高二数学每周一练(5)

合集下载

金沙中高二导数周练

金沙中高二导数周练

金沙尘高二数学 每周一练(1) 2013-3-6班级: 姓名: 坐号: 1.函数)(x f 的图象如图所示,下列数值排序正确的是( ) A. ())2(3)3()2(0f f f f -<'<'< B. ())2(3)2()3(0f f f f -<'<'< C. ())2()2(3)3(0f f f f '<-<'< D. ())2(3)3()2(0f f f f -<'<'<2.函数()13++=ax x x f 有极值的充要条件是( ) A. 0>a B. 0<a C. 0≥a D. 0≤a3.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( )4.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为( )A.0B. 2πC.3πD. 6π5.已知()1)6(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围为( ) A.-1<a<2 B.-3<a<6 C.a<-1或a>2 D.a<-3或a>66.函数1)2ln()(-+=x x x f 的零点个数为 A.0个 B.1个 C.2个 D.3个7.设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||M N 达到最小时t 的值为 ( ) A .1 B .12C2D29.函数]2,2[,313-∈-+=x x x y 的最大值、最小值分别为____ ___.(1,3-) 10.函数()122+=x x f ,则()x f '等于 .⎪⎪⎭⎫⎝⎛+1222x x11.函数()3213222f x x x x =+--的图象与x 轴的交点有________个. (2)12.函数)ln(x x y-=在点()),(e f e A --处的切线方程是 .()02=+-e y x13.曲线()x x x x f 2323+-=与直线kx y =切于点()00,y x ,00≠x ,则切点的坐标是 .()0,214.函数()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = .(4)15.已知()c bx ax x x f +++=23,在1=x 与2-=x 时,都取得极值. 1)求b a ,的值; 2)若[]2,3-∈x 都有()211->c x f 恒成立,求c 的取值范围.答案:a =32,6-=b . 由y min =()=1f -72+c>1c-12得302c -<<或32c +>16.已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+;1)求()f x 的解析式及单调区间; 2)若()ax x x f +≥221, 探索函数()ax x x f x g --=221)(的最小值.【答案】(1) 1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得(0)1f = ∴1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔=得:21()()()12xxf x e x xg x f x e x '=-+⇒==-+()10()xg x e y g x '=+>⇒=在x R ∈上单调递增()0(0)0,()0(0)f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2xf x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)由()ax x xx e x f x+≥+-=222121 --------()*得:0)1(≥+-x a e x 由题x a e x g x)1()(+-=①若01<+a 时,x →-∞时,()-∞→x g 与()0≥x g 矛盾,()*式不成立②若01=+a 时,0)(≥=xe x g ,这时()*式成立,但函数()x g y =没有最小值.③当10a +>时,()0)1(≥+-=x a e x g x ,())1(+-='a e x g x由()0)1(=+-='a e x g x,得ln(1)x a =+,(),0,)1ln(,<'+∞-∈∴y a x ()x g 递减,(),0,),1ln(>'+∞+∈∴y a x ()x g 递增,()=min x g ())1ln()1(1)1ln(++-+=+a a a a g若⎩⎨⎧>+≥++-+010)1ln()1(1a a a a 即e a ≤+<10, 11-≤<-e a 这时()*式成立()=m i n x g ())1l n ()1(1)1l n (++-+=+a a a a g 综上得:由条件知,11-≤≤-e a当1-=a 时,函数()x g y =没有最小值当11-≤<-e a 时, 函数()x g y =的最小值是()=min x g )1ln()1(1++-+a a a。

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。

青海高二高中数学期末考试带答案解析

青海高二高中数学期末考试带答案解析

青海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知集合(整数集)和,其中是虚数单位,则集合所含元素的个数有()A.个B.个C.个D.个2.已知随机变量服从二项分布,则等于()A.B.C.D.3.已知直线是曲线的一条切线,则的值为()A.B.C.D.4.若的展开式中第四项为常数项,则()A.B.C.D.5.若二项式()中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A.B.C.D.6.北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是()A.B.C.D.7.学校计划利用周一下午第一、二、三节课开设语文、数学、英语、物理科的选修课,每科一节课,每节至少有一科,且数学、物理不安排在同一节,则不同的安排方法共有()A.种B.种C.种D.种8.一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该远动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A.B.C.D.9.若函数在区间上不是单调函数,则实数的取值范围是()A.或或B.或C.D.不存在这样的实数10.已知函数有平行于轴的切线且切点在轴右侧,则的范围为()A.B.C.D.11.已知函数有两个极值点、,且,,则的取值范围是()A.B.C.D.12.定义在上的函数,满足,,若且,则有()A.B.C.D.不能确定二、填空题1.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求艘攻击型核潜艇一前一后,艘驱逐舰和艘护卫舰分列左、右,同侧不能都是同种舰艇,则舰艇分配方案的方法数为.(用数字作答)2.二项式的展开式的第二项的系数为,则的值为.3.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系.根据上表提供的数据得到回归方程中的,预测销售额为万元时约需____万元广告费.4.一盒子装有只产品,其中有只一等品,只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”,则条件概率.三、解答题1.已知,求:(1);(2).2.用,,,,这五个数字组成无重复数字的自然数.(1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如,等都是“凹数”,试求“凹数”的个数;(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.3.某高校共有学生人,其中男生人,女生人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集位学生每周平均体育运动时间的样本数据(单位:(1)应收集多少位女生的样本数据?(2)根据这个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,,,,.估计该校学生每周平均体育运动时间超过小时的概率;(3)在样本数据中,有位女生的每周平均体育运动时间超过小时,请完成每周平均体育运动时间与性别列联表,并判断是否有%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:4.某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:鱼池产量()鱼的市场价格(元/)概率概率表示在这个鱼池养殖季这种鱼的利润,求(2)若在这个鱼池中连续季养殖这种鱼,求这季中至少有季的利润不少于元的概率.5.已知函数().(1)当时,求在的最小值;(2)若存在单调递减区间,求的取值范围.6.(选修4-4:坐标系与参数方程)在直角坐标系中,圆的方程为.以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)射线与圆的交点为、两点,求点的极坐标.7.(选修4-5:不等式选讲)设函数.(1)解不等式;(2)若对任意实数满足,求实数的取值范围.青海高二高中数学期末考试答案及解析1.已知集合(整数集)和,其中是虚数单位,则集合所含元素的个数有()A.个B.个C.个D.个【答案】B【解析】,则,,含有三个元素,故正确选项是B.【考点】复数的运算,集合的运算.2.已知随机变量服从二项分布,则等于()A.B.C.D.【答案】D【解析】由二项分布概念可知得,则=,故正确选项为D.【考点】二项分布.3.已知直线是曲线的一条切线,则的值为()A.B.C.D.【答案】C【解析】曲线的导函数为,为曲线在点处切线的斜率,由切线可知斜率为,即,得,所以切点为(1,1),将切点代入切线方程可求得,故正确选项为C.【考点】导函数的运用.4.若的展开式中第四项为常数项,则()A.B.C.D.【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B.【考点】二项式定理.【易错点睛】某项为常数项,隐含条件就是该项的次数为,这是解题的关键;二项式展开后的第项的公式为,而不是;要区分组合数公式与二项式系数公式,清楚的熟记每个公式,能够使我们解题的正确率得到大大的提升.5.若二项式()中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A.B.C.D.【解析】二项式中所有系数和为时二项式的值,而所有系数绝对值的和则为时二项式的值,故,,则,,令,由导函数知函数在上为增函数,则在取得最小值为,故正确选项为D.【考点】二项式系数,函数的单调性.6.北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是()A.B.C.D.【答案】C【解析】号、号与号放在一组,则其余三个编号要么都比6小,要么都比24大,比6 小时,有种选法,都比24大时,有种选法,合计30种选法,号、号与在选厅时有两种选法,所以选取的种数共有种,故正确选项为C.【考点】组合与排列的概念.7.学校计划利用周一下午第一、二、三节课开设语文、数学、英语、物理科的选修课,每科一节课,每节至少有一科,且数学、物理不安排在同一节,则不同的安排方法共有()A.种B.种C.种D.种【答案】B【解析】由于每科一节课,每节至少有一科,必有两颗在同一节,先从4科中任选两科看作整体,然后做三个元素的排序,共有,又数学物理不能在同一节课中,数学物理在同一节课中的分法为,则不同的安排法共有36-6=30种,故正确选项为B.【考点】组合与排列的运用.8.一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该远动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A.B.C.D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则,故正确选项为A.【考点】离散型随机变量的分布列和数学期望的应用.9.若函数在区间上不是单调函数,则实数的取值范围是()A.或或B.或C.D.不存在这样的实数【答案】B【解析】由题意得上必有一个零点,而的零点为,故有,解得或,所以正确选项为B.【考点】应用导数研究函数的单调性.10.已知函数有平行于轴的切线且切点在轴右侧,则的范围为()A.B.C.D.【答案】A【解析】由题意得存在零点,而此零点在轴的正半轴,即,解不等式得的取值范围为,故正确选项为A.【考点】函数的切线与导数的关系.11.已知函数有两个极值点、,且,,则的取值范围是()A.B.C.D.【答案】C【解析】有两个极值点、,即有两个零点、,又,,开口向上,所以有,,这是线性约束条件,可知在四条直线的交点处取得最值,所以有在处取得最大值,在处取得最小值,所以的取值范围为,故正确选项为C.【考点】函数的极值点,零点以及导数的运用.【思路点睛】题中所给函数为3次函数,由涉及到极值点,所以必须得用导函数,函数在极值点两侧的单调性相反,导函数在极值点两侧的正负相反,可以列出关于,的不等式组,从而为求的范围提供新的条件,在高中阶段,导数法时解关于极值问题的常用方法.12.定义在上的函数,满足,,若且,则有()A.B.C.D.不能确定【答案】A【解析】由知,当时,为增函数,当时,为减函数,且,当,有,当,因为,所以,,所以有,即,所以恒有,故正确选项为A.【考点】函数的单调性与导函数的关系.【思路点睛】在进行隐函数函数值大小比较的时候,常用的方法是利用函数的单调性,所以首先要求得函数的单调区间,对于在定义域上单调性不唯一的函数,一定要通过函数的性质将两个自变量放在单调性一致的区间上,这样才能利用函数的单调性比较函数值的大小.二、填空题1.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求艘攻击型核潜艇一前一后,艘驱逐舰和艘护卫舰分列左、右,同侧不能都是同种舰艇,则舰艇分配方案的方法数为.(用数字作答)【答案】32【解析】攻击性核潜艇有前后两种排序,驱逐舰与护卫舰,需要先进行分组,可分为2组,共种分法,两组分别在航母两侧,有种分法,每组中的驱逐舰与护卫舰有先后顺序,共有4种排序法,所以共有种分配方法.【考点】排列与组合的概念.2.二项式的展开式的第二项的系数为,则的值为.【答案】3或【解析】展开的第二项为,由已知有,,当时,,当,所以的值为3或.【考点】二项式定理,定积分.3.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系.根据上表提供的数据得到回归方程中的,预测销售额为万元时约需____万元广告费.【答案】15【解析】,则,即,当销售额为万时,代入回归直线得广告费,即投入万广告费,预计销售额将为万.【考点】线性相关与回归直线.【思路点睛】两个变量若线性相关,则可认为它们满足回归直线方程,而回归直线方程表示的是一条直线,所以先要利用已知条件求得这条直线中的两个参数,,其中可以直接利用变量来求得,而参数则要利用来求得,求得了回归直线方程,就可将变量代入直线,从而求得另一个变量,在此求得的值为近似值,而非精确值.4.一盒子装有只产品,其中有只一等品,只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”,则条件概率.【答案】【解析】表示在第一次取出的是一等品的情况下,第二次取出的是一等品的概率.第一取出一等品的概率为,然后还有个一等品和个二等品,所以第二次取出的是一等品的概率为,则条件概率为.【考点】条件概率.【易错点睛】本题主要考查的是条件概率的计算,要熟记相关概念即计算公式.条件概率为事件发生的前提下在发生事件的概率,用公式可表示为,容易与且事件的概率计算混淆,且事件概率为事件的概率与事件的概率直接相乘.三、解答题1.已知,求:(1);(2).【答案】(1)-2;(2).【解析】二项式中,当时,二项式的值就是二项式展开中各项系数的和;当时,二项式展开中的系数会正负交替,结合时二项式的系数,就可以求得二项式中偶次项系数和与奇次项系数和,从而可进一步求得待求量的值.试题解析:(1)当时,,展开式变为,当时,,,(2)由展开式知:,,,均为负,,,,均为正,令,①令,②【考点】二项式的系数.2.用,,,,这五个数字组成无重复数字的自然数.(1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如,等都是“凹数”,试求“凹数”的个数;(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.【答案】(1)30;(2)20;(3)28.【解析】在正自然数中,零不能处在最高位,(1)偶数的个位数为偶数,所以只能为0,2,4,根据排列公式求出偶数个数即可;(2)由题意可知十位数可为0,1,2,分别从剩余的数字中取两个进行排列;(3)5个数字中只有两个奇数,所以可将1,3以及夹在中间的偶数看作整体,并与剩余的两个偶数进行排列计算.试题解析:(1)将所有的三位偶数分为两类:(i)若个位数为,则共有(个);(ii)若个位数为或,则共有(个),所以,共有个符合题意的三位偶数.(2)将这些“凹数”分为三类:(i)若十位数字为,则共有(个);(ii)若十位数字为,则共有(个);(iii)若十位数字为,则共有(个),所以,共有个符合题意的“凹数”.(3)将符合题意的五位数分为三类:(i)若两个奇数数字在一、三位置,则共有(个);(ii)若两个奇数数字在二、四位置,则共有(个);(iii)若两个奇数数字在三、五位置,则共有(个),所以,共有个符合题意的五位数.【考点】排列的运用.3.某高校共有学生人,其中男生人,女生人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,,,,.估计该校学生每周平均体育运动时间超过小时的概率;(3)在样本数据中,有位女生的每周平均体育运动时间超过小时,请完成每周平均体育运动时间与性别列联表,并判断是否有%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:【答案】(1)90;(2)0.75;(3)%.【解析】(1)由题知,抽样比例为50:1,分层抽样是按照男女生比例来比例来抽样的,所以所抽300名学生中,男生与女生比例为10500:4500,可求出女生人数为;(2)观察频率分布直方图,找出每周平均体育运动不超过4小时的所有小矩形高即为频率/组距,这些小矩形的面积和即为每周平均体育运动不超过4小时的频率,1减去这个频率就是一周体育运动时间超过4小时的频率;(3)根据频率分之直方图计算出这300名学生中每周平均体育运动时间超过4小时以及不超过4小时的人数,列出表格,并代入公式中,得到样本观测值,将该值与表中概率为0.95的值比较,可得出有%的把握认为“该校学生的每周平均体育运动时间与性别有关”.试题解析:(1),所以应收集位女生的样本数据.(2)由频率分布直方图得,所以该校学生每周平均体育运动时间超过小时的概率的估计值为.(3)由(2)知,位学生中有人的每周平均体育运动时间超过小时,人的每周平均体育运动时间不超过小时.又因为样本数据中有份是关于男生的,份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得所以有%的把握认为“该校学生的每周平均体育运动时间与性别有关”.【考点】分层抽样方法,总体估计,独立性检验.4.某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:鱼池产量()鱼的市场价格(元/)概率概率(1)设表示在这个鱼池养殖季这种鱼的利润,求的分布列和期望;(2)若在这个鱼池中连续季养殖这种鱼,求这季中至少有季的利润不少于元的概率.【答案】(1)分布列见解析,;(2)0.896.【解析】(1)根据利润=产量市场价格-成本,可求出的所有可能值为40000,20000,8000,且可求得,,的值,即可列出的分布列,进而求出它的期望;(2)可假设为“第季度利润不少于20000元”的事件,则相互独立,由(1)知,,3季度利润均不少于20000的概率为,3季度中由两季度利润不少于20000的概率为,进而可求出3季度张至少有两季度利润不少于20000的概率.试题解析:(1)因为利润产量市场价格成本,所以所有可能的取值为,,,.,,.所以的分布列为则.(2)设表示事件“第季利润不少于元”(,,),由题意知,,相互独立,由(1)知,(,,)季的利润均不少于元的概率为季中有季利润不少于元的概率为所以季中至少有季的利润不少于元的概率为【考点】离散型随机变量的分布列,数学期望,概率的求法.5.已知函数().(1)当时,求在的最小值;(2)若存在单调递减区间,求的取值范围.【答案】(1)1;(2).【解析】(1)因为单调性无法直接判断,所以宜使用导函数法来判断函数在上的单调性,从而求出最小值;(2)存在单调递减区间,则有正实数解,即,利用二次函数的相关知识求出参数范围.试题解析:解:(1),定义域为.,在上是增函数..(2)因为因为存在单调递减区间,所以有正数解.即有的解.①当时,明显成立.②当时,开口向下的抛物线,总有的解;③当时,开口向上的抛物线,即方程有正根.因为,所以方程有两正根.当时,:,解得.综合①②③知:.【考点】导函数以及二次函数的运用,解含有参数的不等式.6.(选修4-4:坐标系与参数方程)在直角坐标系中,圆的方程为.以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)射线与圆的交点为、两点,求点的极坐标.【答案】(1);(2).【解析】将直角坐标系中用极坐标系中表示为,,并代入圆的方程,进行化简,即可得到圆的极坐标方程;(2)射线的直角坐标系方程为,,先联立射线方程与圆的方程,求出点在直角坐标系中坐标,然后再转化成极坐标系中的坐标.试题解析:(1)圆的普通方程是,又,,所以圆的极坐标方程是(2)因为射线的普通方程为,联立方程组消去并整理得解得或,所以点的直角坐标为所以点的极坐标为解法2:把代入得所以点的极坐标为【考点】极坐标与直角坐标的转化,极坐标方程与直角坐标方程的转化.【方法点睛】利用两种坐标的互相转化,能够将不熟悉的问题转化为熟悉的问题,在相互转化是要注意:极点与原点重合,极轴与轴正向重合,取相同的单位长度;直角坐标系方程转化为极坐标方程时,要将直角坐标用极坐标表示,并代入直角坐标方程进行化简得出极坐标方程,同理极坐标方程转直角坐标方程则需将极坐标用直角坐标来表示,并进行化简。

高二数学教师新学期工作计划

高二数学教师新学期工作计划

高二数学教师新学期工作计划高二数学教师新学期工作计划1一、指导思想本学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。

转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。

提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

二、目标任务1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

5、加强集体备课。

本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照“个人研究、同伴交流、达成共识、主备撰写、实践改进、反思提高”的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。

难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。

是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。

争取使我们的教学水平更上一个新的台阶。

三、具体措施1、把握教材关认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。

计划要体现每单元重难点以及采取的措施,研究解决难点的方法。

从而改进自己的教学方法和练习策略。

对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

2、规范日常工作严格规范数学教学常规。

每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。

2024年高二数学教师新学期工作计划例文(6篇)

2024年高二数学教师新学期工作计划例文(6篇)

2024年高二数学教师新学期工作计划例文本学期,我校数学教研组秉承教务处及教研室的整体工作指导方针,确立了以提高教学质量为工作核心,旨在全面提升教师队伍的业务素质与教学能力。

我们将本着求真务实、保质高效的原则,积极进取,推动教师队伍全面发展。

以下为本学期数学教研组工作重点及具体安排:一、工作要点1. 传达学校教学精神,确保工作计划落实学期伊始,通过备课组会议,传达学校教学工作计划和教研组工作计划,确保每位教师都能够明确工作方向和目标。

2. 工作重点本学期将重点开展教师间的互帮互学活动,加强常规教学的规范性和实效性,提升工作效率,并加强专业理论学习和学术交流,以促进教师的专业成长。

二、工作措施安排1. 认真组织集体教研活动,强化专业理论学习和学术交流。

确保每次活动都有实质内容、详尽记录,对问题进行深入思考和解决,同时精心准备中心发言人的发言。

2. 持续开展组内听课、评课活动,促进教师间的沟通与交流。

3. 严格进行期中、期末、月考评测及分析工作,并做好本学期的教学总结。

三、具体工作1. 深入学习新课程标准,更新教师教学理念。

以新课程标准为主要学习内容,组织有效的学习讨论,以先进的教育理念指导教育改革,转变传统教学模式。

2. 转变教师教学方式与学生学习方式。

教师应树立学生为主体的观念,以平等、宽容的态度对待学生,建立互动的师生关系。

继续推动学生学习方式的改变,鼓励发现性、参与性和实践性学习。

3. 改进教师备课方式,提升备课质量。

根据学生实际情况灵活选择例题和习题,注重教学过程反思,及时记录教学感受,重视“二次备课”和教学反思。

4. 发挥备课组集体作用。

统一教案,集体讨论,根据各班实际情况适当调整,确保教案内容全面,涵盖知识体系、思维方法、训练应用等,并注重资源共享,反对个人主义。

四、固定工作安排1. 每周四下午参加数学组教研活动,每周五下午第____节为备课组活动时间,每次活动设有主题、中心发言人及文字记录。

高二下半年教学计划范文(四篇)

高二下半年教学计划范文(四篇)

高二下半年教学计划范文这学期,可以说大多数的学生的成绩基本定型,但是仍然还有一部分学生有可能在原来的基础上,进一步提高自己的数学成绩,因此本学期不能因为到了高二下学期就对自己和学生松懈。

根据学科的特点,结合我校数学教学的实际情况制定以下教学计划。

一、教学内容高中数学所有内容:抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。

提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。

把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。

研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。

结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

二、学情分析我今年教授两个班的数学:(20)班和(23)班,经过与同组的其他老师商讨后,打算第一轮____年____月初;第二轮从____年____月底至____月上旬结束;第三轮从____年____月上旬至____月底结束。

三、具体措施(一)同备课组老师之间加强研究1、研究《课程标准》、参照周边省份____年《考试说明》,明确复习教学要求。

2、研究高中数学教材。

处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

3、研究-年新课程地区高考试题,把握考试趋势。

特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

4、研究高考信息,关注考试动向。

及时了解20-高考动态,适时调整复习方案。

5、研究本校数学教学情况、尤其是本届高二学生的学情。

有的放矢地制订切实可行的校本复习教学计划。

(二)重视课本,夯实基础,建立良好知识结构和认知结构体系课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

数学考试教师总结5篇范文

数学考试教师总结5篇范文

数学考试教师总结5篇范文数学考试教师总结1 高中物理的系统性强、较为抽象,学生普遍感觉难学。

作为物理教师,教学方法尤为重要。

我在教育教学过程中,从各方面做了探究和尝试,取得了较好的效果。

本学期即将结束,现将本期工作总结如下:一、基本情况根据学校的安排,本期我负责高二的物理教学工作。

二、成绩和缺点1、以课堂教学为中心,向四十分钟要效益(1)重三基。

在课堂教学中突出基本知识、基本概念、基本规律。

针对重点的概念和规律,我让学生通过对物理现象、演示实验的观察分析,力求推导引出新的概念、定理和结论,使学生清楚地理解物理知识的形成过程,培养学生的思维能力和想象能力。

如:在学习《超重、失重》一节时,为了更好的让学生体会物理情景,我布置学生课外站在磅秤上亲自实验,从而加深了对这一物理过程的理解。

遵从循序渐进的原则,知识要逐步积累、扩展和延伸。

不要过高估计学生的能力,设法将难懂的知识通俗化,简明易懂,培养学生学习物理的兴趣和学好物理的自信心。

如:在学习《波的传播》中我把问题口诀化:“上下坡反向”、“向右看齐”等。

(2)重能力。

物理教学的重要任务是培养学生的能力。

培养能力需要一个潜移默化的过程,不能只靠机械地灌输,也不能急于求成,需要有正确的学习态度和良好的学习习惯以及严谨的学习作风。

准确理解并掌握物理概念和物理规律,是培养能力的基础。

课堂练习和作业中,力求做题规范化。

如:在主观性习题的求解中,要求学生必须指明研究对象,必须画图分析受力情况,必须写明所用的定理定律名称,必须突出关系式等。

重视物理概念和规律的应用,逐步学会运用物理知识解释生活中的物理现象,提高独立分析和解决实际问题的能力。

比如在讲运动学时,对一道习题,我用“图象法”“公式法”“实际演练法”等多种方法进行讲解。

另外,课堂上分小组讨论,小组推荐让学生上台分析一些力所能及的习题,也是提高能力的关键。

2、激发学生的学习兴趣高二学生普遍感觉物理比较难,甚至对物理失去信心。

高二数学(理科)每周一练(二)及答案

高二数学(理科)每周一练(二)及答案

高二数学(理科)每周一练(二) 姓名:____________ 班级:____________1.在ABC ∆中,0222<-+c b a ,则ABC ∆是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形2.在ABC ∆中,若8=a ,30=A ,38=b ,则ABC ∆的面积为( )A .332B .16C .632或16D .332或3163.等差数列{}n 310-中的前n 项和n S 最大,则n d ,分别为( )A .10、4B .3、3C .-3、4D .-3、34.递减的等差数列{}n a 前n 项和为n S ,满足105S S =,则n S 最大时的n 为( )A .10B .7C .9D .7或85.正项等比数列{}n a 中,187465=+a a a a ,则1032313log log log a a a +++ =( )A .12B .10C .8D .8+5log 36.若不等式022>++bx ax 的解集为)31,21(-,则=-b a ( )A .10B .14C .4-D .10-7.设0,>y x ,且304=+y x ,则yx 11+取最小值时),(b a 为( )A .)10,5(B .)6,6(C .)5,10(D .)2,7(8.若实数y x ,满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=有( )A .最小值2,最大值3B .最小值2,无最大值C .最大值3,无最小值D .最小值1,最大值2 9.已知P :若A a ∈,则B b ∈。

两个命题,那么P ⌝是( )A .若A a ∈,则B b ∉ B .若A a ∉,则B b ∉C .若B b ∈,则A a ∉D .若B b ∈,则A a ∈10.已知P :函数)3(log )(5.0x x f -=定义域为)3,(-∞,Q :若0<k ,则xk x h =)(在)0,(-∞上是减函数,则下列结论正确的是( )A .命题“P 且Q ”为真B .命题“P 或Q ⌝”为假C .命题“P 或Q ”为假D .命题“P ⌝且Q ⌝”为假11.已知0,>y x ,y b a x ,,,成等差数列,y d c x ,,,成等比数列,则cdb a 2)(+最小值( )A .0B .1C .2D .412.数列 1,21+,2221++,…,122221-++++n 的前n 项和为( )A .n n-2 B .221--+n n C .n 2 D .121--+n n13.试写出一个能成为0)1()2(2>--a a 的必要不充分条件 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

株洲市二中高二数学周练题(5)
命题人:林科, 时量:120分钟,总分:150分,班级_____,姓名_________
1、若直角三角形的三边长成等比数列,且公比为q ,则2q 的值为( )
A .2 B
.12 C
.12 D
.12
2
、函数()sin f x x x =+的最小正周期是( )
A .4π
B .2
π C .π D .2π
3、设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则 111213a a a ++=( )
A .120
B .105
C .90
D .75
4、若曲线21x y =+与直线y b =没有公共点,则b 的取值范围是( )
A .01b ≤≤
B .10b -≤≤
C .11b -<<
D .11b -≤≤
5、若1,,,,9a b c --成等比数列,那么( )
A .3,9b ac ==
B .3,9b ac =-=
C .3,9b ac ==-
D .3,9b ac =-=-
6、设4710310()22222()n f n n N +=++++⋅⋅⋅+∈,则()f n 等于( )
A .2(81)7n -
B .12(81)7n +-
C .32(81)7n +-
D .42(81)7
n +-
7、某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )
A .2
B .3
C .4
D .5
8、若实数x ,y 满足22240x y x y +-+=,则2x y -的最大值是( )
A
. B
.5+ C .9 D .10
9、若数列{}n a 满足:111n n
a a +=-且12a =,则2009a =( ) A .1 B .12- C . 32 D .12
10、在等比数列{}n a 中,12a =,前n 项和为n S ,若{1}n a +也是等比数列,则n S 等于( )
A .122n +-
B .3n
C .2n
D .31n -
11、若数列{}n a 满足111,2,()n n a a a n N *
+==∈,则1n
k k a ==∑_________________
12、已知数列{}n a 的前n 项和221n S n n =+-,则n a =______________________
13、已知225()n a n n N *=-+∈,则数列{}n a 中的最大项是__________________
14、求和:1111133557(21)(21)
n S n n =+++⋅⋅⋅+=⨯⨯⨯-+_____________________
15、点P 、A 、B 、C 是球面上四个点,且PA 、PB 、PC 两两垂直,PA a =,
PB b =,PC c =,则球的表面积为___________________________
16、设奇函数()f x 在[]1,1-上是增函数,且(1)1f -=-,若不等式2()21f x t at ≤-+对所有[]1,1x ∈-都成立。

当[]1,1a ∈-时,求t 的取值范围。

17、直线l 过点(2,3)P -且与x 轴、y 轴分别交于A 、B 两点。

(1)若P 恰为AB 的中点,求直线l 的方程;
(2)若P 分AB 的比为2-,求直线l 的方程。

18、口袋里装有红色和白色共36个不同的球,且红球多于白球。

从袋子中取出
2个球若是同色的概率为12
,求袋中红色球和白色球的个数各是多少?
19、数列{}()n a n N *∈中,11a =,且点1(,)n n a a +在直线l :
210x y -+=上. (1)设1n n b a =+,求证:数列{}n b 是等比数列;
(2)设n c n =,求数列{}n c 的前n 项和n S .
20、已知数列{}n a 和{}n b 满足关系式:12n n a a a b n
++⋅⋅⋅+= ()n N *∈ (1)若2n b n =,求数列{}n a 的通项公式;
(2)若{}n b 是等差数列,求证:{}n a 也是等差数列。

21、已知数列{}n a 的前n 项和为n S ,且满足:24833n n S n a =+-
(1
< (2,3,4,)n =⋅⋅⋅.
(2)令()()n n n n b a a a λλ=-+(其中λ为常数,且02λ<<),
求证:113
n k =<.。

相关文档
最新文档