线段PQ 长度的最小值是 .8、如图,A 是半径为12cm 的⊙O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 点立即停止运动.(1)如果90POA ∠=,求点P 运动的时间; (2)如果点B 是OA 延长线上的一点,AB OA =,那么当点P 运动的时间为2s 时,判断直线BP 与⊙O 的位置关系,并说明理由.9、如图,在△ABC 中,AB=AC ,内切圆O 与边BC 、AC 、AB 分别切于D 、E 、F. (1)求证:BF=CE ;(2)若∠C=30°,CE =AC .10、已知:如图,ABC △中,CA CB =,点D 为AC 的中点,以AD 为直径的⊙O 切BC 于点E ,2AD =. (1)求BE 的长;(2)过点D 作DF BC ∥交⊙O 于点F ,求DF 的长.11、已知如图,点D 是以AB 为直径的圆O 上任意一点,且不与点A 、B 重合,点C 是弧BD 的中点,过C 作CE ∥AB ,交AD 或其延长线于E ,连结BE 交AC 于G .(1)求证:AE =CE ;(2)若过点C 作CM ⊥AD 交AD 的延长线于点M , 试说明:MC 与⊙O 相切;(3)若CE =7,CD =6,求EG 的长.12、如图,在平面直角坐标系xoy 中,M 是x 轴正半轴上一点,⊙M 与x 轴的正半轴交于A B ,两点,A 在B 的左侧,且OA OB ,的长是方程212270x x -+=的两根,ON 是⊙M 的切线,N 为切点,N 在第四象限.(1)求⊙M 的直径;(2)求直线ON 的解析式; (3)在x 轴上是否存在一点T ,使O T N △是等腰三角形,若存在请在图2中标出T 点所在位置,并画出(要求尺规作图,保留作图痕迹,不第5题第4题。

江苏省镇江市润州区九年级数学上册2圆复习学案(无答案)苏科版

江苏省镇江市润州区九年级数学上册2圆复习学案(无答案)苏科版

圆课题 圆复习目标1.理解、掌握圆的有关性质、直线和圆的位置关系、圆和圆的位置关系、正多边形和圆的关系.2.探索、总结、归纳与圆有关的各种问题,进行知识梳理,构建圆的知识体系.3.渗透数形结合和分类的数学思想,并逐步学会用数学的眼光认识世界、解决问题,学会有条理的表达、推理.重点 与圆有关的知识的梳理. 难点 会用圆的有关知识解决问题. 教法讨论、交流教学过程备注(一)圆1、定义A:一条线段绕一个端点在平面内旋转一周,另一个端点运动所形成的图形叫圆。

定义B :到定点距离等于定长的点的集合是圆。

定义C:正多边形的边数趋向于无穷大时,图形趋向圆。

2、点与圆的位置关系若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么: 点P 在圆 ⇔ d r 点P 在圆 ⇔ d r 点P 在圆 ⇔ d r练习1、正方形ABCD 的边长为2cm ,以A 为圆心2cm 为半径作⊙rrrPPPA,则点B在⊙A ;点C在⊙A ;点D在⊙A 。

2、已知⊙O的直径为10cm.(1)若OP=3cm,那么点P与⊙O的位置关系是:点P在⊙O ;(2)若OQ= cm,那么点Q与⊙O的位置关系是:点Q在⊙O上;(3)若OR=7cm,那么点R与⊙O的位置关系是:点R在⊙O 。

(二)相关概念1、连接圆上任意两点的线段叫做弦.2、经过圆心的弦叫做直径.3、圆上任意两点间的部分叫做圆弧,简称弧。

4、圆上任意一条直径的两个端点把圆分成两条弧,每条弧叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

5、定点在圆心的角叫做圆心角.6、圆心相同,半径不相等的两个圆叫做同心圆.7、能够互相重合的两个圆叫做等圆.8、能够互相重合的弧叫做等弧。

9、同圆或等圆的半径相等。

练习:1、下列语句不正确的是()①直径是弦; ②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A、1B、2C、3D、42、等于23圆周的弧是( )A、劣弧B、半圆C、优弧D、圆3、如图,⊙O的直径AB=4,半径OC⊥AB,点D在错误!上,DE⊥OC,DF⊥AB,垂足分别为E、F.求EF的长。

2019-2020学年九年级数学上册 2.1 圆学案(1)(新版)苏科版.doc

2019-2020学年九年级数学上册 2.1 圆学案(1)(新版)苏科版.doc

2019-2020学年九年级数学上册 2.1 圆学案(1)(新版)苏科版学习目标:1.理解圆的定义(圆的描述概念和圆的集合概念);2.掌握点和圆的三种位置关系;3.会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系;4.初步会运用圆的定义证明四个点在同一个圆上.学习重、难点:确定点和圆的三种位置关系以及圆的集合概念的理解;点和圆的三种位置关系的理解和应用.学习过程:一、问题导入圆的描述定义:把一条线段OP的一个端点O固定,线段OP绕点O在平面内旋转一周,另一个端点P所形成的图形叫做_______.其中,定点O叫_______,线段OP叫_______.以点O为圆心的圆,记作_______,读作_______.注:(1)确定一个圆的两个要素是_______和________;(2)以定点A为圆心作圆,能作_______个圆;(3)以定长r为半径作圆,能作_______个圆;(4)以定点A为圆心、定长r为半径作圆,能且只能作_______个圆;(5)圆心确定_______,半径确定_______.二、自学探究1.操作与思考:请你在圆上任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆上的点到圆心的距离都_______半径;到圆心的距离等于半径的点都在圆______.(2)满足上述两个条件,我们可以把圆看成是一个集合.即圆是__________________________________________________.(圆的集合定义)请你在圆内任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆内的点到圆心的距离都_______半径;到圆心的距离小于半径的点都在圆______.(2)圆的内部是到圆心的距离______半径的点的集合.请你在圆外任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆外的点到圆心的距离都_______半径;到圆心的距离大于半径的点都在圆______.(2)圆的外部是到圆心的距离______半径的点的集合.因此,我们得到如下结论:2.尝试交流:已操作:(1)画线段PQ,使PQ=2 cm;(2)画出下列图形:到点P的距离等于1 cm的点的集合;到点Q的距离等于1.5 cm的点的集合.(3)在所画图中,到点P的距离等于1 cm,且到点Q的距离等于1.5 cm的点有几个?请在图中将它们表示出来.(4)在所画图中,到点P的距离小于或等于1 cm,且到点Q的距离大于或等于1.5 cm的点的集合是怎样的图形?把它画出来.三、学以致用活动一:已知⊙O的半径为5cm,A为线段OP的中点,当OP满足下列条件时,分别指出点A和⊙O的位置关系:(1)OP=6cm;(2)OP=10cm;(3)OP=14cm.活动二:已知RT△ABC,AC=3 cm,BC=4 cm,CD是斜边AB上的高.以点C为圆心,3 cm长度为半径画圆,判断点A、B、D与⊙C的位置关系.活动三:已知:如图,AC⊥BC,AD⊥BD.求证:点A、B、C、D在同一个圆上.四、当堂检测1.已知⊙O 的半径为4 cm .如果点P 到圆心O 的距离为4.5 cm ,那么点P 与⊙O 有怎样的位置关系?如果点P 到圆心O 的距离分别为4 cm 、3 cm 呢?2.用图形表示到点A 的距离小于或等于2 cm 的点的集合.3.如图,已知矩形ABCD 的边AB =3 cm ,AD =4 cm (直接写出答案)(1)以点A 为圆心,3厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(2)以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(3)以点A 为圆心,5厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?4.已知矩形ABCD 的对角线AC 、BD 相交于点O .点A 、B 、C 、D 是否在以点O 为圆心的同一个圆上?为什么?五、课后反馈A 组题:1.已知⊙O 的直径为6 cm ,且点P 在⊙O 内,线段PO 的长度范围是() A .小于6 cm B .6 cm C .3 cm D .小于3 cm2.两圆的圆心都是O ,半径分别是1r 、2r (21r r <).若21r op r <<,则() A .点P 在大圆外、小圆外B .点P 在大圆内、小圆外C .点P 在大圆外、小圆内D .点P 在大圆内、小圆内3.在直径AB =5 cm 的圆上,到AB 的距离为2.5 cm 的点有( )A .无数个B .1个C .2个D .4个 B 组题: 4.在Rt △ABC 中,∠C =90°,AC =2 cm ,BC =4 cm ,若以C 为圆心,2 cm 为半径作圆,•则点A 在⊙C _______,点B 在⊙C ________.若以AB 为直径作⊙O ,则点C 在⊙O ________.5.有一张矩形的纸片,AB =3 cm ,AD =4 cm,若以A 为圆心作圆,并且要使点D 在⊙A 内,而点C 在⊙A 外,A CD⊙A的半径r的取值范围是_____________.6.设AB=5 cm,点C在边AB上,且AC=2 cm,分别画出具有下列性质的点的集合的图形:(1)和点C的距离为2 cm的点的集合;(2)和点A的距离为3 cm的点的集合;(3)和点B、C的距离都为2 cm的点的集合.C组题:7.(1)矩形ABCD的对角线AC、BD相交于点O.求证:点A、B、C、D在以点O为圆心的圆上.(2)如果E、F、G、H分别为OA、OB、OC、OD的中点,求证:点E、F、G、H在同一个圆上.。

【教育资料】苏科版九年级上册第2章圆复习教案:圆周角学习精品

【教育资料】苏科版九年级上册第2章圆复习教案:圆周角学习精品

圆周角(一)知识点1:圆周角的概念顶点在圆上,且两边都与圆相交的角叫做圆周角。

思考:如图所示,下列哪些是圆周角?注:圆周角满足两个条件:①顶点在圆上;②两边都与圆相交。

知识点2:圆周角定理你踢过足球吗?如图,经过球门的两个门柱画一个圆,几个同学分别从B、D、E往球门踢球,那么弧AC 所对的圆周角∠ABC、∠AEC、∠ADC的大小有什么关系?它们和圆心角∠AOC又有什么关系?1.圆周角定理圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等。

例题1:找出下列图中相等的圆周角知识点3:圆周角定理的推论直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

解题策略:如果题目已知条件中有直径,那么往往作出直径所对的圆周角,进而解决问题。

(见直径,想直角。

)例题1:如图所示,在∆ABC中,以AC边为直径的⊙O交BC于点D,在劣弧AD上取一点E,使∠EBC=∠DEC,延长BE交AC于点G,交⊙O于H。

(1)求证AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长。

知识点4:圆内接四边形及其性质定理一个四边形的四个顶点都在同一个圆上,这个四边形叫圆的内接四边形,这个圆叫四边形的外接圆。

性质定理:圆内接四边形的对角互补。

思考:圆的内接平行四边形一定是矩形吗?圆的内接菱形一定是正方形吗?练习题:1、如下图所示,⊙O是等边三角形ABC的外接圆,D,E是⊙O上的两点,则∠D= 度,∠E= 度。

【课堂练习】1、如图,已知:在⊙O 中,∠BAC=50°,∠ABC=47°,求∠AOB .2、如图,OA 、OB 、OC 都是⊙O 的半径,∠AOB=2∠BOC ,求证:∠ACB=2∠BAC .3、如图,在⊙O 中,弦AB 、CD 相交于点E ,∠BAC=30°,∠AED=65°。

求O 上,AD 是⊙O 的直径,且AD=6cm ,若∠ABC=弦CD 与AB 相交于于点E ,∠ACD=60°,∠ADC=50°。

苏教版九年级数学上册学案:2.1圆(2)

苏教版九年级数学上册学案:2.1圆(2)

新知学校师生学习案九 年级 数学 学科 班 学生姓名:总课时12 分课时2 主备人: 审核人: 备课时间: 课题 §2.1 圆(2) 课型:新授课学习目标:1、认识圆的弦、弧、优弧与劣弧、半径、直径及其有关概念;(重点)2、认识同心圆、等圆、等弧的概念; (重点)3、了解“同圆或等圆的半径相等”,并能应用它解决有关的问题。

(难点) 学习过程一、浏览学案,明确目标。

二、自学(一)、自学课本P40-43,完成书后练习。

(二)、知识点梳理: 1)基本概念弦:___________________________; 直径:_________________________________; 弧:____________________________________; 半圆:_________________________________________; 优弧:__________________;劣弧:______________________; 圆心角:____________________;同心圆: _________________; 等圆: _____________________;同圆或等圆的半径_______. 等弧: ______________________________________________. (三)、活学活用如图,两个同心圆的圆心为O,大圆的半径OC 、OD 交小圆于A 、B, AB 与CD 有怎样的位置关系?为什么?(四)、巩固提高1、下列说法中正确的有__________________(填序号)。

(1)直径是圆中最大的弦; (2)长度相等的两条弧一定是等弧; (3)半径相等的两个圆是等圆; (4)面积相等的两个圆是等圆; (5)同一条弦所对的两条弧一定是等弧;(6)直径是弦;(7)弦是直径; (8)半圆是弧,但弧不一定是半圆; (9)半径相等的两个半圆是等弧; (10)两个劣弧之和等于半圆;扶手搭建友情提醒:同圆或等圆的半径相等。

九年级数学上册 第2章 对称图形—圆复习导学案(新版)苏科版

九年级数学上册 第2章 对称图形—圆复习导学案(新版)苏科版

第二章圆班级姓名一、学习目标1.理解、掌握圆的有关性质、点和圆直线和圆的位置关系,切线的判定和性质2.探索、总结、归纳与圆有关的各种问题,进行知识梳理,构建圆的知识体系.3.渗透数形结合和分类的数学思想,并逐步学会用数学的眼光认识世界、解决问题,学会有条理的表达、推理.二、学习重点:与圆有关的知识的梳理.三、学习难点:会用圆的有关知识解决问题.四、教学过程(一)、1、点与圆的位置关系2、直线与圆的位置关系例1. 在Rt△ ABC中,∠C=90°,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作⊙B,问:(1)A、C、D、E与⊙B的位置关系如何?(2)AB、AC与⊙B的位置关系如何?(二)、1、过三点的圆及外接圆2、三角形的内切圆1.过______________可以确定一个圆2.锐角三角形的外心在三角形____,直角三角形的外心在三角形____,钝角三角形的外心在三角形____。

3.外心到___________________的距离相等,是________________________的交点;内心到______________________的距离相等,是_______________________的交点4. Rt△ ABC三边的长为a、b、c,则内切圆的半径是r=_______,外接圆的半径=_______5. 边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为( )A.1∶5B.2∶5C.3∶5D.4∶56.已知△ABC,AC=12,BC=5,AB=13。

则△ABC的外接圆半径为。

7. 正三角形的边长为a,它的内切圆和外接圆的半径分别是____, ____8.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为。

(三)、垂径定理(涉及半径、弦、弦心距、平行弦等)例2.如图4,⊙M 与x 轴相交于点A (2,0),B (8,0),与y 轴相切于点C ,则圆心M 的坐标是 。

苏科版九年级上数学复习教案(圆).docx

苏科版九年级上数学复习教案(圆).docx

第九课时 复习内容:圆、圆的对称性、圆周角、确定圆的条件。

复习要求:1.进一步理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系; 2.探索圆的性质,了解圆心角与圆周角的关系、直径所对的圆周角的特征。

复习重点:圆的有关性质的应用 复习过程:一.梳理有关知识点: 二.基础练习训练: 2.小红的衣服被一个铁钉划了一个呈直角三角形的一个洞,其中三角形两边长分别为1cm 和2cm, 若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于 o 2. 标系中,以P (2, 1)为圆心,r 为半径的圆与坐标轴恰好有三个公共点,则r 的值 为.3. <90的半径为6 cm, 0A 、OB 、0C 的长分别为5 cm 、6 cm 、7 cm,则点A 、B 、C 与OO 的位置关系 是:点A 在00,点B 在00。

4. 如图,Z\ABC 的三个顶点都在00 上,ZACB=40° ,则ZA0B= ____ , Z0AB=。

5. 一如图,方格纸上一圆经过(2, 5)、(-2, 2)、(2, -3, )、(6, 2)四点,则该圆 坐标为 () A. (2, -1) B. (2, 2) C. (2, 1) D. (3, 1) 6..已知:如图,在<30的内接四边形ABCD 中,AB 是直径, ZBCD=130° ,过D 点的切线PD 与直线AB 交于P 点,则ZADP 为()对照教材回顾思考有关知识点 cm, 0 圆心的A. 40°B. 45°C. 50°D. 65° 三.典型例题分析: 例题1:例题3:如图,I 是AABC 的内心,ZBAC 的平分线与的外接圆相交于点D 。

相等吗?为什么? 的度数例题2: (1)如图8, 0A 、0B 是00的两条半径,且0A10B,点C 是0B 延长线上任意一点:过点C 作CD 切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4题 第五章 中心对称图形(二)
小结与思考(一)
班级 姓名 学号
学习目标:
1、梳理本章所学的知识,复习圆的有关概念及点与圆的位置关系.
2、掌握并理解垂径定理,并能应用进行计算与证明.
3、认识圆心角、弧、弦之间相等关系的定理,掌握圆心角和圆周角的关系定理,并能应用它们解决有关问题. 基础练习:
1、若点A 的坐标是(3,4),⊙A 的半径是5,则原点O 与⊙A 的位置关系是 .
2、下列说法错误的有 ( ) ①过圆心的线段是直径;②周长相等的两个圆是等圆;③长度相等的两条弧是等弧;④经过圆上一点可以作无数条弦
A 、1个
B 、2个
C 、3个
D 、4个
3、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF= .
4、如图是高速公路上的一个单心圆曲隧道的截面,若路面AB 宽为10米,净高C D 为7米,则此隧道单心圆的半径O A 是 .
5、如图,△ABC 内接于⊙O ,∠A=45°,OB=2cm ,则BC= cm .
6、一条弦分圆为1∶5的两部分,则这条弦所对的圆周角的度数为 .
7、如图,⋂
BC 的度数为80°,弦AB 与CD 交于点E ,∠CEB=60°,则⋂
AD 的度数等于 . 典例精析:
问题一、如图,在△ABC 中,∠BAC=90°,AB=4cm ,AC=6cm ,AM 是中线. (1)以点A 为圆心,4cm 长为半径作⊙A ,则B 、C 、M 与⊙A 有什么位置关系?
(2)若以点A 为圆心作⊙A ,使B 、C 、M 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的半径r 的取值范围是什么?
问题二、有一座圆弧形的拱桥,它的拱高(弧的中点到弦的距离) CD 是18m ,跨度
( 所对的弦长)AB 为60m . (1)求桥拱的半径;
(2)若当洪水来临时,水面在桥拱内的宽度等于或小于
30m 时,就要采取紧急避险措施,一次雨后测得拱顶离水面只有4m .是否需要采取紧急措施?说明理由.
问题三、如图,△ABC 是⊙O 的内接三角形,AC=BC ,D 为⊙O 上一点,延长DA 至点E ,使CE=CD .
(1)AE 与BD 有什么数量关系,为什么? (2)若AC ⊥BC ,说明:AD+BD=2CD .
问题四、如图,点P 是圆上的一个动点,弦AB=3,PC 是∠APB 的平分线, ∠BAC=30°. (1) ∠PAC 等于多少度时,四边形PACB 有最大面积?最大面积是多少? (2) 当∠PAC 等于多少度时,四边形PACB 是梯形?说明理由.
A B C
M
第7题 C AB AB 第5题
E F C D
G O 第3题

A B
C 图(a ) 图(b ) 图(c )图3(d ) A
A
C D P
课后作业:
1、若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为 cm .
2、下列说法:①如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;②如图(b ),可以利用直角曲尺检查工件是否为半圆形;③如图(c ),两次使用丁字尺(C D 所在直线垂直平分线段AB
3、如上右图,⊙O 是△ABC 的内切圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60°,如果⊙O 的半径为2,则下列结论错误的是 ( ) A 、AD=DB B
、 =
C 、OD=1
D 、AB=
3 4、如图,⊙O 是A B C ∆的外接圆,点D 在⊙O 上,已知∠
ACB=∠D ,BC=2,则AB 的长是__________. 5、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 .
6、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = .
7、已知:如图,在⊙O 中,弦AB 、CD 交于点M 、AC 、DB 的延长线交于点N ,则图中相似三角形有________对
8、如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C .
(1)用尺规作图法,找出弧BC 所在圆的圆心O (保留作图痕迹,不写作法); (2)设△ABC 是等腰三角形,底边BC = 10cm ,腰AB = 6 cm ,求圆片的半径R .
9、如图,已知PB 交⊙O 于点A ,PO 与⊙O 交于点C ,且PA=AB=6cm ,PO =12cm.. (1)求⊙O 的半径;(2)求△PBO 的面积.
10、已知:如图等边A B C △内接于⊙O ,点P 是劣弧BC 上的一点(端点除外),延长B P 至D ,使B D A P =,连结C D .
(1)若AP 过圆心O ,如图①,请你判断PD C △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PD C △又是什么三角形?为什么?
11、如图1,半圆O 为△ABC 的外接半圆,AC 为直径,D 为 上的一动点. (1)问添加一个什么条件后,能使得
B D B E B C
B D
=?请说明理由;
(2)若AB ∥OD ,点D 所在的位置应满足什么条件?请说明理由;
(3)如图,在 (1)和(2)的条件下,四边形AODB 是什么特殊的四边形?说明你的结
论.
第4题 第6题 N 第7题 图①
D
图②。

相关文档
最新文档