九年级数学下册圆课题圆的确定学案沪科版
新泸科版数学九下优秀学案:24.2 第4课时 圆的确定

24.2 圆的基本性质第4课时圆的确定一.学习目标:1.知识与技能:①理解不在同一直线上的三个点确定一个圆;②掌握过不在同一直线上的三个点作圆的方法;③了解三角形的外接圆、三角形的外心等概念,提高应用数学知识解决实际问题的能力。
2.过程与方法:经历不在同一直线上的三个点确定一个圆的探索过程,体会归纳、类比以及由特殊到一般的数学思想方法。
3.情感态度与价值观:在探索活动中培养学生勇于探究的学习品质,体会解决问题的策略,学会数学地思考。
二.导学过程:(一)课前延伸:创设情境激发兴趣Array问题1:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是哪一块?问题2:玻璃店里的师傅,要划出一块与原来大小一样的圆形玻璃,他只要知道圆的什么就可以了?为什么?问题3:如果店里师傅仅仅知道圆的半径,他可以画出多少个这样圆?为什么?(二):课中探究活动一:过定点A是否可以作圆?如果能作?可以作几个?活动二:过两个定点A、B是否可以作圆?如果能作,可以作几个?活动三:过三点,是否可以作圆,如果能,可以作几个?(分两种情况讨论)归纳结论:_______________________________________________________________(三)例题示范已知:△ABC,求作⊙O,使它经过A、B、C三点。
(四)知识拓展经过4个(或4个以上的)点是不是一定能作圆?(五)合作交流形成概念:三角形的外接圆、三角形的外心、圆的内接三角形。
自主探索:三角形的外心与三角形的位置关系。
(六)学以致用 发展能力1.直角三角形的两条直角边长分别为6和8,那么这个三角形的外接圆的半径等于 .2.①破镜重圆:利用所学知识,帮助玻璃店里的师傅找出残缺圆片所在的圆心,并把这个圆画完整.②实际操作:小明发现,店里师傅先在圆弧上顺次取三点A 、B 、C.(如图),使AB=BC.并测量得:AB=BC=5dm,AC=8dm,然后师傅计算了下,就很快划出与原来一样大小的圆形玻璃,你知道他计算的是什么?(七)回顾反思 交流收获本节课你学到了什么?(八)达标检测1.判断题:(1)三点确定一个圆 ( )(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆 ( )(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形( )(4)三角形的外心是三角形三边中线的交点 ( )(5)三角形的外心到三角形各顶点距离相等 ( )2.已知点O 是△ABC 的外心,∠A=500,则∠BOC 的度数是 ( )A.500B. 1000C.1150D. 650课后提升:习题24.2A B C。
沪科版数学九年级下册《圆的确定》教学设计1

沪科版数学九年级下册《圆的确定》教学设计1一. 教材分析《圆的确定》是沪科版数学九年级下册第五章的第一节内容。
本节内容主要让学生通过观察、操作、思考、交流等活动,掌握圆的定义、圆心和半径等基本概念,学会用圆规和直尺画圆,提高学生的动手操作能力和空间想象能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对几何图形有了一定的认识。
但是,对于圆的概念和性质,部分学生可能还比较模糊,需要通过实践活动来加深理解。
此外,学生的空间想象能力和动手操作能力参差不齐,需要在教学中给予不同程度的学生适当的关注。
三. 说教学目标1.知识与技能:理解圆的定义,掌握圆心和半径的概念,学会用圆规和直尺画圆。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和勇于探索的精神。
四. 说教学重难点1.重点:圆的定义,圆心和半径的概念,用圆规和直尺画圆的方法。
2.难点:对圆的概念的理解,圆心和半径的确定,画圆的技巧。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实践活动法、合作交流法等。
2.教学手段:多媒体课件、圆规、直尺、实物模型等。
六. 说教学过程1.导入新课:通过展示生活中的圆形物体,引导学生思考圆的特点,引出圆的定义。
2.自主学习:让学生自学圆心和半径的概念,通过实例理解圆的确定。
3.实践活动:分组进行画圆的实践活动,引导学生发现画圆的方法和技巧。
4.合作交流:让学生分享实践活动中的心得体会,讨论解决画圆过程中遇到的问题。
5.总结提升:总结本节课的主要内容,强调圆的定义和画圆的方法。
6.课后作业:布置有关圆的练习题,巩固所学知识。
七. 说板书设计板书设计如下:•圆心:到定点距离相等的所有点构成的图形•半径:连接圆心和圆上任意一点的线段画圆的方法:1.确定圆心:在纸上找一个点作为圆心2.确定半径:用直尺测量圆心到圆上任意一点的距离,作为半径3.画圆:以圆心和半径为依据,用圆规和直尺画圆八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答情况等,了解学生的学习状态。
沪科版数学九年级下册《圆的确定》教学设计2

沪科版数学九年级下册《圆的确定》教学设计2一. 教材分析《圆的确定》是沪科版数学九年级下册的一章内容,主要介绍了圆的定义、圆的性质以及圆的标准方程。
本章节内容在学生的数学知识体系中占据着重要的地位,是为后续学习解析几何和高等数学打下基础的关键章节。
本节课的教学内容不仅要求学生掌握圆的基本概念和性质,还要培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的性质和变换有一定的了解。
但学生在理解圆的概念和性质方面可能存在一定的困难,尤其是圆的确定方法和相关方程的推导。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.理解圆的定义和性质,掌握圆的标准方程。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的标准方程的推导和应用。
3.运用数学知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆的性质和方程。
2.利用多媒体辅助教学,直观展示圆的性质和图形的变换。
3.采用小组合作学习,培养学生团队合作和交流表达能力。
4.注重实践操作,让学生通过动手操作加深对圆的理解。
六. 教学准备1.多媒体教学设备。
2.圆的相关模型和教具。
3.练习题和案例材料。
七. 教学过程1.导入(5分钟)利用多媒体展示实际生活中的圆形物体,如地球、篮球等,引导学生关注圆形的特征。
提问:你们对这些圆形物体有什么了解?从而引出圆的定义和性质。
2.呈现(10分钟)介绍圆的定义和性质,通过多媒体动画展示圆的生成过程,让学生直观理解圆的特征。
同时,呈现圆的标准方程,让学生初步了解圆的方程形式。
3.操练(10分钟)学生分组讨论,根据圆的性质和方程,尝试解决一些实际问题。
如给定圆的半径和圆心,求解圆的方程;或根据实际问题,确定圆的参数。
沪科版数学九年级下册《圆的定义》教学设计2

沪科版数学九年级下册《圆的定义》教学设计2一. 教材分析沪科版数学九年级下册《圆的定义》是本节课的主要内容。
教材通过生活中的实例引入圆的概念,接着介绍圆的性质和运算。
本节课的重点是让学生理解并掌握圆的定义,以及能够运用圆的性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的基础。
但是,对于圆的概念和性质,部分学生可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和生活情境,让学生更好地理解和掌握圆的概念。
三. 教学目标1.知识与技能:让学生掌握圆的定义,理解圆的性质,并能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力和创新意识。
四. 教学重难点1.重点:圆的定义和性质。
2.难点:理解和运用圆的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受圆的存在,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示圆的实例和性质。
2.学具:准备一些圆形物品,如硬币、圆规等,方便学生直观地理解圆的概念。
3.练习题:准备一些有关圆的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的圆形物体,如地球、太阳、硬币等,引导学生观察并思考:这些物体有什么共同的特点?学生通过观察,发现它们都是圆形的。
教师总结:圆是平面上一动点以一定点为中心,一定长为半径,在平面内一周的轨迹。
2.呈现(10分钟)教师通过讲解和示范,详细介绍圆的性质,如圆心、半径、直径等。
同时,让学生用学具进行实际操作,加深对圆的理解。
3.操练(10分钟)学生分组讨论,共同解决一些关于圆的问题,如:如何画一个特定半径的圆?如何计算圆的面积?教师巡回指导,解答学生的问题。
九年级数学下册 24.2 圆的基本性质教案4 沪科版

第24章圆24.2圆的基本性质(4)【教学内容】圆的确定。
【教学目标】知识与技能了解不在同一直线上的三个点确定一个圆并掌握它的运用.了解三角形的外接圆和三角形外心的概念.了解反证法的证明思想过程与方法通过引导学生添加辅助线,培养学生的创造能力。
情感、态度与价值观在运用数学知识解决问题的过程中,建立学习数学的自信心。
【教学重难点】重点:圆的确定条件。
难点:圆的确定条件、反证法。
【导学过程】【知识回顾】1、圆的两种定义是什么?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?【情景导入】自学教材内容,尝试自主解决以下问题:思考:平面上的一个圆把平面上的点分成哪几部分?各部分的点与圆有什么共同特征?【新知探究】探究一、探究、实践、交流:(1)、平面上有一点A,经过已知A点的圆有个,圆心为(2)、平面上有两点A、B,经过已知点A、B的圆有个,它们的圆心分布的特点是(3)、平面上有三点A、B、C,经过A、B、C三点的圆分为两类:一种是三点在一条直线上,这时的圆有个,圆心为;三点不在一条直线上,这时经三点作圆。
上述结论用于三角形,可得:经过三角形的三个顶点作圆。
3有关概念:①经过三角形的三个顶点可以做一个圆,并且只能画一个圆,这个圆叫做.②外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的.③三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形的离、相等。
4、想一想①一个三角形的外接圆有几个?一个圆的内接三角形有几个?②什么是反证法?用反证法证明的第一步是什么?5教师提示:可根据本班的具体情况而定。
【知识梳理】本节课你有哪些收获?请与同学们分享。
【随堂练习】1、已知矩形ABCD的边AB=3厘米,AD=4厘米(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?2、判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆( ).(2)任意一个圆有且只有一个内接三角形( )(3)经过三点一定可以确定一个圆( )(4)三角形的外心到三角形各顶点的距离相等( )。
沪科版数学九年级下册24.2.4圆的确定优秀教学案例

5.作业小结:设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。同时,引导学生对作业进行自我检查和修改,培养学生的自主学习和自我纠错的能力。教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
3.引导学生通过观察、操作、思考等途径,自主探索圆的确定方法,提高学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨圆的确定方法,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生在合作中共同解决问题,提高学生的综合运用知识的能力。
3.鼓励学生相互倾听、交流、反馈,培养学生的沟通能力和批判性思维。
在教学过程中,我以生活实例导入,让学生思考在实际生活中如何确定一个圆的位置和大小。接着,我引导学生通过观察和动手操作,发现圆的确定方法。在学生理解圆的确定方法后,我设计了一系列练习题,让学生在实际问题中运用所学知识,巩固和提高对圆的确定的理解。
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。同时,我关注学生的个体差异,根据学生的实际情况给予有针对性的指导,使他们在原有基础上得到提高。通过本节课的学习,学生不仅掌握了圆的确定方法,而且培养了学生的空间想象能力和逻辑思维能力,为后续学习打下了坚实的基础。
5.注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.引导学生感受数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的意识。
沪科版数学九年级下册《圆的确定》教学设计1

沪科版数学九年级下册《圆的确定》教学设计1一. 教材分析《圆的确定》是沪科版数学九年级下册的一章内容,主要介绍了圆的定义、圆的性质以及圆与直线、圆与圆的关系等。
本章内容是初中数学的重要知识点,也是学生进一步学习高中数学的基础。
在本章的学习中,学生需要掌握圆的基本概念和性质,能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于图形的认知和几何知识的掌握有一定的基础。
但是,对于圆的概念和性质的理解还需要进一步的引导和培养。
此外,学生的空间想象能力和逻辑思维能力还需要通过实践活动来进一步发展。
三. 教学目标1.知识与技能:学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考等实践活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆与直线、圆与圆的关系的运用。
五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的解决问题的能力。
2.实践活动:通过观察、操作、思考等实践活动,培养学生的空间想象能力和逻辑思维能力。
3.小组合作:通过小组讨论、合作探究,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括圆的定义、性质以及相关的例题和练习题。
2.教学素材:准备一些与圆相关的图片、实物等素材,用于引导学生观察和思考。
3.练习题:准备一些练习题,用于巩固学生对圆的知识的掌握。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些与圆相关的图片,如圆形的桌面、轮胎等,引导学生观察并思考:什么是圆?圆有哪些特点?2.呈现(15分钟)教师通过PPT呈现圆的定义和性质,引导学生思考并理解圆的概念。
同时,教师可以通过举例说明圆的性质,如圆的直径、半径等。
3.操练(15分钟)教师提出一些与圆相关的性质问题,如圆的直径是多少?圆的半径是多少?引导学生通过观察和操作来回答问题。
九年级数学下册24圆课题圆的确定学案(新)沪科

课题:圆的确定【学习目标】1.理解“不在同一直线上的三个点确定一个圆”,了解三角形的外接圆和三角形外心的概念.2.经历不在同一直线上三个点作圆的具体过程,从圆心与半径的唯一性理解不在同一直线上的三个点确定一个圆的道理.【学习重点】会经过不在同一直线上的三点作圆,并理解不在同一直线上的三点确定一个圆的道理.【学习难点】学会用反证法证明命题.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.知识链接:确定一个圆,关键是确定圆心和半径来判断仿例的做法.情景导入生成问题旧知回顾:1.经过一点可作多少条直线?经过两点呢?答:经过一点可作无数条直线,经过两点只可以作一条直线,即两点确定一条直线.2.经过一点A作圆,能作多少个圆?答:能作无数个圆,如图1.图1图23.经过两点A,B作圆,能作多少个圆?这些圆的圆心有什么特点?答:经过两点A,B能作无数个圆?如图2.这些圆的圆心在线段AB的垂直平分线上.自学互研生成能力知识模块一确定圆的条件阅读教材P21~P22,完成以下问题:1.经过不在同一直线上三点A,B,C,能不能作圆?关键是什么?由此可得出什么结论?答:经过不在同一直线上三点A,B,C可以作一个圆,关键是确定该圆的圆心,可作出AB,BC两条线段的垂直平分线的交点O,即该圆的圆心,由此可得出结论:不在同一直线上的三个点确定一个圆.2.什么是三角形的外接圆?什么是三角形的外心?三角形的外心有何性质?答:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.三角形的外心到三角形三个顶点距离相等.范例1:由下列条件能确定一个圆的有( D)①已知圆心和半径;②已知直径的位置和大小;③已知不在同一直线上的三个点.A.①B.②③C.①②D.①②③仿例:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( B)A.第①块B.第②块C.第③块D.第④块行为提示:找出自己不明白的问题,先对学,再群学.对照答案,提出疑惑.小组解决不了的问题,写在小黑板上,在小组展示的时候解决.范例2:三角形的外心在三角形内部的三角形是锐角三角形,外心在其一边上的三角形是直角三角形,外心在三角形外部的是钝角三角形.仿例1:在Rt△ABC中,∠C=90°,∠A=30°,AC=43,则此三角形的外接圆的半径为( D)A. 3 B.2 C.2 3 D.4仿例2:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为( B)A.1.5cm B.2.5cm C.3cm D.4cm知识模块二反证法阅读教材P22~P23,完成以下问题:什么是反证法?用反证法证明命题有哪几个步骤?答:先假设命题结论不成立,然后经过推理,得出矛盾的结果,最后断定结论一定成立,这样的证明方法叫反证法.反证法证明命题一般有以下三个步骤:(1)反设:假设命题的结论不成立;(2)推理:从(1)中的反设出发、逐步推理,直至出现与已知条件、定义、基本事实、定理等中任一个相矛盾的结果;(3)结论:由矛盾的结果判定(1)中的“反设”不成立,从而肯定命题的结论成立.范例3:用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设( A)A.∠A≤60°B.∠A<60°C.∠A≠60°D.∠A=60°仿例1:用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设( D)A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交仿例2:如图,直线AB,CD相交,求证:AB,CD只有一个交点.证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有两条直线,这与“两点确定一条直线”相矛盾,所以假设不成立,则AB,CD只有一个交点.交流展示生成新知1.将阅读教材时生成的新问题和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一确定圆的条件知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:__________________________________________________________________2.存在困惑:_________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:圆的确定
【学习目标】
1.理解“不在同一直线上的三个点确定一个圆”,了解三角形的外接圆和三角形外心的概念.
2.经历不在同一直线上三个点作圆的具体过程,从圆心与半径的唯一性理解不在同一直线上的三个点确定一个圆的道理.
【学习重点】
会经过不在同一直线上的三点作圆,并理解不在同一直线上的三点确定一个圆的道理.
【学习难点】
学会用反证法证明命题.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.
知识链接:确定一个圆,关键是确定圆心和半径来判断仿例的做法.情景导入生成问题旧知回顾:
1.经过一点可作多少条直线?经过两点呢?
答:经过一点可作无数条直线,经过两点只可以作一条直线,即两点确定一条直线.
2.经过一点A作圆,能作多少个圆?
答:能作无数个圆,如图1.
图1
图2
3.经过两点A,B作圆,能作多少个圆?这些圆的圆心有什么特点?
答:经过两点A,B能作无数个圆?如图2.这些圆的圆心在线段AB的垂直平分线上.
自学互研生成能力
知识模块一确定圆的条件
阅读教材P21~P22,完成以下问题:
1.经过不在同一直线上三点A,B,C,能不能作圆?关键是什么?由此可得出什么结论?
答:经过不在同一直线上三点A,B,C可以作一个圆,关键是确定该圆的圆心,可作出AB,BC两条线段的垂直平分线的交点O,即该圆的圆心,由此可得出结论:不在同一直线上的三个点确定一个圆.2.什么是三角形的外接圆?什么是三角形的外心?三角形的外心有何性质?
答:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.三角形的外心到三角形三个顶点距离相等.
范例1:由下列条件能确定一个圆的有( D)
①已知圆心和半径;②已知直径的位置和大小;③已知不在同一直线上的三个点.
A.①B.②③C.①②D.①②③
仿例:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( B)
A.第①块B.第②块
C.第③块D.第④块
行为提示:找出自己不明白的问题,先对学,再群学.对照答案,提出疑惑.小组解决不了的问题,写在小黑板上,在小组展示的时候解决.范例2:三角形的外心在三角形内部的三角形是锐角三角形,外心在其一边上的三角形是直角三角形,外心在三角形外部的是钝角三角形.
仿例1:在Rt△ABC中,∠C=90°,∠A=30°,AC=43,则此三角形的外接圆的半径为( D)
A.3B.2C.23D.4
仿例2:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为( B)
A.1.5cmB.2.5cmC.3cmD.4cm
知识模块二反证法
阅读教材P22~P23,完成以下问题:
什么是反证法?用反证法证明命题有哪几个步骤?
答:先假设命题结论不成立,然后经过推理,得出矛盾的结果,最后断定结论一定成立,这样的证明方法叫反证法.反证法证明命题一般有以下三个步骤:(1)反设:假设命题的结论不成立;(2)推理:从(1)中的反设出发、逐步推理,直至出现与已知条件、定义、基本事实、定理等中任一个相矛盾的结果;(3)结论:由矛盾的结果判定(1)中的“反设”不成立,从而肯定命题的结论成立.
范例3:用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设( A)
A.∠A≤60°B.∠A<60°C.∠A≠60°D.∠A=60°
仿例1:用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设( D)
A.a不垂直于c B.a,b都不垂直于c
C.a⊥b D.a与b相交
仿例2:如图,直线AB,CD相交,求证:AB,CD只有一个交点.
证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有两条直线,这与“两点确定一条直线”相矛盾,所以假设不成立,则AB,CD只有一个交点.
交流展示生成新知
1.将阅读教材时生成的新问题和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一确定圆的条件
知识模块二反证法
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:__________________________________________________________________
2.存在困惑:_________________________________________________________________。