人教B版高中数学选修22第2章23《数学归纳法》课时作业
人教版选修2-2第二章 3数学归纳法(上)-广东省肇庆市肇庆学院附属中学高二数学2020春(共25张

........ 10个圆片的时候: 210 1 问题3:n个圆片的时候是 ? 次
an 2n 1
二、数学归纳法类比 多米诺骨牌效应 探究一:多米诺骨牌都倒下的关键点是什么?
二、数学归纳法雏形:多米诺骨牌效应 (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.
条件(1)的作用是什么?
基础自测2.用数学归纳法证明 3nn3(n3,nN), 第一步应验证( C )
A.n 1
B.n 2
C.n 3
D.n 1
注意:有些问题中验证的初始值不一定是1.
基础自测3.在应用数学归纳法证明凸n边形的对角线有 第一步检证n等于( C )
1 2
n(n
3)
条时,
A.n 1
B.n 2
C.n 3
D.n 1
注意:当n<3时构不成多边形,且由
1 n(n 3) 2
可知 n 3
.
技能2:能弄清两端项的情况
例2 .用数学归纳法证明等式 1+2+3+…+(2n+1)=(n+1)(2n+1) 当n=1时,左边所得项是 1_+_2_+__3___ ; 左边=6,右边= (1 1 )(2 1 ) 2 3 6 当n=2时,左边所得项是 1_+_2_+__3_+_4_+_5__ ;左边=15,右边= (2 1 )(4 1 ) 3 5 1 5 当n=k时,左边所得项是 1_+_2_+_3_+_…_+_(_2_k_+_1_)_=_左__边,; 右边= (k1)(2k1)
左边=右边, 当 n 1 时 , 等 式 成 立 .
最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理

2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。
高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
高中数学教材新课标人教B版目录

高中数学必修+选修知识点归纳新课标人教B版高中数学B版必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用Ⅰ2.4函数与方程第三章基本初等函数Ⅰ3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用Ⅱ高中数学B版必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系高中数学B版必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用高中数学B版必修四第一章基本初等函Ⅱ1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质第二章平面向量2.1向量的线性运算2.2向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化积高中数学B版必修五第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列2.2等差数列2.3等比数列第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式组与简单线性规划问题高中数学B版选修1-1文科第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1椭圆2.2双曲线第三章导数及其应用3.1导数3.2导数的运算3.3导数的应用高中数学B版选修1-2文科第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图高中数学B版选修2-1理科1.2基本逻辑联结词1.3充分条件、必要条件与命题的四种形式2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线高中数学B版选修2-2理科第一章导数及其应用1.1导数1.2导数的运算1.3导数的应用1.4定积分与微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.2复数的运算高中数学B版选修2-3理科第一章计数原理1.1基本计数原理1.2排列与组合1.3二项式定理第二章概率2.1离散型随机变量及其分布列2.2条件概率与事件的独立性2.3随机变量的数字特征2.4正态分布第三章统计案例3.1独立性检验3.2回归分析高中数学B版选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线高中数学B版选修4-4坐标系与参数方程第一章坐标系1.1直角坐标系平面上的压缩变换2极坐标系1.3曲线的极坐标方程1.4圆的极坐标方程1.5柱坐标系和球坐标系第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程高中数学B版选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式选学2.4最大值与最小值问题;优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式;贝努利不等式。
【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。
高中数学 23 2.2 第2课时事件的独立性课件 新人教B版选修23

=[1-P(A)][1-P(B)][1-P(C)] =(1-0.7)(1-0.7)(1-0.7)=0.027, 于是这段时间内至少有 1 个开关能够闭合,从而使线路 能正常工作的概率是 1-P( A B C )=1-0.027=0.973.
第三十四页,共38页。
学法归纳总结
[分析] 依据相互独立事件的定义或直观解释判断.
第十四页,共38页。
[解析] ①事件A与B是互斥事件,故A与B不是相互独立事 件.
②第一枚出现正面还是反面,对第二枚出现反面没有影 响,∴A与B相互独立.
③由于每次取球观察(guānchá)颜色后放回,故事件A的发 生对事件B发生的概率没有影响,
∴A与B相互独立. [说明] 相互独立事件是指两个实验中,一个事件的发生 与否对另一事件发生的概率没有影响.
第三十六页,共38页。
第十一页,共38页。
课堂互动探究
第十二页,共38页。
下面所给出的两个事件 A 与 B 相互独立吗? ①抛掷一枚骰子,事件 A=“出现 1 点”,事件 B=“出 现 2 点”; ②先后抛掷两枚均匀硬币,事件 A=“第一枚出现正 面”,事件 B=“第二枚出现反面”;
第十三页,共38页。
③在含有2红1绿三个大小相同的小球的口袋中,任取一个 (yī ɡè)小球,观察颜色后放回袋中,事件A=“第一次取到绿 球”,B=“第二次取得绿球”.
第二十八页,共38页。
甲、乙、丙三人各自向同一飞机射击,设击中飞机的概率 分别(fēnbié)为0.4、0.5、0.8.如果只有一人击中,则飞机被击落 的概率是0.2;如果有两人击中,则飞机被击落的概率是0.6;如 果三人都击中,则飞机一定被击落.求飞机被击落的概率.
人教版新课标B版高中数学所有目录和知识点

人教版新课标B版高中数学所有目录和知识点必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算章复习与测试本章小结第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(i)2.4函数与方程章复习与测试本章小结第三章基本初等函数(i)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(ii)章复习与测试本章小结第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例章复习与测试本章小结第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性章复习与测试本章小结第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用章复习与测试本章小结必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系章复习与测试第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系章复习与测试必修三必修四第一章基本初等函数(ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质章复习与测试第二章平面向量2.1向量的线性运算2.2向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用章复习与测试第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化.章复习与测试必修五第一章解斜角三角形1.1正弦定理和余弦定理1.2应用举例章复习与测试第二章数列2.1数列2.2等差数列2.3等比数列章复习与测试第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线.章复习与测试选修二(2-1)第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.章综合第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线2.5直线与圆锥曲线章综合第三章空间向量与立体几何3.1空间向量及其运算3.2空间向量在立体几何中的应用章综合选修二(2-2)选修4-1几何证明选修4-4坐标系与参数方程选修4-5不等式选讲第一章导数及其应用领域1.1导数1.2导数的运算1.3导数的应用领域1.4定分数与微积分基本定理章备考与测试第二章推理小说与证明2.1合情推理小说与演绎推理2.2直接证明与间接证明2.3数学归纳法章备考与测试第三章数系的扩展与复数3.1数系的扩展与复数的概念3.2复数的运算章备考与测试报读二(2-3)第一章计数原理1.1基本计数原理1.2排序与女团1.3二项式定理章备考与测试第二章概率2.1线性型随机变量及其原产列2.2条件概率与事件的独立性2.3随机变量的数学特征2.4正态分布章备考与测试第三章统计数据案例3.1独立性检验3.2重回分析章备考与测试每章节主要内容:必修课程1子集1.如何区分φ、{φ}、0、{();}?2.子集的运算存有哪些常用性质与结论?3.对应、态射、函数有何关系?必修课程1函数4.求函数解析式有哪些常用方法?5.判断函数单调性有哪些常用方法?6.函数的单调性有哪些应用?7.判断函数奇偶性要注意什么?判断函数奇偶性常用的方法有哪些?8.函数的奇偶性有哪些性质?9.函数一定存在反函数么?什么样的函数存在反函数?10.如何谋二次函数在区间上的最值?11.函数的零点就是函数的图像与x轴的交点吗?它与方程的根有何关系?12.分数指数幂与根式有何关系?13.指数式ab=n与对数式logon中,a,6,n三者之间有何关系?14.指数函数、对数函数存有哪些常见问题?必修课程2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式有哪些限制条件?22.两直线平行、垂直的等价条件是什么?23.什么是直线系?常见的直线系有哪些?有何应用?24.平面解析几何中常用的等距公式存有哪些?25.求圆的方程常用的方法有哪些?26.直线与圆有几种位置关系?如何判断?27.圆与圆存有几种边线关系?如何认定?28.可以写下过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在充分反映总体时存有什么意义?必修3概率39.频率和概率有何关系?40.互斥事件与对立事件有何关系?如何判断互斥事件与对立事件?15.幂函数的图像存有哪几种形式?存有哪些性质?必修2立体几何16.如何证明线线、线面、面面之间的平行和横向?17.四面体中有哪些常见的数量关系和位置关系?18.立体几何中划分与补形存有哪些常用技巧?19.经度、纬度分别指的是什么角?如何求两点间的球面距离?必修2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式存有哪些管制条件?22.两直线平行、横向的等价条件就是什么?23.什么就是直线系则?常用的直线系则存有哪些?有何应用领域?24.平面解析几何中常用的对称公式有哪些?25.求圆的方程常用的方法存有哪些?26.直线与圆存有几种边线关系?如何推论?27.圆与圆有几种位置关系?如何判定?28.会写出过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在反映总体时有什么意义?必修课程3概率39.频率和概率有何关系?40.不相容事件与矛盾事件有何关系?如何推论不相容事件与矛盾事件?……必修4三角函数必修4平面向量必修5解三角形必修5数列必修5不等式报读2-1(报读1-1)直观逻辑报读2-1(报读1-1)圆锥曲线报读2-1空间向量、角度及距离报读2-2导数、微积分定理选修2-2(选修1-2)推理与证明复数选修2-3排列组合、二项式定理、数据分布选修4-1几何证明报读4-4坐标系与参数方程报读4-5不等式选讲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【成才之路】2015-2016学年高中数学第2章 2、3数学归纳法课时作业新人教B版选修2-2一、选择题1.用数学归纳法证明1+q+q2+…+q n+1=错误!(n∈N*,q≠1),在验证n=1等式成立时,等式左边的式子是()A.1B.1+qC.1+q+q2D.1+q+q2+q3[答案] C[解析]左边=1+q+q1+1=1+q+q2、故选C、2。
用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边的式子之比是( )A、错误!B。
错误!C、错误!D。
错误![答案] B[解析]错误!=错误!=错误!、故选B、3.用数学归纳法证明错误!+错误!+…+错误!>错误!(n≥2,n∈N*)的过程中,由n =k递推到n=k+1时不等式左边( )A.增加了一项错误!B.增加了两项错误!+错误!C。
增加了B中两项但减少了一项错误!D。
以上各种情况均不对[答案] C[解析]n=k时,左边=错误!+错误!+…+错误!,n=k+1时,左边=错误!+错误!+…+错误!+错误!+错误!∴增加了错误!+错误!,减少了一项错误!、故选C、4.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k+1)与f(k)的关系是()A。
f(k+1)=f(k)+k-1B。
f(k+1)=f(k)+k+1C。
f(k+1)=f(k)+k+2D。
f(k+1)=f(k)+k[答案] D[解析]因为任何两条不平行,任何三条不共点,所以当增加一条直线时,则增加k个交点,故交点个数为f(k)+k、5.某个与正整数n有关的命题,如果当n=k(k∈N*)时该命题成立,则可推得n=k+1时该命题也成立,现已知n=5时命题不成立,那么可推得( )A。
当n=4时该命题不成立B.当n=6时该命题不成立C。
当n=4时该命题成立D.当n=6时该命题成立[答案] A[解析]由命题及其逆否命题的等价性知选A、6.等式12+22+32+…+n2=错误!(5n2-7n+4)( )A。
n为任何正整数都成立B。
仅当n=1,2,3时成立C。
当n=4时成立,n=5时不成立D。
仅当n=4时不成立[答案] B[解析]经验证,n=1,2,3时成立,n=4,5,…不成立.故选B、7.(2015·枣庄一模)用数学归纳法证明1+2+3+…+n2=错误!,则当n=k+1时左端应在n=k的基础上加上()A.k2+1B.(k+1)2C、错误!D。
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2[答案] D[解析]∵当n=k时,左边=1+2+3+…+k2、当n=k+1时,左边=1+2+3+…+k2+(k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+(k2+3)+…+(k +1)2、8。
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )A。
(k+3)3B。
(k+2)3C。
(k+1)3D。
(k+1)3+(k+2)3[答案] A[解析]因为从n=k到n=k+1的过渡,增加了(k+3)3,减少了k3,故利用归纳假设,只需将(k+3)3展开,证明余下的项9k2+27k+27能被9整除.二、填空题9。
(2015·辽宁师大附中高二检测)用数学归纳法证明“1+2+22+…+2n-1=2n-1(n ∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到________。
[答案]1+2+22+…+2k-1+2k=2k+1-110.用数学归纳法证明当n∈N+时,1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为__________,从k→k+1时需增添的项是________.[答案]1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+411。
使不等式2n>n2+1对任意n≥k的自然数都成立的最小k值为________.[答案] 5[解析]25=32,52+1=26,对n≥5的所有自然数n,2n>n2+1都成立,自己用数学归纳法证明之.三、解答题12.已知f(n)=1+错误!+错误!+…+错误!,n∈N+,求证:n+f(1)+…+f(n-1)=nf(n)(n≥2且n∈N+)。
[证明](1)当n=2时,左边=2+f(1)=3,右边=2f(2)=3,等式成立.(2)假设n=k时,k+f(1)+…+f(k-1)=kf(k)。
当n=k+1时,k+1+f(1)+…+f(k-1)+f(k)=1+f(k)+kf(k)=(k+1)f(k)+1=(k+1)·(f(k)+错误!)=(k+1)f(k+1).即n=k+1时,命题成立.根据(1)和(2),可知结论正确、一、选择题1。
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3…(2n-1)(n∈N+)",则“从k到k+1”左端需乘的代数式为( )A.2k+1 B。
2(2k+1)C、错误!D。
错误![答案] B[解析]n=k时左式=(k+1)(k+2)(k+3)n=k+1时左式=(k+2)(k+3)…(2k+1)(2k+2)故“从k到k+1”左端需乘错误!=2(2k+1).故选B、2.已知数列{a n},a1=1,a2=2,a n+1=2a n+a n-1(k∈N*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证( )A.a4k+1能被4整除B。
a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除[答案] D[解析]在数列{a4n}中,相邻两项下标差为4,所以a4k后一项为a4k+4、故选D、3。
(2015·锦州期中)在数学归纳法证明多边形内角和定理时,第一步应验证( )A.n=1成立B。
n=2成立C.n=3成立D。
n=4成立[答案] C[解析]多边形的边数最少是3,即三角形,∴第一步验证n等于3、4.用数学归纳法证明3k≥n3(n≥3,n∈N),第一步应验证()A。
n=1 B。
n=2C.n=3D.n=4[答案] C[解析]∵n≥3,n∈N,∴第一步应验证n=3时,命题成立.二、填空题5.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k +1)=k(k+1)2,则当n=k+1时,待证表达式应为________.[答案]1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)26.用数学归纳法证明:1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n=1时,左边=20=1,右边=21-1=1,不等式成立;②假设n=k时,等式成立,即1+2+22+…+2k-1=2k-1、则当n=k+1时,1+2+22+…+2k-1+2k=错误!=2k+1-1,所以n=k+1时等式成立。
由此可知对任意正整数n,等式都成立。
以上证明错在何处?____________、[答案]没有用上归纳假设[解析]由数学归纳法证明步骤易知其错误所在。
7。
设S1=12,S2=12+22+12,…,S n=12+22+32+…+n2+…+22+12、用数学归纳法证明S n=错误!时,第二步从“n=k到n=k+1”右边应添加的项为________。
[答案]错误![解析]S k+1-S k=错误!-错误!=错误!、三、解答题8。
在数列{a n}中,a1=a2=1,当n∈N*时,满足a n+2=a n+1+a n,且设b n=a4n,求证:{b n}的各项均为3的倍数.[证明](1)∵a1=a2=1,故a3=a1+a2=2,a4=a3+a2=3、∴b1=a4=3,当n=1时,b1能被3整除。
(2)假设n=k时,即b k=a4k是3的倍数。
则n=k+1时,b k+1=a4(k+1)=a(4k+4)=a4k+3+a4k+2=a4k+2+a4k+1+a4k+1+a4k=3a4k+1+2a4k、由归纳假设,a4k是3的倍数,故可知b k+1是3的倍数。
∴n=k+1时命题正确。
综合(1)、(2)可知,对于任意正整数n,数列{b n}的各项都是3的倍数。
9.若不等式1n+1+错误!+错误!+…+错误!〉错误!对一切正整数n都成立,求正整数a的最大值,并证明你的结论。
[解析]取n=1,错误!+错误!+错误!=错误!,令错误!>错误!,得a<26,且a∈N+、∴取a=25、下面用数学归纳法证明:错误!+错误!+…+错误!〉错误!、①n=1时,结论已证。
②假设n=k(k∈N+)时,错误!+错误!+…+错误!〉错误!,则当n=k+1时,有错误!+错误!+…+错误!+错误!+错误!+错误!=(错误!+错误!+…+错误!)+(错误!+错误!+错误!-错误!)>错误!+[错误!+错误!-错误!].∵错误!+错误!=错误!>错误!,∴错误!+错误!-错误!>0、∴错误!+错误!+…+错误!>错误!,即n=k+1时,结论也成立.由①②可知,对一切n∈N+,都有错误!+错误!+…+错误!>错误!、故a的最大值为25、。