洛阳市孟津县2019-2020学年八年级下期中数学试题((有答案))

合集下载

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .2.(3分)下列式子中,属于最简二次根式的是( ) A .12B .23C .0.3D .73.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定4.(3分)下列判断错误的是( ) A .对角线相等四边形是矩形B .对角线相互垂直平分四边形是菱形C .对角线相互垂直且相等的平行四边形是正方形D .对角线相互平分的四边形是平行四边形 5.(3分)当0b <时,一次函数2y x b =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.57.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<8.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为()A.4B.46C.47D.289.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522+C.55D.2542+二、填空题(每小题3分,共15分)11.(3分)函数2xyx+=的自变量x的取值范围是.12.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知10AD=,14BD=,8AC=,则OBC∆的周长为.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 .14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = .15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 .三、解答题(共8题,共75分)16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值. 17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点. (1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =. (1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示. (1)汽车行驶 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表: 品种 购买价(元/棵)成活率 A 28 90%B4095%设种植A 种树苗x 棵,承包商获得的利润为y 元. (1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22.(10分)如图,在ABC ∆中,点O 是AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角平分线于点F . (1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)当点O 运动到何处,且ABC ∆满足什么条件时,四边形AECF 是正方形?并说明理由.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是x 轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长; (3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .【考点】2E :函数的概念【分析】函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.(3分)下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.7【考点】74:最简二次根式【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、1223=,不是最简二次根式,故本选项错误;B、21633=,不是最简二次根式,故本选项错误;C、10.33010=,不是最简二次根式,故本选项错误;D、7是最简二次根式,故本选项正确;故选:D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.3.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】KS:勾股定理的逆定理【分析】两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.【解答】解:2222(5)3+=Q,∴该三角形是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.(3分)下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形【考点】7L:平行四边形的判定与性质;LC:矩形的判定;9L:菱形的判定;LF:正方形的判定【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项. 【解答】解:A 、对角线相等四边形是矩形,错误; B 、对角线相互垂直平分四边形是菱形,正确;C 、对角线相互垂直且相等的平行四边形是正方形,正确;D 、对角线相互平分的四边形是平行四边形,正确; 故选:A .【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大. 5.(3分)当0b <时,一次函数2y x b =+的图象经过(( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 【考点】7F :一次函数图象与系数的关系【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论. 【解答】解:10k =>Q ,0b <,∴一次函数y x b =+的图象经过第一、三、四象限.故选:D . 【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键. 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.5 【考点】KU :勾股定理的应用【分析】设BO xm =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,即可求出AB 的长度.【解答】解:设BO xm =,依题意,得0.5AC =,0.5BD =,2AO =. 在Rt AOB ∆中,根据勾股定理得 222222AB AO OB x =+=+, 在Rt COD ∆中,根据勾股定理22222(20.5)(0.5)CD CO OD x =+=-++, 22222(20.5)(0.5)x x ∴+=-++,解得 1.5x =,22215 2.5AB ∴=+=g ,答:梯子AB 的长为2.5m .故选:A .【点评】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =为梯子长等量关系是解题的关键.7.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<【考点】8F :一次函数图象上点的坐标特征【分析】先根据点(1,0)在一次函数2y kx =-的图象上,求出20k =>,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:Q 点(1,0)在一次函数2y kx =-的图象上, 20k ∴-=,20k ∴=>,y ∴随x 的增大而增大, 213-<<Q ,120y y ∴<<.故选:B . 【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 8.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为( )A .4B .46C .47D .28【考点】KX :三角形中位线定理;8L :菱形的性质【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:EQ,F分别是AB,BC边上的中点,3EF=,223AC EF∴==,Q四边形ABCD是菱形,AC BD ∴⊥,132OA AC==,122OB BD==,227AB OA OB∴=+=,∴菱形ABCD的周长为47.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)【考点】5D:坐标与图形性质;LB:矩形的性质;PA:轴对称-最短路线问题【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小.(2,0)DQ,(3,0)A,(4,0)H∴,设直线CH解析式为y ax b=+,则404a bb+=⎧⎨=⎩,解得:14ab=-⎧⎨=⎩,故直线CH解析式为4y x=-+,3x∴=时,341y=-+=,∴点E坐标(3,1)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522++C.55D.2542【考点】5D:坐标与图形性质;PA:轴对称-最短路线问题【分析】根据轴对称作最短路线得出AE B E=',进而得出B O C O∆的周'=',即可得出ABC长最小时C点坐标进而可求出ABC∆的周长.【解答】解:作B点关于y轴对称点B'点,连接AB',交y轴于点C',此时ABC∆的周长最小,Q点A、B的坐标分别为(1,4)和(3,0),∴'点坐标为:(3,0)AE=,B-,4则4B E'=,即B E AE'=,Q,'C O AE//∴'='=,3B OC O∆的周长最小为∴点C'的坐标是(0,3),此时ABC2222'+=+++=+.AB AB44244225故选:D.【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质和勾股定理的运用,根据已知得出C 点位置是解题关键. 二、填空题(每小题3分,共15分)11.(3分)函数2x y x+=的自变量x 的取值范围是 2x -…且0x ≠ . 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:20x +…且0x ≠, 解得:2x -…且0x ≠.故答案为:2x -…且0x ≠. 【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知10AD =,14BD =,8AC =,则OBC ∆的周长为 21 .【考点】5L :平行四边形的性质【分析】由平行四边形的性质得出4OA OC ==,7OB OD ==,10BC AD ==,即可求出OBC ∆的周长.【解答】解:Q 四边形ABCD 是平行四边形,4OA OC ∴==,7OB OD ==,10BC AD ==,OBC ∴∆的周长471021OB OC AD =++=++=.故答案为:21【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 (1,3)- .【考点】FE :一次函数与二元一次方程(组)【分析】根据两个函数图象的交点就是两个函数组成的方程组的解可得答案.【解答】解:因为方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩, 所以直线2y x b =-+与直线y x a =-的交点坐标是(1,3)-,故答案为:(1,3)-,【点评】此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = 3 .【考点】KP :直角三角形斜边上的中线【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到5BM DM ==,根据等腰三角形的性质得到4BN =,根据勾股定理得到答案.【解答】解:连接BM 、DM ,90ABC ADC ∠=∠=︒Q ,M 是AC 的中点,152BM DM AC ∴===, N Q 是BD 的中点,MN BD ∴⊥,142BN BD ∴==, 由勾股定理得:2222543MN BM BN =-=-=,故答案为:3.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 10 .【考点】7E :动点问题的函数图象【分析】根据图象可以得到当移动的距离是3时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=,当直线经过D 点,设交AB 与N ,则22DN =,作DM AB ⊥于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=, 当直线经过D 点,设交AB 与N ,则22DN =,如图,作DM AB ⊥于点M .y x =-Q 与x 轴形成的角是45︒,又//AB x Q 轴,45DNM ∴∠=︒,2sin 452222DM DN ∴=︒=⨯=g , 则平行四边形的面积是:5210AB DM =⨯=g ,故答案为:10.【点评】本题考查了函数的图象,根据图象理解AB 的长度,正确求得平行四边形的高是关键.三、解答题(共8题,共75分) 16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值.【考点】7A :二次根式的化简求值;76:分母有理化【分析】(1)利用二次根式运算法则计算即可;(2)先分解因式,然后代入求值.【解答】解:(1)原式924343=-+-11=;(2)22x y xy +()xy x y =+ (21)(21)(2121)=-+-++122=⨯22=.【点评】本题考查了二次根式的化简求值,熟练分解因式是解题的关键.17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点.(1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)把点P 的坐标代入函数解析式,利用方程求得a 的值.【解答】解:(1)设直线AB 的表达式为y kx b =+,Q 一次函数的图象经过(3,8)A 和(3,4)B --两点,∴3834k b k b +=⎧⎨-+=-⎩, 解得22k b =⎧⎨=⎩∴直线AB 的表达式为22y x =+;(2)由(1)知,直线AB 的表达式为22y x =+,把(,21)P a a -+代入,得2221a a +=-+解得14a =-. 【点评】主要考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,解本题的关键是用方程的思想解决问题.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)利用AAS 证明ABC EFD ∆≅∆,再根据全等三角形的性质可得AB EF =;(2)首先根据全等三角形的性质可得B F ∠=∠,再根据内错角相等两直线平行可得到//AB EF ,又AB EF =,可证出四边形ABEF 为平行四边形.【解答】(1)证明://AC DE Q ,ACD EDF ∴∠=∠,BD CF =Q ,BD DC CF DC ∴+=+,即BC DF =,在ABC ∆与EFD ∆中ACD EDF A EBC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFD AAS ∴∆≅∆,AB EF ∴=;(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知ABC EFD ∆≅∆,B F ∴∠=∠,//AB EF ∴,又AB EF =Q ,∴四边形ABEF 为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明ABC EFD ∆≅∆.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为5 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.【考点】KQ :勾股定理;KS :勾股定理的逆定理【分析】(1)把线段AB 、BC 、CD 、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC AD =,即可判断ACD ∆的形状;由勾股定理的逆定理得出ABC ∆是直角三角形.【解答】解:(1)由勾股定理得:22215AB =+=,22345BC =+=,222222CD =+=;故答案为:5,5,22;(2)222425AC =+=Q ,222425AD ==+=,AC AD ∴=,ACD ∴∆是等腰三角形;22252025AB AC BC +=+==Q ,ABC ∴∆是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示.(1)汽车行驶 5 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?【考点】FH :一次函数的应用【分析】(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;(2)根据待定系数法,可得函数解析式;(3)根据汽车每小时的耗油量乘以汽车行驶200km 所需时间,可得汽车行驶200km 的耗油量,再用36升减去行驶200km 的耗油量,可得答案.【解答】解:(1)由横坐标看出,汽车行驶5小时后加油,由纵坐标看出,加了361224L -=油.故答案为5,24;(2)设解析式为Q kt b =+,将(0,42),(5,12)代入函数解析式,得42512b k b =⎧⎨+=⎩,解得642k b =-⎧⎨=⎩. 故加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式为642Q t =-+;(3)汽车每小时耗油量为421265-=升, 汽车行驶200km ,车速为40/km h ,需要耗油20063040⨯=升, 36306-=升.故汽车到达目的地时,油箱中还有6升汽油.【点评】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式.观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键.21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:品种购买价(元/棵) 成活率 A28 90% B 40 95%设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】9C :一元一次不等式的应用;FH :一次函数的应用【分析】(1)根据题意和表格中的数据可以得到y 与x 的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,1500002840(3000)3000012y x x x =---=+,即y 与x 之间的函数关系式是1230000y x =+;(2)由题意可得,90%95%(3000)300093%x x +-⨯…,解得,1200x …,1230000y x =+Q ,∴当1200x =时,y 取得最大值,此时44400y =,即承包商购买A 种树苗1200棵,B 种树苗1800棵时,能获得最大利润,最大利润是44400元.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式.22.(10分)如图,在ABCMN BC,∆中,点O是AC边上的一个动点,过点O作直线//设MN交BCA∠的角平分线于点E,交BCA∠的外角平分线于点F.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且ABC∆满足什么条件时,四边形AECF是正方形?并说明理由.【考点】LD:矩形的判定与性质;LF:正方形的判定【分析】(1)由平行线的性质和角平分线的定义得出OCE OEC∠=∠,得∠=∠,OCF OFC出EO CO=,即可得出结论;=,FO CO(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;(3)由正方形的性质得出45ACB ACE∠=∠=︒即可.∠=︒,得出290ACE【解答】解:(1)Q,MN BC//∴∠=∠,32又CF∠,Q平分GCO∴∠=∠,12∴∠=∠,13∴=,FO CO同理:EO CO=,EO FO∴=.(2)当点O运动到AC的中点时,四边形AECF是矩形.Q当点O运动到AC的中点时,AO CO=,又EO FOQ,=∴四边形AECF是平行四边形,由(1)可知,FO CO=,∴===,AO CO EO FO=,AO CO EO FO∴+=+,即AC EF∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且ABC∠为直角的直角三角形时,四边形∆满足ACBAECF是正方形.Q 由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,//MN BC Q ,AOE ACB ∴∠=∠90ACB ∠=︒Q ,90AOE ∴∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形.【点评】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长;(3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题【分析】(1)由直线334y x =+可求得B 、C 坐标,再结合15ABC S ∆=,则可求得A 点坐标,利用待定系数法可求得直线AB 的解析式;(2)根据直线AB 解析式可求得F 点的纵坐标,即可表示出DF 的长,由//EF x 轴则可得出E 点纵坐标,代入直线BC 解析式可求得E 点横坐标,从而可表示出EF 的长;(3)设(,0)P t ,当90PFE ∠=︒时,则有PF EF =,则可得到关于x 的方程,可求得P 点坐标;当90PEF ∠=︒时,则有PE EF DF ==,可求得P 点坐标;当90EPF ∠=︒时,过P 作PH EF ⊥,由等腰直角三角形的性质可知12PH EF =,可求得D 点坐标,从而可求得P 点坐标.【解答】解:(1)在334y x =+中,令0x =可得3y =,令0y =可求得4x =-, (0,3)B ∴,(4,0)C -,3OB ∴=,4OC =,15ABC S ∆=Q ,∴1152AC OB =g ,即1(4)3152OA +⨯=,解得6OA =, (6,0)A ∴,设直线AB 解析式为y kx b =+,∴603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为132y x =-+; (2)FD x ⊥Q 轴,且(,0)D m ,F ∴点横坐标为m , 在132y x =-+中,令x m =,可得132y m =-+, 132DF m ∴=-+, //EF x Q 轴,E ∴点纵坐标为132m -+, 在334y x =+中,令132y m =-+,可得133324m x -+=+,解得23x m =-, F Q 在线段AB 上,06m ∴<<2533EF m m m ∴=+=; (3)假设存在满足条件的点P ,设其坐标为(,0)t ,PEF ∆Q 为等腰直角三角形,∴有90PFE ∠=︒、90PEF ∠=︒和90EPF ∠=︒三种情况,①当90PFE ∠=︒时,则有PF EF =,由(2)可得132PF t =-+,53EF t =, 15323t t ∴-+=,解得1813t =, 18(13P ∴,0); ②当90PEF ∠=︒时,则有PE EF =, 在334y x =+中,令x t =可得334y t =+, 334PE t ∴=+, 在132y x =-+中,令334y t =+,可得313342t x +=-+,解得32x t =-, 35()22EF t t t ∴=-+-=-,∴35342t t +=-,解得1213t =-, 12(13P ∴-,0); ③当90EPF ∠=︒时,如图,过P 作PH EF ⊥于点H ,则PH HF PD EH DF ====,由(2)可知132DF m =-+,53EF m =, 1153223m m ∴-+=⨯,解得94m =, 19153248PD DF ∴==-⨯+=,94OD =, 9153488OP OD PD ∴=-=-=, 3(8P ∴,0); 综上可知存在满足条件的点P ,其坐标为18(13,0)或12(13-,0)或3(8P ,0). 【点评】本题为一次函数的综合应用,涉及三角形的面积、待定系数法、函数图象上点的坐标特征、等腰直角三角形的性质、方程思想及分类讨论思想.在(1)中求得A 点坐标是解题的关键,在(2)中分别表示出E 、F 的坐标是解题的关键,在(3)中确定出P 点的位置,利用等腰直角三角形的性质得到关于P 点坐标的方程是解题的关键,注意分三种情况.本题考查知识点较多,综合性较强,难度适中.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。

2019-2020学年河南省洛阳市孟津县八年级下学期期中数学试卷 (解析版)

2019-2020学年河南省洛阳市孟津县八年级下学期期中数学试卷 (解析版)

2019-2020学年河南省洛阳市孟津县八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>2.(3分)下面的等式中,y是x的反比例函数的是()A.B.C.y=5x+6D.3.(3分)下列各式:,(x﹣1),,,a+,,分式共有()A.5个B.4个C.3个D.2个4.(3分)石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11 5.(3分)已知a≠0,m是正整数,下列各式中,错误的是()A.a﹣m=﹣a m B.a﹣m=()m C.a﹣m=D.a﹣m=(a m)﹣1 6.(3分)下面代数式中,不是最简分式的是()A.B.C.D.7.(3分)将方程去分母化简后,得到的方程是()A.x﹣4=3﹣2B.x﹣4=3﹣2x+1C.x﹣4=3﹣2x+2D.x﹣4=3﹣2x﹣2 8.(3分)在平面直角坐标系中,将直线a:y=﹣2x﹣2平移后,得到直线b:y=﹣2x+4,则下列平移方法正确的是()A.将b向左平移3个单位长度得到直线aB.将b向右平移6个单位长度得到直线aC.将b向下平移2个单位长度得到直线aD.将b向下平移4个单位长度得到直线a9.(3分)化简(y﹣)÷(x﹣)的结果是()A.B.C.D.10.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)二、填空题(共5小题).11.(3分)已知正比例函数y=kx的图象经过点(2,﹣2),则k=.12.(3分)不改变分式的值,把分式中分子、分母各项系数化成整数为.13.(3分)汽车开始行驶时,邮箱内有油40升,如果每小时耗油5升,则邮箱内剩余油量Q t(升)与行驶时间t(时)之间的函数关系式为.14.(3分)一直线y=﹣x+2关于y轴对称的直线函数表达式是.15.(3分)如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.三、解答题(共8小题).16.(5分)化简:÷×2.17.(6分)一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时速度为b千米/小时,求货车从送货到返回原地的平均速度.18.(6分)先化简,再求值:•+,其中x是从﹣1,0,1,2中选取的一个合适的数.19.(6分)解方程:+=1.20.(7分)工厂要装配96台机器,在装配好24台后采用了新的技术,工作效率提高了50%.结果总共只用9天就完成任务,原来每天能装配机器多少台?21.(8分)画出直线y=﹣2x+3的图象,根据图象解决下列问题:(1)直线上找出横坐标是+2的点的坐标;(2)写出y>0时,x的取值范围;(3)写出直线上到x轴的距离等于4的点的坐标.22.(8分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数y=在第一象限内的图象交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数y=的表达式和直线AB:y=kx+b对应的函数表达式;(2)观察在第一象限内的图象,直接写出不等式kx+b<的解集.23.(9分)某市在道路改造过程中,需要铺设一条长为1440米的管道,决定由甲、乙两个工程队来完成这一任务,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设480米所用的天数与乙工程队铺设360米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该工程的工期不超过12天,工程分配给甲工程队m米,写出m的取值范围;(3)在(2)的条件下,施工时,每天需要支付甲工程队1520元,每天需要支付乙工程队1200元,完成这项工程的总支出为y元,写出y关于m的函数解析式,并利用函数的性质,说明如何设计施工方案所支付的总费用最少?参考答案一、选择題(共10小题).1.(3分)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>解:根据题意得:3x﹣1≠0,解得:x≠.故选:C.2.(3分)下面的等式中,y是x的反比例函数的是()A.B.C.y=5x+6D.解:A、y=中,y是x2的反比例函数,故本选项错误;B、y=,符合反比例函数的形式,是反比例函数,故本选项正确;C、y=5x+6是一次函数,故本选项错误;D、y=中,k≠0,故本选项错误.故选:B.3.(3分)下列各式:,(x﹣1),,,a+,,分式共有()A.5个B.4个C.3个D.2个解:,,,的分母中都含有字母,属于分式.故选:B.4.(3分)石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11解:0.00000000034=3.4×10﹣10,故选:C.5.(3分)已知a≠0,m是正整数,下列各式中,错误的是()A.a﹣m=﹣a m B.a﹣m=()m C.a﹣m=D.a﹣m=(a m)﹣1解:a﹣m=()m==(a m)﹣1.故只有选项A、a﹣m=﹣a m,错误,故选:A.6.(3分)下面代数式中,不是最简分式的是()A.B.C.D.解:A、分子、分母中不含有公因式,是最简分式,故本选项不符合题意.B、分子、分母中不含有公因式,是最简分式,故本选项不符合题意.C、分子、分母中不含有公因式,是最简分式,故本选项不符合题意.D、分子、分母中含有公因式(x﹣y),不是最简分式,故本选项符合题意.故选:D.7.(3分)将方程去分母化简后,得到的方程是()A.x﹣4=3﹣2B.x﹣4=3﹣2x+1C.x﹣4=3﹣2x+2D.x﹣4=3﹣2x﹣2解:分式方程去分母得:x﹣4=3﹣2(x+1),去括号得:x﹣4=3﹣2x﹣2.故选:D.8.(3分)在平面直角坐标系中,将直线a:y=﹣2x﹣2平移后,得到直线b:y=﹣2x+4,则下列平移方法正确的是()A.将b向左平移3个单位长度得到直线aB.将b向右平移6个单位长度得到直线aC.将b向下平移2个单位长度得到直线aD.将b向下平移4个单位长度得到直线a解:∵将直线b:y=﹣2x+4平移后,得到直线a:y=﹣2x﹣2,∴﹣2(x+m)+4=﹣2x﹣2,解得:m=3,故将b向左平移3个单位长度得到直线a.故选:A.9.(3分)化简(y﹣)÷(x﹣)的结果是()A.B.C.D.解:(y﹣)÷(x﹣)=÷=•=.故选:D.10.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.二、填空题(每小题3分,共15分)11.(3分)已知正比例函数y=kx的图象经过点(2,﹣2),则k=﹣1.解:∵正比例函数y=kx的图象经过点(2,﹣2),∴点(2,﹣2)满足正比例函数y=kx,∴﹣2=2k,解得k=﹣1.故答案为:﹣1.12.(3分)不改变分式的值,把分式中分子、分母各项系数化成整数为.解:==.故答案为.13.(3分)汽车开始行驶时,邮箱内有油40升,如果每小时耗油5升,则邮箱内剩余油量Q t(升)与行驶时间t(时)之间的函数关系式为y=40﹣5x.解:由题意得,每小时耗油5升,则工作x小时内耗油量为5x,故剩余油量y=40﹣5x,故答案为y=40﹣5x.14.(3分)一直线y=﹣x+2关于y轴对称的直线函数表达式是y=x+2.解:∵关于y轴对称的点纵坐标不变横坐标互为相反数,∴直线y=﹣x+2关于y轴对称的直线函数表达式为y=x+2.故答案为y=x+2.15.(3分)如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=4.解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,∴S阴影+S1=3,S阴影+S2=3,∴S1+S2=3+3﹣1×2=4.故答案为:4.三、解答题(本题有8个小题,满分55分)16.(5分)化简:÷×2.解:原式=××2==.17.(6分)一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时速度为b千米/小时,求货车从送货到返回原地的平均速度.解:设甲乙两地的路程为S千米,==,即货车从送货到返回原地的平均速度为千米/小时.18.(6分)先化简,再求值:•+,其中x是从﹣1,0,1,2中选取的一个合适的数.解:•+=•+=+=+=.当x=0时,原式=.19.(6分)解方程:+=1.解:方程整理得:+=1,去分母得:9x﹣7+4x﹣5=3x﹣2,解得:x=1,经检验x=1是分式方程的解.20.(7分)工厂要装配96台机器,在装配好24台后采用了新的技术,工作效率提高了50%.结果总共只用9天就完成任务,原来每天能装配机器多少台?解:设原来每天能装配机器x台,则改进技术后每天能装配机器(1+50%)x台,依题意,得:+=9,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:原来每天能装配机器8台.21.(8分)画出直线y=﹣2x+3的图象,根据图象解决下列问题:(1)直线上找出横坐标是+2的点的坐标;(2)写出y>0时,x的取值范围;(3)写出直线上到x轴的距离等于4的点的坐标.解:直线y=﹣2x+3过点(0,3)、(1.5,0),函数图象如右图所示;(1)当x=2时,y=﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1);(2)由图象可得,y>0时,x的取值范围是x<1.5;(3)当y=4时,4=﹣2x+3,解得,x=﹣0.5,当y=﹣4时,﹣4=﹣2x+3,解得,x=3.5,即直线上到x轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).22.(8分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数y=在第一象限内的图象交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数y=的表达式和直线AB:y=kx+b对应的函数表达式;(2)观察在第一象限内的图象,直接写出不等式kx+b<的解集.解:(1)由A(﹣2,0),得OA=2;∵点B(2,n)在第一象限内,S△AOB=4,∴OA•n=4;∴n=4;∴点B的坐标是(2,4);∵该反比例函数的解析式为y=(a≠0),将点B的坐标代入,得4=a,∴a=8;∴反比例函数的解析式为y=,∵直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得,解得,∴直线AB的解析式为y=x+2;(2)由于B点坐标为(2,4),可知不等式kx+b<的解集为:0<x<2.23.(9分)某市在道路改造过程中,需要铺设一条长为1440米的管道,决定由甲、乙两个工程队来完成这一任务,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设480米所用的天数与乙工程队铺设360米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该工程的工期不超过12天,工程分配给甲工程队m米,写出m的取值范围;(3)在(2)的条件下,施工时,每天需要支付甲工程队1520元,每天需要支付乙工程队1200元,完成这项工程的总支出为y元,写出y关于m的函数解析式,并利用函数的性质,说明如何设计施工方案所支付的总费用最少?解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x﹣20)米.根据题意得=,解得:x=80,经检验:x=80是原分式方程的解,且符合题意,则x﹣20=60,答:甲、乙工程队每天分别能铺设80米和60米;(2)设分配给甲工程队m米,则分配给乙工程队(1440﹣m)米,由题意,得+≤21,解得:m≥720,∵m≤1440,∴720≤m≤1440;(3)设完成这项工程的总支出为y元,y=×1520+×1200=19m+28800﹣20m=﹣m+28800,∵﹣1<0,∴y随m的增大而减小,∵720≤m≤1440,∴m=1440时,y的值最小,支出的总费用最少,∴工程全部分配给甲工程队支出的总费用最少.。

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)一、选择题(本大题共6小题,每小题3分,共计18分.在每小题所给的四个选项中,请将符合要求的选项前面的字母填入下表相应的空格内)1.(3分)函数y=﹣的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定考点:反比例函数的图象.分析:此题可根据反比例函数的图象与两坐标轴无限接近但不相交进行解答.解答:解:∵反比例函数的图象与两坐标轴无限接近但不相交,∴函数y=﹣的图象与x轴没有交点.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数的图象与两坐标轴无限接近但不相交.2.(3分)代数式,,,中分式有()A.1个B.2个C.3个D.4个考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有,2个,故选B.点评:本题考查分式的定义:分母中含有字母的式子就叫做分式;注意π是一个具体的数,不是字母.3.(3分)2008年1月11日,埃科学研究中心在浙江大学成立,“埃”是一个长度单位,是一个用来衡量原子间距离的长度单位.同时,“埃”还是一位和诺贝尔同时代的从事基础研究的瑞典著名科学家的名字,这代表埃科学研究中心的研究要有较为深刻的理论意义.十“埃”等于1纳米.已知:1米=109纳米,那么:15“埃”等于()A.15×10﹣8米B.1.5×10﹣8米C.15×10﹣9米D.1.5×10﹣9米考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:15“埃”=0.000 000 001 5米=1.5×10﹣9米.故选D.点评:注意弄清“埃”和纳米的关系.十“埃”等于1纳米,1米=109纳米.4.(3分)如果点P为反比例函数的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为()A.2B.4C.6D.8考点:反比例函数系数k的几何意义.分析:此题可从反比例函数系数k的几何意义入手,△POQ的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=.解答:解:由题意得,点P 位于反比例函数的图象上,故S△POQ =|k|=2.故选A.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.5.(3分)在同一平面直角坐标系中,函数的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据一次函数的系数、反比例函数的系数确定直线和双曲线所经过的象限即可.解答:解:∵k>0,∴3k>0,2k>0,∴直线y=3kx+3k经过第一、二、三象限,双曲线y=经过第一、三象限,故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.(3分)(2006•天津)已知,则的值等于()A.6B.﹣6 C.D.考点:分式的基本性质;分式的加减法.专题:计算题.分析:由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.解答:解:已知可以得到a﹣b=﹣4ab,则==6.故选A.点评:观察式子,得到已知与未知的式子之间的关系是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分.)7.(3分)已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=﹣1时,y= ﹣6 .考点:待定系数法求反比例函数解析式.分析:根据y与(2x+1)成反比例可设出反比例函数的解析式为y=(k≠0),再把已知代入求出k的值,再把x=﹣1时,代入求得y的值.解答:解:∵y与(2x+1)成反比例,∴设反比例函数的解析式为y=(k≠0),又∵当x=1时,y=2,即2=,解得:k=6,∴反比例函数的解析式为:y=,则当x=﹣1时,y=﹣6.故答案为:﹣6.点评:本题主要考查了用待定系数法求反比例函数的解析式,关键是根据题意设出解析式,求出k的值.8.(3分)如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)若分式方程无解,则m的值为 3 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x=3,代入整式方程即可求出m的值.解答:解:去分母得:x﹣2x+6=m,将x=3代入得:﹣3+6=m,则m=3.故答案为:3.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(3分)(2011•哈尔滨模拟)反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n= 10 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:将点(2,5)代入反比例函数解析式得出k值,然后再将(1,n)代入所求出的函数解析式可得出n的值.解答:解:将点(2,5)代入y=得:5=∴k=10,函数解析式为y=,将点(1,n)代入y=得:n==10∴n=10.故答案为:10.点评:本题考查了待定系数法求函数解析式,属于比较经典的题目,要注意待定系数法的掌握.11.(3分)(2006•南汇区二模)当x= ﹣2 时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵=0,∴x=﹣2.故答案为﹣2.点评:此题考查的是对分式的值为0的条件的理解,比较简单.12.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1 .考点:反比例函数的性质;反比例函数的定义.分析:先根据反比例函数的性质判断出(2m﹣1)的符号以及利用m2﹣2=﹣1求出m的值,再写出符合条件的m即可.解答:解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数的性质,利用反比例函数y=(k≠0),当k<0时,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大是解题关键.13.(3分)(2011•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:考查函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.14.(3分)观察下面给定的一列分式:,,,,…(其中y≠0).根据你发现的规律,给定的这列分式中的第7个分式是.考点:分式的定义.专题:规律型.分析:分子的指数是3,5,7,9…是连续奇数,分母的指数是大于0的自然数,奇数项的符号是负号.解答:解:第奇数个式子的符号是负数,偶数个是正数,分母是第几个式子就是y的几次方;分子是第几个式子就是x的第几加1个奇数次方.所以第七个分式是.点评:注意观察每项变化,然后找出的规律.三、解答题(本大题共10小题,共78分)15.(6分)计算:(2m2n﹣1)2÷3m3n﹣5.考点:负整数指数幂.分析:根据负整数指数幂的意义计算即可.解答:解:原式=4m4n﹣2÷3m3n﹣5=mn3.点评:本题主要考查了负指数幂的运算,解题的关键是根据负整数指数幂的意义计算.16.(6分)(2011•莒南县模拟)化简:.考点:分式的混合运算.专题:计算题.分析:先通分,计算括号里的,再除法转化成乘法,最后算减法.解答:解:原式=1﹣×=1﹣=﹣.点评:本题考查了分式的混合运算,解题的关键是注意通分以及对分式分子分母的因式分解.17.(6分)先化简,.考点:分式的混合运算.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=•+=+=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分,约分的关键是找公因式.18.(6分)解方程.考点:解分式方程.分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,解得x=1.检验:把x=1代入(x﹣1)(x+2)=0.所以原方程无解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(8分)已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?考点:反比例函数的定义;一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义知2﹣n=1,且5m﹣3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2﹣n=1,m+n=0,5m﹣3≠0,据此可以求得m、n的值;(3)根据反比例函数的定义知2﹣n=﹣1,m+n=0,5m﹣3≠0,据此可以求得m、n的值.解答:解:(1)当函数y=(5m﹣3)x2﹣n+(m+n)是一次函数时,2﹣n=1,且5m﹣3≠0,解得,n=1,m≠;(2)当函数y=(5m﹣3)x2﹣n+(m+n)是正比例函数时,,解得,n=1,m=﹣1.(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得n=3,m=﹣3.点评:本题考查了一次函数、正比例函数、反比例函数的定义.关键是掌握正比例函数是一次函数的一种特殊形式以及三种函数的关系是形式.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,两种机器人每小时分别搬运多少千克化工原料?考点:分式方程的应用.分析:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程求出其解就可以得出结论.解答:解:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,由题意得,解得:x=60,经检验,x=60是原方程的解,故A种机器人每小时搬运90千克化工原料.答:B种机器人每小时搬运60千克化工原料,则A种机器人每小时搬运90千克化工原料.点评:本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21.(9分)(2009•桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?考点:分式方程的应用.专题:工程问题.分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解答:解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1.(3分)解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)在25℃的室内烧开一壶水用了5分钟(水温与时间的关系是一次函数关系),又过了一分钟(其中在5﹣6分钟之间,水温保持不变),随后壶中的水温按反比例关系下降.(1)在这个过程中,水温超过60℃的时间是多少分钟?(2)从水烧开到水温降至25℃用了多长时间?考点:一次函数的应用.分析:设水温为y,时间为x.(1)则由题意得到y=k1x+b(k1≠0).所以把x=0,y=25;x=5,y=100代入其中可以求得k1的值,易求该一次函数解析式;把y=60代入该解析式即可求得相应的x,即所需的时间;(2)设y=(k2≠0).把x=6,y=100代入该反比例函数解析式可以求得k2的值,易求该反比例函数解析式,然后把y=25代入该解析式即可求得x的值.解答:解:设水温为y,时间为x.(1)依题意可设y=k1x+b(k1≠0).则,解得,,则该一次函数解析式为y=15x+25.所以,当y=60时,60=15x+25,(2)由题意可设y=(k2≠0).则100=,解得x=,即在这个过程中,水温超过60℃的时间是分钟;解得,k2=600.所以,该反比例函数解析式为:y=.则当y=25时,25=,解得,x=24,即从水烧开到水温降至25℃用了24分钟.点评:本题考查了一次函数的应用.注意开水的温度是100℃,所以在解题中,这是隐含在题中的已知条件.23.(10分)如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少km/h?考点:分式方程的应用.分析:王老师接小明上学后走的总路程为3+3+0.5=6.5km,平时步行去学的路程为0.5km,根据时间=路程÷速度,以及关键语“比平时步行上班多用了20分钟”可得出的等量关系是:接小明上学后走的路程÷骑车的速度=平时上班的路程÷步行的速度+20分钟.解答:解:设王老师步行速度为xkm/h,则骑自行车的速度为3xkm/h,依题意,得=+,解得x=5,经检验x=5是原方程的根,∴3x=15.答:王老师步行速度为5km/h,骑自行车的速度为15km/h.点评:此题主要考查了分式方程的应用题,重点在于准确地找出相等关系,这是列方程的依据.本题要注意时间的单位要一致.24.(9分)(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.。

2019-2020学年度第二学期八年级数学期中试卷及答案

2019-2020学年度第二学期八年级数学期中试卷及答案
1.C2.A3.D4.B5.B6.C 7.C8.D
二、填空题(本大题共8小题,每小题3分,共24分)
9. 10. 11. 12.
13.114.6015.616.
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)解:(1) × = = =4―――2分
(2) ―――2分
(第14题)(第15题)(第16题)
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)计算:(1) × (2) (3) ÷
18.(6分)计算:(1) × (2)
19.(8分)作出反比例函数 的图象,结合图象回答:
(1)当 时, 的值;
(2)当 时, 的取值范围.
根据题意,得 ―――3分
解得:
经检验 是原方程的解,且符合题意,―――3分
答:第一批某品牌盒装粽子每盒的进价是 元.―――2分
(过程不规范不整齐的,酌情扣1-2分.文字书写不一定要完备,但要有)
26.(12分)解:(1)由题意得: , ,代入反比例函数关系 中,
解得: ,
所以函数关系式为: .―――6分
(3) ―――2分
18.(6分)解:(1)原式= × +2 × = +6 ―――2分
(2)原式= 2- 2=3-2=1―――2分
19.(8分)解:(1)图略. .―――6分(图4分)
(2) .―――2分
20.(8分)解:(1) ―――2分
(2) ―――2分
(3) · = ―――2分
(4) ÷ = பைடு நூலகம் ―――2分
1.下面图形中,不是中心对称图形的是(▲)
A. B. C. D.

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版2019-2020学年___八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形,①角;②两相交直线;③圆;④平行四边形,其中一定是轴对称图形的有()A.四个B.三个C.两个D.一个2.2019年被称为中国的5G元年,如果运用5G技术下载一个4.8M的短视频,大约只需要0.秒,将数字0.用科学记数法表示应为()A.0.96×10^-4B.9.6×10^-3C.9.6×10^-5D.96×10^-63.要使√(x+4)有意义,则()A.x<-4B.x≤-4C.x≥-4D.x>-44.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠x=40°,则∠xxx=()A.40°B.30°C.20°D.10°5.疫情无情,人有情爱心捐款传真情,感染的肺炎疫情期间,某班同学积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元人数5 610 1730 1450 8100 5则他们捐款金额的平均数和中位数分别是()A.39,10B.39,30C.30.4,30D.30.4,106.如图,在△ABC中,已知AB=15,AC=13,CD=5,则BC的长为()A.14B.13C.12D.97.设计一个摸球游戏,先在一个不透明的小盒子中放入5个白球,如果希望从中任意摸出一个球,是白球的概率为4/5,那么应该向盒子中再放入多少个其他颜色的球(游戏用球除颜色外均相同)()A.5B.10C.158.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E连接CE,若平行四边形ABCD的周长为30,则△CDE的周长为()A.25B.20C.15D.20二、填空题(本大题共12小题,共36.0分)9.等腰三角形一个角等于100°,则它的一个底角是80°.10.若点P(a,-3)在第四象限,且到原点的距离是5,则a=4.11.如图,在△ABC中,∠C=90°,∠BAC=∠ADC=60°,若CD=4,则BD=4√3.12.如果分式(a-2)/(a+3)的值是-1/2,则a=1.三、解答题(共4小题,共20.0分)13.如图,已知ABCD为矩形,AC=2BD,E为BC上一点,且∠BAE=45°,连接DE交AC于F,若AF=6,则DF的长为()解:由题意,AC=2BD,又ABCD为矩形,故AD=BC=BD,因此△ABD为等腰直角三角形,∠ABD=45°,又∠BAE=45°,所以△ABE为等腰直角三角形,BE=AB/√2,即BD/√2,又∠BDE=45°,所以△BDE为等腰直角三角形,DE=BD,因此DF=AF-AE=6-DE=6-BD=6-AD/√2=6-BC/√2=6-AC/2√2=6-6/2√2=6-3√2.答:DF的长为6-3√2.14.如图,在△ABC中,∠A=60°,D为BC上一点,且AD=AC,连接AC,BD,交于点E,若AB=2,则BE的长为()解:由题意,AD=AC=AB/2,所以△ACD为等边三角形,∠ACD=60°,又∠A=60°,所以△ABC为等边三角形,AB=BC=AC=2AD,所以BD=AB-AD=3AD,又由相似三角形可得AE=2AD,所以DE=AE-AD=AD,所以△BDE为等腰直角三角形,BE=BD/√2=3AD/√2=3AC/√2=3AB/4√2=3/2√3.答:BE的长为3/2√3.15.解不等式:(x+1)/(x-2)>0.解:首先求出不等式的定义域,即x≠2,然后找出函数的零点,即x=-1,然后根据零点将实数轴分成三段:x2,然后在每一段上确定函数的正负性,x0,x>2时,(x+1)/(x-2)2}.答:不等式的解集为{x|x2}.16.如图,在△ABC中,∠C=90°,AB=8,BC=6,D为BC上一点,且AD垂直于BC,连接AC,BD,交于点E,若∠BAE=∠CAD,则AE的长为()解:由题意,∠BAE=∠CAD,所以△ABE与△CAD相似,因此AE/AC=AB/AD,即AE/(AE+CE)=AB/BD,代入已知条件可得AE/(AE+6)=8/AD,又由勾股定理可得AD=10,代入上式可得AE=20/3.答:AE的长为20/3.1.判断轴对称图形的关键在于寻找对称轴,图形两部沿对称轴叠后可重合。

2019年洛阳市八年级数学下期中试卷(带答案)

2019年洛阳市八年级数学下期中试卷(带答案)


1 2 2 3 3 4
2019 2020
23.如图 1,在菱形 ABCD 中, AB 8 , BD 8 3 ,点 P 是 BD 上一点,点 Q 在 AB
上,且 PA PQ ,设 PD x .
(1)当 PA AB 时,如图 2,求 PD 的长;
(2)设 AQ y ,求 y 关于 x 的函数关系式及其定义域; (3)若 BPQ 是以 BQ 为腰的等腰三角形,求 PD 的长.
母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:
3
(1)3- 7 的有理化因式是_________,
的分母有理化得__________;
2 5
(2)计算:
①已知: x 3 1 , y 3 1 ,求 x2 y2 的值;
3 1
3 1
② 1 1 1 ...
1
5
5
CF= 18 . 5
【详解】
连接 BF,由折叠可知 AE 垂直平分 BF,
∵BC=6,点 E 为 BC 的中点, ∴BE=3, 又∵AB=4,
∴AE= AB2 BE2 42 32 =5,
∵ 1 AB BE 1 AE BH ,
2
2
∴ 1 3 4 1 5 BH ,
2
2
∴BH= 12 ,则 BF= 24 ,
5
5
∵FE=BE=EC,
∴∠BFC=90°,
∴CF=
4)2
18
=

55
故选 B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变
换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2020学年河南省洛阳市孟津县八年级(下)期中数学试卷一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1 B.2 C.3 D.43.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3 B.m C.m<3 D.m<3或m6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.7.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣18.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3 B.﹣3 C.1 D.09.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.11.在平面直角坐标系中,将直线l1:y=﹣3x+3平移后得到直线l2:y=﹣3x﹣6,则下列平移的做法正确的是()A.将l1向左平移3个单位B.将l1向左平移9个单位C.将l1向下平移3个单位D.将l1向上平移9个单位12.不论m取何值,如果点P(2m,m+1)都在某一条直线上,则这条直线的解析式是()A.y=2x﹣1 B.y=2x+1 C.y=x﹣1 D.y=二、填空題(每小题3分,共18分)13.若代数式有意义,则x 的取值范围是 . 14.如果分式的值为5,把式中的x ,y 同时扩大为原来的3倍,则分式的值是 .15.若y =3x 1﹣2k 为反比例函数,则一次函数y =x ﹣2k 不经过第 象限.16.双曲线y 1,y 2在第一象限的图象如图,y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴与C ,若△AOB 的面积为1,则y 2的解析式是 .17.已知,则= .18.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2018秒,则点P 所在位置的点的坐标是 .三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy ﹣2).(要求结果中不出现负整数指数幂)20.(6分)先化简,再求值:,其中x =.21.(7分)在同一坐标系中分别画出y =2x +1和y =﹣x ﹣2的图象,它们的交点为A ,求点A 的坐标.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.25.(8分)如图,一次函数y=ax+b的图象与反比例函数y=图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)在第二象限内,求不等式ax+b<的解集(请直接写出答案).26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)54003500售价(月/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?2017-2020学年河南省洛阳市孟津县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)下列各小题均有四个答案其中只有一个是正确的1.下列四个图象中,不是函数图象的是()A.B.C.D.【分析】根据函数的定义可知y与自变量x是一一对应的,从而可以判断各个选项中的图象是否是函数图象,从而可以解答本题.【解答】解:由函数的定义可知,选项B中的图象不是函数图象,故选:B.【点评】本题考查函数的图象、函数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.2.下列代数式:﹣,0,,2x﹣y,,其中分式个数有()A.1 B.2 C.3 D.4【分析】根据分式的定义即可求出答案.【解答】解:﹣,,是分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.5.直线y=﹣3x+m与直线y=2x+3的交点在第二象限,则m的取值范围是()A.﹣<m<3 B.m C.m<3 D.m<3或m【分析】首先联立解方程组求得交点的坐标,再根据交点在第二象限列出不等式组,从而求得m的取值范围.【解答】解:根据题意,得﹣3x+m=2x+3,解得x=,则y=.又交点在第二象限,则x<0,y>0,即<0,,解得.故选:A.【点评】考查了两条直线相交或平行问题,能够根据二元一次方程组求两条直线的交点,同时根据所在象限的位置确定字母的取值范围.6.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.7.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.【解答】解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.8.已知P(x,y)是直线y=x﹣上的点,则2x﹣4y﹣3的值为()A.3 B.﹣3 C.1 D.0【分析】根据题意,对题目中的函数解析式变形,即可求得所求式子的值.【解答】解:∵P(x,y)是直线y=x﹣上的点,∴4y=2x﹣6,∴2x﹣4y=6,∴2x﹣4y﹣3=6﹣3=3,故选:A.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.9.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.【分析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.【解答】解:由矩形的面积公式可得xy=6,∴y=(x>0,y>0).图象在第一象限.故选:C.【点评】考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P 在CB 上运动,即8<x ≤12时,y 不变;当点P 在BA 上运动,即12<x ≤16时,y 随x 的增大而减小.故选:B .【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.11.在平面直角坐标系中,将直线l 1:y =﹣3x +3平移后得到直线l 2:y =﹣3x ﹣6,则下列平移的做法正确的是( )A .将l 1向左平移3个单位B .将l 1向左平移9个单位C .将l 1向下平移3个单位D .将l 1向上平移9个单位【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l 1:y =﹣3x +3平移后,得到直线l 2:y =﹣3x ﹣6,∴﹣3(x +a )+3=﹣3x ﹣6,解得:a =3,故将l 1向左平移3个单位长度.故选:A .【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.不论m 取何值,如果点P (2m ,m +1)都在某一条直线上,则这条直线的解析式是( )A .y =2x ﹣1B .y =2x +1C .y =x ﹣1D .y =【分析】分别计算自变量为2m 时四个函数的函数值,然后根据一次函数图象上点的坐标特征进行判断.【解答】解:当x =2m 时,y =2x ﹣1=4m ﹣1;y =2x +1=4m +1;y =x ﹣1=m ﹣1;y =x +1=m +1, 所以点P (2m ,m +1)在直线y =x +1上.故选:D .【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.二、填空題(每小题3分,共18分)13.若代数式有意义,则x 的取值范围是 x ≥0且x ≠2 .【分析】令被开方数大于或等于0和分母不为0即可求出x 的范围【解答】解:∵解得:x ≥0且x ≠2故答案为:x ≥0且x ≠2【点评】本题考查二次根式以及分式有意义的条件,解题的关键是根据条件列出不等式组,本题属于基础题型.14.如果分式的值为5,把式中的x ,y 同时扩大为原来的3倍,则分式的值是 .【分析】直接利用分式的性质将原式变形进而得出答案. 【解答】解:∵分式的值为5,把式中的x ,y 同时扩大为原来的3倍,∴原式==×=. 故答案为:. 【点评】此题主要考查了分式的基本性质,正确将原式变形是解题关键.15.若y =3x 1﹣2k 为反比例函数,则一次函数y =x ﹣2k 不经过第 二 象限.【分析】先根据反比函数的定义求出k 的值,再根据一次函数的性质判断出一次函数y =x ﹣2k 经过的象限即可.【解答】解:∵y =3x 1﹣2k 为反比例函数,∴1﹣2k =﹣1,解得k =1,∴一次函数y =x ﹣2k 的解析式为y =x ﹣2,∴函数图象经过一、三、四象限,不经过第二象限.故答案为:二.【点评】本题考查的是反比例函数的定义及一次函数的图象与系数的关系,即一次函数y =kx +b (k ≠0)中,当k >0,b <0时函数的图象在一、三、四象限.16.双曲线y 1,y 2在第一象限的图象如图,y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴与C ,若△AOB 的面积为1,则y 2的解析式是 y = .【分析】根据y 1=,过y 1上的任意一点A ,得出△CAO 的面积为1.5,进而得出△CBO 面积为2.5,即可得出y 2的解析式.【解答】解:∵y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,∴S △AOC =×3=1.5,∵S△AOB=1,∴△CBO面积为2.5,∴k=xy=5,∴y2的解析式是:y2=.故答案为:y2=.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出△CAO的面积为1.5,进而得出△CBO面积为2.5是解决问题的关键.17.已知,则=﹣3 .【分析】将已知等式左边通分可得:=3,再将所求式子分子提公因式、约分后,代入可得结论.【解答】解:∵,∴=3,则===﹣3.故答案为:﹣3.【点评】本题考查了分子的加减法和因式分解,熟练掌握分式的加减法法则是关键.18.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A 处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2018秒,则点P所在位置的点的坐标是(1,﹣1).【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2018=201×10+2+3+2+1可得出当t=2018秒时点P在点D上方一个单位长度处,再结合点D的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,∴C矩形ABCD=2(AB+AD)=10.∵2018=201×10+2+3+2+1,∴当t=2018秒时,点P在点D上方一个单位长度处,∴此时点P的坐标为(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了规律型中点的坐标,根据点P的运动规律找出当t=2018秒时点P在点D上方一个单位长度处是解题的关键.三、解答题(8个小题,共58分)19.(6分)计算:()3÷(﹣)2×(9xy﹣2).(要求结果中不出现负整数指数幂)【分析】直接利用积的乘方运算法则化简,进而利用分式的乘除运算法则计算得出答案.【解答】解:原式=××=.【点评】此题主要考查了分式的乘除运算,正确掌握积的乘方运算法则是解题关键.20.(6分)先化简,再求值:,其中x=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)在同一坐标系中分别画出y=2x+1和y=﹣x﹣2的图象,它们的交点为A,求点A的坐标.【分析】利用瞄点法画出直线即可,解方程组求交点坐标即可;【解答】解:列表描点画出图象:列方程组,解方程组得,∴两直线交点A的坐标是(﹣1,﹣1).【点评】本题考查一次函数的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(7分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?【分析】设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.【解答】解:设摩托车的是xkm/h,=+x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.【点评】本题考查分式方程的应用,设出速度,以时间做为等量关系可列方程求解.23.(7分)观察下列等式=﹣,,…根据你发现的规律计算下列各式:(1)…+(n为正整数)(2)(++…+.【分析】(1)根据题意得出拆项规律,即可得到结果;(2)原式利用得出的拆项变形,计算即可得到结果.【解答】解:(1)原式===(2)原式====【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.24.(8分)如图,在平面直角坐标系中,直线y=﹣2x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′所对应的函数表达式.(2)若直线A′B′与直线AB相交于点C,求△A′BC的面积.【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再由图形旋转的性质求出A′、B′的坐标,用待定系数法求出直线A′B′的解析式即可;(2)直接根据A′BC的坐标,利用三角形的面积公式进行计算即可.【解答】解:(1)∵直线y=﹣2x+4分别交x轴、y轴于点A、B,∴点A、B的坐标分别为(2,0)、(0,4).由旋转得,点A′、B′的坐标分别为(0,﹣2)、(4,0).设直线A′B′所对应的函数表达式为y=kx+b.∴,解得.∴直线A′B′所对应的函数表达式为.(2)依题意有,解得.∴点C的横坐标为.∵A′B=4﹣(﹣2)=6,∴.【点评】本题考查的是一次函数的图象与及几何变换、一次函数的性质及三角形的面积公式,根据题意求出直线A′B′的解析式是解答此题的关键.25.(8分)如图,一次函数y =ax +b 的图象与反比例函数y =图象相交于点A (﹣1,2)与点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)在第二象限内,求不等式ax +b <的解集(请直接写出答案).【分析】(1)将点A (﹣1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数的解析式;(2)求得C 点的坐标后利用S △AOB =S △AOC ﹣S △BOC 求面积即可;(3)根据图象即可得到结论.【解答】解:(1)将点A (﹣1,2)代入函数y =,解得:m =﹣2,∴反比例函数解析式为y =﹣,将点A (﹣1,2)与点B (﹣4,)代入一次函数y =ax +b ,解得:a =,b =∴一次函数的解析式为y =+;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣=;(3)由图象知,不等式ax +b <的解集为:﹣5<x <﹣4或﹣1<x <0.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.26.(9分)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目 空调 彩电进价(月/台)54003500售价(月/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?【分析】(1)根据题意和函数图象中的数据可以求得y与x之间的函数关系式;(2)根据题意可以列出相应的不等式组,从而可以解答本题;(3)根据(1)和(2)中的结果,利用一次函数的性质可以解答本题.【解答】解:(1)由题意可得,y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000,即y与x之间的函数关系式是y=300x+12000;(2)由题意得,,解得,10≤x≤,∵x为整数,∴x=10,11,12,∴有三种购买方案,方案1:购买空调10台,彩电20台,方案2:购买空调11台,彩电19台,方案3:购买空调12台,彩电18台;(3)∵y=300x+12000,∴该函数y随x的增大而增大,∴当x=12时,y取得最大值,此时y=300×12+12000=15600,答:x=12时,利润最大,最大利润为15600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。

相关文档
最新文档