第4章牛顿运动定律8份-章末总结
高中物理必修一 第4章 ——牛顿运动定律考点总结

六、板块模型
第四章 牛顿运动定律
相对静止变为相对运动的临界是静摩擦力达到 最大值
1、以力F没有作用的物体为研究对象,找到临界 加速度a0
2、以整体为研究对象,找到临界拉力F0。 3、若F ≤F0,以整体为研究对象找加速度 4、若F >F0 ,单独以每个物体为研究对象找各自
的加速度
5、找出两物体的位移关系,运用运动学公式解 题
栏目 导引
第四章 牛顿运动定律
二、瞬时加速度:①剪谁谁对物体的作用力就消失 ②轻绳和轻杆弹力能突变,一般情况下从有到无 ③轻弹簧和橡皮条弹力不能突变,即不变 ④分析物体剪前和剪后的受力情况求加速度 例1 图1中所示A、B、C为三个物块,K为轻 质弹簧,L为轻线.系统处于平衡状态, 现若将L突然剪断,用aA、aB分别表示 刚剪断时A、B的加速度,则有( B ) A.aA=0、aB=0 B.aA=0、aB≠0 C.aA≠0、aB≠0 D.aA≠0、aB=0
水平传送带:a=µg
倾斜传送带:a1=µgsinθ+µgcosθ
a2=µgsinθ-µgcosθ
栏目
导引
第四章 牛顿运动定律
例2 如图所示,水平传送带A、B两端点相距 x=3.5m,以v0=2m/s的速度(始终保持不变)顺 时针运转.今将一小煤块(可视为质点)无初速 度地轻放在A点处,已知小煤块与传送带间的动 摩擦因数为0.4.由于小煤块与传送带之间有相 对滑动,会在传送带上留下划痕.小煤块从A运 动到B的过程中( AD ) A、所用的时间是2s B、所用的时间是2.25s C、划痕长度是4m D、划痕长度是0.5m
栏目 导引
第四章 牛顿运动定律
例 3 如图所示,质量为 4 kg 的物体静止于水平面上.现用 大小为 40 N,与水平方向夹角 为 37°的斜向上的力拉物体,使 物体沿水平面做匀加速运动(g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8). (1)若水平面光滑,物体的加速度是多大? (2)若物体与水平面间的动摩擦因数为 0.5, 物体的加速度是多大?
江苏沭阳高级中学第四章知识点总结

第四章牛顿运动定律期末复习考点一:牛顿第一定律亚里士多德——力是维持物体运动的原因伽利略——力是改变物体运动状态的原因科学方法:理想实验的方法牛顿在伽利略理想实验的基础上得出牛顿第一定律——力是改变物体运动状态的原因惯性——一切物体都有保持原来运动状态(及做匀速直线运动或静止)的性质。
1、一切物体都有惯性2、惯性只和物体质量有关,质量大,惯性大。
典型例题:例1、关于伽利略的理想实验,说法正确的是()A. 只要接触面比较光滑,物体在水平面上就能匀速运动下去。
B. 这个实验实际上是永远无法做到的。
C. 利用先进仪器就能使实验成功。
D. 虽然是想象中的实验,但它是建立在可靠的实验基础上的。
例2、牛顿第一定律是 ( )A.是通过斜面小车实验直接得到的结论B.只是通过理论分析得出的规律C.是在实验基础上,经过分析推理得到的结论D.是日常生活得出的结论例3、做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况是( )A.悬浮在空中不动B.速度逐渐减小C.保持一定速度向下匀速直线运动D.无法判断例4、关于运动和力,正确的说法是( )A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零例5、下列现象中,不属于惯性现象应用的是 ( )A.用手拍打衣服上的灰尘B.锤头松了,将锤柄在地上撞几下C.运动员采用助跑跳远D.骑自行车时为了减速捏车闸例6、关于物体的惯性,下列说法中正确的是 ( )A.物体在静止时的惯性比运动时的大; B.物体的惯性随速度增大而增大;C.物体受到的力越大,它的惯性也越大; D.物体的惯性大小跟运动状态、受力情况都没有关系.考点二:加速度与力和质量的关系实验基本方法是控制变量法小车受到的拉力F在平衡摩擦力与小车质量远大于砝码质量的前提下认为等于托盘砝码的总重力mg. 小车的加速度a利用纸带根据Δx=aT2 计算.平衡摩擦力不当时,a-F图形的两种情况本实验存在系统误差.小盘和砝码的总质量越接近小车的质量,误差就越大;反之,误差就越小.典型例题: 例1、在利用打点计时器探究加速度与力、质量的关系的实验中,以下做法正确的是:A.平衡摩擦时,将重物用细绳通过定滑轮系在小车上 B.每次改变小车质量时,不需重新平衡摩擦力C.实验时,先放开小车,后接通电源 D.“重物的质量远小于小车的质量”这一条件如不满足,对探究过程也不会产生影响例2、在“探究加速度与力、质量的关系”的实验中,关于平衡摩擦力的说法中正确的是( ) A.“平衡摩擦力”的本质就是想法让小车受到的摩擦力为零B.“平衡摩擦力”的本质就是使小车所受的重力在沿斜面方向的分力与所受到的摩擦阻力相平衡C.“平衡摩擦力”的目的就是要使小车所受的合力等于所挂砝码通过细绳对小车施加的拉力D.“平衡摩擦力”是否成功,可由小车拖动后由打点计时器打出的纸带上的点迹间距是否均匀而确例3、如图所示,在研究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间两车的位移分别为x1、x2,则在实验误差允许的范围内,有( )A.当m1=m2、F1=2F2时,x1=2x2 B.当m1=m2、F1=2 F2时,x2=2 x1C.当F1=F2、m1=2m2时,x1=2 x2 D.当F1=F2、m1=2 m2时,x2=2x1考点三:牛顿第二定律的理解公式:F =k ma 用国际单位制的单位时k=1,上式简化成F =ma同体性--F、m、a 是对同一个物体而言的瞬时性--F 和a 时刻对应:同时产生、同时消失、同时变化矢量性--a 的方向与F 的方向总是相同独立性--每个力各自独立地使物体产生一个加速度典型例题:例1、静止在光滑水平面上的物体,受一水平拉力,则在力刚开始作用瞬间,正确的是( ) A、物体立即获得加速度和速度 B、物体立即获得加速度,但速度仍为零C、物体立即获得速度,但加速度仍为零D、物体的速度和加速度均为零例2、关于运动和力,正确的说法是 ( )A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零例3、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小到零,又马上使其恢复到原值(方向不变),则 ( )A.物体始终向西运动 B.物体先向西运动后向东运动c.物体的加速度先增大后减小 D.物体的速度先增大后减小例4、设从高空落下的石块受到的空气阻力与它的速度大小成正比,即f=kv,当下落的速度变为10m/s时,其加速度大小为6m/s2,当它接近地面时,已做匀速运动,则石块做匀速运动时的速度是多大?例5、一个物体质量为m,放在一个倾角为θ斜面上,物体从斜面顶端由静止开始加速下滑(1)若斜面光滑,求物体的加速度?(2)若斜面粗糙,已知动摩擦因数为μ,求物体的加速度?考点四:牛顿第二定律的两类题型(1)已知物体的受力,求解物体的运动应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的位置、速度及运动轨迹。
高一物理第四章牛顿运动定律知识要点总结

高一物理第四章牛顿运动定律知识要点总结
高一物理第四章牛顿运动定律知识要点总结
牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性,物理第四章牛顿运动定律知识要点帮助大家更清晰地学习掌握牛顿定律。
一、牛顿第一定律
亚里士多德观点:物体运动需要力来维持。
伽利略观点:物体的运动不须要力来维持,运动之所以停下来,是因为受到了阻力作用。
牛顿第一定律:一切物体在没有收到力的作用时,总保持静止状态或匀速直线运动状态。
(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。
二、探究加速度与力质量的关系
加速度是速度变化量与发生这一变化所用时间的比值
Δv/Δt,是描述物体速度变化快慢的物理量。
加速度(Acceleration)是速度变化量与发生这一变化所用时间的比值Δv/Δt,是描述物体速度变化快慢的物理量。
三、牛顿第二定律
1.定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.
2.公式:F合=ma
牛顿原始公式:F=Δ(mv)/Δt(见牛顿《自然哲学之物理原
而再通过受力分析,来求解出某个力的大小。
七、用牛顿运动定律解决问题(二)
考点1:共点力的平衡条件
考点2:超重和失重
考点3:从动力学看自由落体运动
高一物理第四章牛顿运动定律知识要点的全部内容就是这些,想要继续提升自己同学们一定不要错过必修一物理第四章牛顿运动定律同步练习。
物理必修一第四章知识点总结

第四章牛顿运动定律一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
1.理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量=2/严格相等。
m Fr GM④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
二、牛顿第二定律1. 定律内容成正比,跟物体的质量m成反比。
物体的加速度a跟物体所受的合外力F合=2. 公式:F ma合理解要点:是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;①因果性:F合②方向性:a与F都是矢量,,方向严格相同;合是该时刻作用在该物体上的合外力。
③瞬时性和对应性:a为某时刻物体的加速度,F合错误!牛顿第二定律适用于宏观, 低速运动的情况。
专题三:第二定律应用:1.物体系. (1)物体系中各物体的加速度相同,这类问题称为连接体问题。
这类问题由于物体系中的各物体加速度相同,可将它们看作一个整体,分析整体的受力情况和运动情况,可以根据牛顿第二定律,求出整体的外力中的未知力或加速度。
若要求物体系中两个物体间的相互作用力,则应采用隔离法。
将其中某一物体从物体系中隔离出来,进行受力分析,应用第二定律,相互作用的某一未知力求出,这类问题,应是整体法和隔离法交替运用,来解决问题的。
高一物理第四章牛顿运动定律知识点总结讲解.doc

高一物理第四章《牛顿运动定律一、夯实基础知识1 、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫为止。
理解要点:( 1)运动是物体的一种属性,物体的运动不需要力来维持;( 2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动度定义: a v,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因t生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)量度。
( 4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律( 5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关地给出力与运动的关系。
2 、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式理解要点:( 1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计m i ,对应的加速度为a i ,则有: F 合=m 112233,,n na +m a +m a + +m a对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:∑ F 1=m 1a 1, ∑ F 2 =m 2a 2 , ,, ∑ F n =m n a n ,将以上各式等号左、右分别相加,其中左边所力的, 总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的和,即合外力F 。
必修一第四章《牛顿运动定律》知识点归纳

一、牛顿第一定律[要点导学]1.人类研究力与运动间关系的历史过程。
要知道伽利略的成功在于把“明明白白的实验事实和清清楚楚的逻辑推理结合在一起”,物理学从此走上了正确的轨道。
2.力与运动的关系。
(1)历史上错误的认识是“运动必须有力来维持”(2)正确的认识是“运动不需要力来维持,力是改变物体运动状态的原因”。
3.对伽利略的理想实验的理解。
这个实验的事实依据是运动物体撤去推力后没有立即停止运动,而是运动一段距离后再停止的,摩擦力越小物体运动的距离越长。
抓住这些事实依据的本质属性,并作出合理化的推理,这就是伽利略的高明之处,我们要学习的就是这种思维方法。
4.对“改变物体运动状态”的理解——运动状态的改变就是指速度的改变,速度的改变包括速度大小和速度方向的改变,速度改变就意味着存在加速度。
5.维持自己的运动状态不变是一切物体的本质属性,这一本质属性就是惯性。
揭示物体的这一本质属性是牛顿第一定律的伟大贡献之一。
6.掌握牛顿第一定律的内容。
(1)“一切物体总保持匀速直线运动或者静止状态”——这句话的意思就是说一切物体都有惯性。
(2)“除非作用在它上面的力迫使它改变这种状态”——这句话的意思就是外力是产生加速度的原因。
7.任何物理规律都有适用范围,牛顿运动定律只适用于惯性参照系。
8.质量是惯性大小的量度。
二、实验:探究加速度与力、质量的关系[要点导学]1.实验目的:探究加速度与外力、质量三者的关系。
这个探究目的是在以下两个定性研究的基础上建立起来的。
(1)小汽车和载重汽车的速度变化量相同时,小汽车用的时间短,说明加速度的大小与物体的质量有关。
(2)竞赛用的小汽车与普通小轿车质量相仿,但竞赛用的小车能获得巨大的牵引力,所以速度的变化比普通小轿车快,说明加速度的大小与外力有关。
2.实验思路:本实验的基本思路是采用控制变量法。
(1)保持物体的质量不变,测量物体在不同外力作用下的加速度,探究加速度与外力的关系。
探究的方法采用根据实验数据绘制图象的方法,也可以彩比较的方法,看不同的外力与由此外力产生的加速度的比值有何关系。
4.8牛顿运动定律章末总结

教 学 重 点 、 难 点 教 学 方 法 教 学 手 段
重点:牛顿运动定律的应用 难点:牛顿运动定律的应用、受力分析。
复习提问、讲练结合。
多媒体教学设备.
第 1 页 共 6 页
教 学 活 动
(一)引入新课 (一)投影全章知识脉络,构建知识体系
学 生 活 动
(二)本章复习思路突破 Ⅰ 物理思维方法 l、理想实验法:它是人们在思想中塑造的理想过程,是一种逻辑推理的思维过程和理 论研究的重要思想方法。 “理想实验”不同于科学实验,它是在真实的科学实验的基础 上,抓主要矛盾,忽略次要矛盾,对实际过程作出更深层次的抽象思维过程。 惯性定律的得出,就是理想实验的一个重要结论。 2、控制变量法:这是物理学上常用的研究方法,在研究三个物理量之间的关系时,先 让其中一个量不变,研究另外两个量之间的关系,最后总结三个量之间的关系。在研 究牛顿第二定律,确定 F、m、a 三者关系时,就是采用的这种方法。 3、整体法:这是物理学上的一种常用的思维方法,整体法是把几个物体组成的系统作 为一个整体来分析,隔离法是把系统中的某个物体单独拿出来研究。将两种方法相结 合灵活运用,将有助于简便解题。 Ⅱ 基本解题思路 应用牛顿运动定律解题的一般步骤 1、认真分析题意,明确已知条件和所求量。 2、选取研究对象。所选取的研究对象可以是一个物体,也可以是几个物体组成的整体. 同一题目,根据题意和解题需要也可以先后选取不同的研究对象。 3、分析研究对象的受力情况和运动情况。 4、当研究对象所受的外力不在一条直线上时,如果物体只受两个力,可以用平行四边 形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合 力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。 5、根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据 规定的正方向按正、负值代入公式,按代数和进行运算。 6、求解方程,检验结果,必要时对结果进行讨论。 (三)知识要点追踪 Ⅰ 物体的受力分析 物体受力分析是力学知识中的基础,也是其重要内容。正确分析物体的受力情况,是 研究力学问题的关键,是必须掌握的基本功。 对物体进行受力分析,主要依据力的概念,分析物体所受到的其他物体的作用。具体
高中物理 第四章 牛顿运动定律章末总结(讲)(基础版,含解析)新人教版必修1

第四章 牛顿运动定律章末总结※知识点一、整体法、隔离法分析连接体问题 1.连接体两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起. 2.处理连接体问题的方法(1)整体法:把整个系统作为一个研究对象来分析的方法.不必考虑系统内力的影响,只考虑系统受到的外力.(2)隔离法:把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法.此时系统的内力就有可能成为该研究对象的外力,在分析时要特别注意. (3)整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交叉运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析. 【典型例题】【例题1】如图,两个质量分别为m 1=2 kg 、m 2 = 3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接。
两个大小分别为F 1=30N 、F 2 =20N 的水平拉力分别作用在m 1、m 2上,则A .弹簧秤的示数是20 NB .弹簧秤的示数是25 NC .在突然撤去F 2的瞬间,m 1的加速度大小为5 m/s 2D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 2 【答案】D【解析】将两物体和弹簧看做一个整体,根据牛顿第二定律可得2512123020/2/5F F a m s m s m m --===+,对1m 分析可得11F F m a -=,联立解得11302226F F m a N N =-=-⨯=,AB 错误;在突然撤去2F 的瞬间,因为弹簧的弹力不能发生突变,所以1m 的受力没有发生变化,故加速度大小仍为22m /s ,故C 错误;突然撤去1F 的瞬间,1m 的受力仅剩弹簧的弹力,对1m 列牛顿第二定律得:1F m a =,解得:213/a m s =,故D 正确.【名师点睛】两个大小分别为123020F N F N ==、的水平拉力导致物体受力不平衡,先选整体为研究对象进行受力分析,列牛顿第二定律解出加速度,再隔离单独分析一个物体,解出弹簧受力;在突然撤去2F 的瞬间,弹簧的弹力不变,对两物块分别列牛顿第二定律,解出其加速度【针对训练】(多选)如图所示,在光滑的桌面上有M 、m 的两个物块,现用力F 推物块,使M 、m 两物块在桌上一起向右加速,则M 、m 间的相互作用力为A 、若桌面光滑,作用力为MFM m +B 、若桌面光滑,作用力为mFM m+C 、若桌面的摩擦因数为μ,M 、m 仍向右加速,则M 、m 间的相互作用力为MFMg M m μ++D 、若桌面的摩擦因数为μ,M 、m 仍向右加速,则M 、m 间的相互作用力为MFM m+【答案】AD【名师点睛】分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用整体隔离法可以较简单的分析问题 ※知识点二、动力学的临界问题 1.概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态. (2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况. 2.关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件. 3.常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛的问题;三是摩擦力发生突变的滑动与不滑动问题. 4.解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件. 常见的三类临界问题的临界条件:(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零. (2)绳子松弛的临界条件是:绳的拉力为零. 【典型例题】【例题2】如图所示,质量为m 的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,斜边与水平面夹角为θ=30°,求:(1)劈以加速度a 1=g /3水平向左加速运动时,绳的拉力多大? (2)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (3)当劈以加速度a 3=2g 向左运动时,绳的拉力多大?【答案】 (1)3+36mg (2)3g ,方向水平向左;(3)5mg【解析】 (1)如图所示,水平方向:F T1cos θ-F N1sin θ=ma 1① 竖直方向:F T1sin θ+F N1cos θ=mg ②由①②得:F T1=3+36mg .③【针对训练】如图所示,有一块木板静止在光滑而且足够长的水平面上,木板的质量为M =4 kg 、长为L =1.4 m ,木板右端放着一个小滑块,小滑块质量m =1 kg ,其尺寸远小于L ,小滑块与木板间的动摩擦因数为μ=0.4.(g 取10 m/s 2)(1)现用恒力F 作用在木板M 上,为使m 能从M 上面滑落下来,问:F 大小的范围是多少?(2)其他条件不变,若恒力F =22.8 N ,且始终作用在M 上,最终使得m 能从M 上滑落下来,问:m 在M 上面滑动的时间是多少? 【答案】 (1)F >20 N (2)2 s※知识点三、动力帝的图象问题物理图象信息量大,包含知识内容全面,好多习题已知条件是通过物理图象给出的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理·必修1(人教版)
章末总结
1.掌握解决动力学两类问题的思路方法.
其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.
2.力的处理方法. (1)平行四边形定则.
由牛顿第二定律F 合=ma 可知,F 合是研究对象m 受到的外力的合力;加速度a 的方向与F 合的方向相同.解题时,若已知加速度的方向就可推知合力的方向;反之,若已知合力的方向,亦可推知加速度的方向.
(2)正交分解法.
物体受到三个或三个以上的不在同一直线上的力作用时,常用正交分解法.
表示方法⎩⎪⎨⎪⎧
F x =ma x F y
=ma y
为了减少矢量的分解,建立直角坐标系时,一般不分解加速度.
风洞实验室中可产生水平方向的、大小可调节的风力.现将
一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径(如
动力学两类基本问题
图所示)
(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.
(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s所需时间为多少?(sin 37°=0.6,cos 37°=0.8)
解析:(1)设小球所受的风力为F,小球的质量为m,因小球做匀速运动,则F=μmg,F=0.5mg,所以μ=0.5.
(2)小球受力分析如图所示.根据牛顿第二定律,沿杆方向上有
F cos 37°+mg sin 37°-F f=ma,
垂直于杆的方向上有F N+F sin 37°-mg cos 37°=0
又F f=μF N
可解得:
a =F cos 37°+mg sin 37°-μ(mg cos 37°-F sin 37°)m =34g 由s =1
2at 2得t =
2s a =
8s 3g
.
答案:(1)0.5 (2)8s 3g
►跟踪训练
1.用水平力F 拉一物体在水平地面上匀速运动,从某时刻起力F 随时间均匀减小,物体所受的摩擦力f 随时间t 的变化如图中实线所示.下列说法正确的是( )
A .0~t 1内匀速运动
B .t 1~t 2内匀速运动
C .t 1~t 2内变减速运动
D .t 2~t 3内变减速运动 答案:C
2.如图所示为粮袋的传送装置,已知AB 间长度为L ,传送带与水平方向的夹角为θ,工作时其运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带
上,关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)()
A.粮袋到达B点的速度与v比较,可能大,也可能相等或小B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将一定以速度v做匀速运动
C.若μ≥tan θ,则粮袋从A到B一定一直是做加速运动
D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a >g sin θ
答案:A
整体法与隔离法解物体的平衡问题
整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法.
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵巧地解决问题.通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(或一个物体的各部分)间相互作用时,用隔离法;有时解答一个问题需要多次选取研究对象,此时整体法和隔离法要灵活应用.
用轻质细线把两个质量未知的小球悬挂起来,如下图甲所示.今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡.表示平衡状态的图可能是图乙中的()
解析:方法一:将a、b两球及两球间的绳看作一个物体系统,以这个系统为研究对象.因为作用在a、b上的恒力等大反向,其合外力平衡,而a、b受的重力竖直向下,要保持平衡,故a到悬点的细绳的力必然沿竖直方向向上.
方法二:也可以分别将a、b隔离进行受力分析,分别对a、b 两球列出水平分力的平衡方程即可.以C图为例,受力如下图所示.
对a:水平方向有F1cos 30°=T1cos α+T2cos β,
对b:水平方向有F2cos 30°=T2 cos β,
因为F1=F2,所以T1 cos α=0,
由于T1≠0,故α=90°.
答案:A
►跟踪训练
1.如图,两个固定的倾角相同的滑竿上分别套A、B两个圆环,两个圆环上分别用细线悬吊着两个物体C、D,当它们都沿滑竿向下滑动时,A的悬线始终与竿垂直,B的悬线始终竖直向下.则下列说法中正确的是()
A.A环与滑竿无摩擦力
B.B环与滑竿无摩擦力
C.A环做的是匀速运动
D.B环做的是匀加速运动
答案:A
2.一根水平粗糙的横杆上,套有两个质量均为m的小铁环,两铁环上系着两条等长的细线,共同拴住一个质量为M的球,两铁环和球均处于静止状态,如右图所示,现使两环间距稍许增大后系统仍处于静止状态,则水平横杆对铁环的支持力N和摩擦力f的变化是()
A.N不变,f不变B.N不变,f变大
C.N变大,f不变D.N变大,f变小
答案:B
物理思想方法的应用
当物体运动的加速度发生变化时,物体可能从一种状态变化为另一种状态,这个转折点叫做临界状态,可理解为“将要出现”但“还没有出现”的状态.
1.常见类型有:
(1)隐含弹力发生突变的临界条件.
弹力发生在两物体接触面之间,是一种被动力,其大小取决于物体所处的运动状态,当运动状态达到临界状态时,弹力会发生突变.
(2)隐含摩擦力发生突变的临界条件.
静摩擦力是被动力,其存在及其方向取决于物体之间的相对运动的趋势,而且静摩擦力存在最大值.静摩擦力为零的状态,是方向变化的临界状态;静摩擦力为最大静摩擦力是物体恰好保持相对静止的临界条件.
2.可用以下方法进行临界状态分析:
(1)采用极限法分析,即加速度很大或很小时将会出现的状态,
则加速度取某一值时就会出现转折点——临界状态.
(2)临界状态出现时,往往伴随着“刚好脱离”“即将滑动”等类似隐含条件,因此要注意对题意的理解及分析.
(3)在临界状态时某些物理量可能为零,列方程时要注意.
如右图所示斜面光滑,一个质量是0.2 kg的小球用细线吊在倾角为53°的斜面的顶端,斜面静止,球紧靠在斜面上,绳与斜面平行.
(1)当斜面以a1=8 m/s2的加速度向右做匀加速运动时,绳子拉力及斜面对小球的支持力是多少?当斜面以a2=5 m/s2的加速度向右运动时呢?
(2)若斜面向左加速运动,小球相对于斜面静止,细绳的拉力恰好为零时,斜面对小球的支持力是多少?加速度是多少?(g取10 m/s2)
解析:设小球刚好离开斜面时系统的加速度为a0,斜面支持力F N=0,
此时对小球受力分析如右图
则mg cot θ=ma .
得:a 0=g cot 53°=7.5 m/s 2. (1)a 1=8 m/s 2>a 0,
所以小球离开斜面,F N =0, T 0=(mg )2+(ma 1)2=2.56 N.
当a 2=5 m/s 2<a 0时,此时小球未离开斜面F N ≠0, 对小球受力分析如右图
则⎩
⎪⎨⎪⎧
T cos θ-F N sin θ=ma 2T sin θ+F N cos θ-mg =0 得:T =2.2 N ,F N =0.4 N.
(2)对小球受力分析如右图
则F合=mg tan θ=ma3,得:a3=g tan θ=13.3 m/s2,
F N=
mg
cos θ=3.33 N.
答案:(1)2.56 N0 2.2 N0.4 N
(2)3.33 N13.3 m/s2
►跟踪训练
1.(双选)一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的是()
A.若小车向右运动,N可能为零
B.若小车向左运动,T可能为零
C.若小车向右运动,N不可能为零
D.若小车向左运动,T不可能为零
答案:AB
2.如图所示,有一块木板静止在光滑水平面上,质量M=4 kg,长L=1.4 m.木板右端放着一个小滑块,小滑块质量m=1 kg,其尺寸远小于L,小滑块与木板间的动摩擦因数为μ=0.4.(取g=10 m/s2)求:
(1)现将一水平恒力F作用在木板上,为使小滑块能从木板上面滑落下来,则F大小的范围是多少?
解析:要使小滑块能从木板上滑下,则小滑块与木板之间应发生相对滑动,此时,对小滑块分析得出μmg=ma1,解得a1=4 m/s2,对木板分析得出F-μmg=Ma2,
加速度a1、a2均向右,若小滑块能从木板上滑下,则需要满足a2>a1,解得F>20 N.
答案:F>20 N
(2)其他条件不变,若恒力F=22.8 N,且始终作用在木板上,最终使得小滑块能从木板上滑落下来,则小滑块在木板上面滑动的时间是多少?
解析:当F=22.8 N时,由(1)知小滑块和木板发生相对滑动,对
木板有F-μmg=Ma3,则a3=4.7 m/s2.
设经时间t,小滑块从木板上滑落,则1
2a3t
2-
1
2a1t
2=L,
解得:t=-2 s(舍去)或t=2 s.答案:2 s。