《圆锥的体积练习课》课件

合集下载

人教版六年级数学下册《圆锥的认识》PPT优秀课件

人教版六年级数学下册《圆锥的认识》PPT优秀课件

行业PPT模板:/hangy e/ P P T素材下载:www.1ppt.c om /suc a i/ P P T图表下载:www.1ppt.c om /tubia o/ PPT教程: /powerpoint/ Exc e l教程:www.1ppt.c om /e xc e l/ P P T课件下载:www.1ppt.c om /ke j ia n/ 试卷下载:www.1ppt.c om /shiti/
3、反馈练习。
为了让每一个学生都充分得到提高,个 性得到发展,我设计出了目标明确,重点突 出,层次分明的练习。
1)、出示各种立体图形让学生找出圆锥。
2)、说一说你见过的哪些物体是圆锥形的。
3)、用硬纸做一个圣诞老人的帽子,再量出 它的底面直径与高各是多少?
4、总结
让学生来总结本课的知识或 谈一下自己的学习体会。
3 读书百遍,其义自见。
意思是:能把一本书读过百遍,其中的含义自然就领会了。出自《三国志•魏书》。
4 读书破万卷,下笔如有神。
意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫《奉赠韦左丞丈二十二韵》。
5 大志非才不就,大才非学不成。
意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材《郑敬中摘语》。
二、教材处理
由于已经是五年级的学生了,他 们的动手能力,接受能力,分析问题 的能力和语言表达能力都有明显的提 高,所以在教学时让学生动手实践, 交流合作,让学生在具体情境中亲自 体验感知圆锥的特征与测量高的方法。 鼓励学生主动参与,并根据具体情况 想出多种测量高的方法。
三、教学方法
根据学生的年龄特点以及我对教材的 分析、挖掘,本节课主要用实践探究的教 学方法。首先让学生根据学具触摸探究圆 锥的特征。然后学生动手实践,合作交流 测量高的方法。然后让学生练习、总结新 知。教学中注重让学生在实践中学习新知, 交流体会新知,培养学生创新能力。

【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。

北师大版六年级下册《圆锥的体积练习课》优秀ppt教学课件

北师大版六年级下册《圆锥的体积练习课》优秀ppt教学课件
(米,圆锥体体 积是( 2)立方厘米。
应用题
• 一个圆锥形煤堆,高3米,底面 周长12.56米,如每立方米的煤 重1.4吨,这堆煤重多少吨?
圆锥的体积练习课
教学目标
• 1.通过练习,进一步理解和掌握圆锥体积公 式,能运用公式正确迅速地计算圆锥的体 积。
• 2.通过练习,进一步深刻理解圆柱和圆锥体 积之间的关系。
• 3.进一步培养将所学知识运用和服务于生活 的能力。
口答
1.一个圆柱体积是27立方分米,与它等 底等高的圆锥体积是( 9 )立方分米.
• 3.一个圆锥的底面周长是18.84米,高是 4米,它的体积是多少?
判断题
1.圆柱体积是圆锥体积的3倍。 (× )
2.一个圆柱木块削成一个最大的圆锥, 削去了圆柱体积的 2 。 (√ )
3
1 3
3分.一米个,圆体锥积,1底立面方积分是米13。平(方分√ )米,高是
27
填空
(1)一个圆锥体的体积是a立方分米, 和它等底等高的圆柱体体积是(3 a )立方 分米。
2.一个圆锥体积是150立方厘米,与它等 底等高的圆柱体积是( 450 )立方厘米.
求圆柱的体积。
1.圆柱的底面积是3平方米,高5米。 3×5=15(立方米)
2.圆柱的底面半径是2分米,高10分米。 3.14×22 ×10=125.6(立方分米)
3.圆柱的底面直径是2米,高3米。 3.14×12 ×3=9.42(立方米)
4.圆柱的底面周长是62.8米,高4米。 3.14×102 ×4=1256(立方米)
把圆柱体削成圆锥体
V=1413立方厘米
V=?
V=1413立方厘米
4V71=厘? 米
做一 做 • 1.一个圆锥的底面积是25平方分米,高

圆锥的体积练习课

圆锥的体积练习课

三、填表:
已知条 件
圆锥底面半径2厘米,高9厘米 圆锥底面直径6厘米,高3厘米
体积
圆锥底面周长6.28分米,高6分 米
圆锥形的煤堆 ,量得底面周长 1 米,它的体积是 3 米?
V= s h
一、基本练习
锥的体积关系。
积是12.56平方厘米,高6分米, 体积是多少? 直径8厘米,高5厘米,和它等底 少?
体积一定比圆锥体的体积大
积等于和它等底等高的圆柱 )
长方体、圆锥体的体积都等 。
锥顶点到底面圆心的距离叫做
()
圆锥的体积等于圆柱体积的三 () 一个圆柱削成最大的圆锥,削 的体积是圆柱体积的三分之一 圆锥体积是2立方分米,和它 () 的圆柱体积是6立方分米
()
一个圆柱体铅块,可以铸成2 锥体零件。
h
h
r r 圆柱的底面积是圆锥底面积的 , 圆锥的底面积是圆柱底面积的 3倍 。
的体积比圆锥体积多——。 的体积比圆柱体积少——
的体积= ),用字母表示是
)。
体积的( )与和它 )的圆锥的体积相等。
圆柱和一个圆锥等底等高,
形的麦堆体积是24立方米,量 底面半径是( )米。 的体积是48立方分米,削成一 了( )立方分米。 面积不变,高扩大3倍,它的 如果它的高不变,底面半径扩 ( )倍。
2、把一个底面半径3厘米, 长10厘米的圆柱形钢件铸成 一个底面积是3.14平方厘米 的圆锥形零件,这个圆锥形 零件的高是多少厘米?
有一根底面直径是6厘米,长是15 厘米的圆柱形钢材,要把它削成与 它等底等高的圆锥形零件。要削去 钢材多少立方厘米?
6厘米
15厘米
圆柱ቤተ መጻሕፍቲ ባይዱ圆锥体 体积的练习课
课件制作:张天恽

3.《圆锥的体积练习课》课件(09)[1]

3.《圆锥的体积练习课》课件(09)[1]

7.把一个长9.42分米、宽5分米、高2 分米的长方体铁块熔铸成一个底面半径 是3分米的圆锥,圆锥的高是多少分米?
一个圆锥形小麦堆,底面周长是 15.7米,高是3米,把这堆小麦装进 底面直径为4米的圆柱形粮囤里,可 以装多少高?
h=3米
C=15.7米
练习六
8. 小明家去年秋季收获的稻 谷堆成了圆锥形,高2m,底面 直径是3m。 (1)这堆稻谷的体积是多少? (2)如果每立方米稻谷重650kg,这堆稻谷重多少千 克(?1)13 ×3.14×(3÷2)²×2≈4.71(m³) 答:这堆稻谷的体积是4.71m³。
(2)650×4.71=3061.5(千克)
答:这堆稻谷重3061.5千克。

练习六
(3)小明家有0.4公顷稻田,平均每公顷产稻谷多 少千克?
3061.5÷0.4=7653.75(千克) 答:平均每公顷产稻谷7653.75千克。 (4)如果每千克稻谷售价为2.8元,这些稻谷能卖 多少钱?
一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。
(1 )如果把它捏成同样底面大小的圆锥,这个圆锥的 高是多少?
15cm
(2)如果把它捏成同样高
的圆锥,这个圆锥的底面
积是多少?
36cm2
第二关——巧思考
2.有两个空的玻璃容器,先在 圆水锥倒形入12容圆×器柱13里形=注容4(满器厘,水圆米,再 柱)形把容这 器里的水深多少厘米?
侧面 底面
圆锥的侧面和底面
侧面
底面
圆锥的侧面展开图是扇 形,底面是一个圆形。
底面周长等于扇形弧线的长度。
圆锥如果从顶点沿着高切成两个半圆锥,是什么样子的?
圆锥从顶点沿着高切开后,多出了两个等腰三角形的面, 每个三角形的底是圆锥的底面直径,三角形的高就是圆 锥的高。每个三角形的面积=底面直径×高÷2

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

圆锥的体积练习课上课用

圆锥的体积练习课上课用

二、回答下面的问题,并列出算式。 回答下面的问题,并列出算式。 一个圆柱形水桶,底面半径10分米 分米, 分米。 一个圆柱形水桶,底面半径 分米,高20分米。 分米 给这个水桶加个盖,是求哪个部分? ①给这个水桶加个盖,是求哪个部分? 给这个水桶加个箍,是求哪个部分? ②给这个水桶加个箍,是求哪个部分? 给这个水桶的外面涂上油漆,是求哪个部分? ③给这个水桶的外面涂上油漆,是求哪个部分? 这个水桶能装多少水,是求哪个部分? ④这个水桶能装多少水,是求哪个部分?
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
18分米 分米 6分米 4分米 4分米 分米
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
2米
2米 米
底面积: 平方米 底面积:4平方米
底面积:12平方米 底面积: 平方米
山羊伯伯送给狐狸和小白兔各一堆粮食, 山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 小白兔又笑了笑,要了圆柱形粮堆。 小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜 了吗? 了吗?
18.84÷6= 3.14 dm2
20÷4= 5 dm
5×3.14= 15.7 dm3
一个圆柱形玻璃容器的底面直径是20厘米, 一个圆柱形玻璃容器的底面直径是20厘米, 20厘米 现在把一块石块放入容器里的水中, 现在把一块石块放入容器里的水中,水面上升 厘米。这块石块的体积是多少? 了2厘米。这块石块的体积是多少?

圆锥的体积练习课

圆锥的体积练习课

圆锥的体积练习课学习目标:1、掌握求圆锥体积推导过程和体积的计算方法;2、运用所学知识解决有关问题学习重点:圆锥体体积计算。

学习难点:圆锥体积实际运用学习过程:一、复习:圆锥的体积推导和公式是什么?二、基本练习1、第一题:填空:采用学生独立解答,集体订正。

(1)一个圆锥与一个圆柱等底等高,已知圆锥的体积18立方米,圆柱的体积是()。

(2)一个圆锥与一个圆柱等底等高,已知圆柱的体积12立方厘米,圆锥的体积是()。

2、第二题:(1)、求体积3厘米(2)一个圆锥底面积是15平方厘米,高是4厘米,它的体积是多少?(3)一个圆锥直径是6厘米,高是5厘米,它的体积是多少?(4)一个圆锥底面周长是25.12厘米,高是2厘米,它的体积是多少?(让学生熟练各种形式的求圆锥体积的方法 ,还可能出现哪些情况?(圆锥的底面积不直接告诉)(A)已知圆锥的底面半径和高,求体积。

(B)已知圆锥的底面直径和高,求体积。

(C)已知圆锥的底面周长和高,求体积。

学生独立解答,集体订正。

3、选择(1)、底面积、体积分别相等的圆柱和圆锥,如果圆锥的高是15cm,圆柱的高是()cmA 15B 45C 5D 30(2)、把一个圆柱锻造成圆锥()不变。

A底面积 B侧面积 C表面积 D体积三、综合练习(1)、一个圆锥的体积是75.36立方分米,底面半径是2分米,它的高是多少分米?(2)、一个圆锥形的沙堆,底面积是16平方米,高是2.4米,用这堆沙在10米宽的公路上铺2厘米的路面,能铺多少米?(3)、把一个底面半径是1分米,高是6分米的圆柱形木料加工成一个最大的圆锥,①圆锥的体积是多少立方分米?②要削去多少立方分米的木料?四、检测评价1、填空⑴已知圆锥的底面半径和高,求体积。

先用公式()求();再用公式()求()。

⑵已知底面直径和高,求体积。

先用公式()求();再用公式()求();最后用公式()求()。

⑶已知底面周长和高,求体积。

先用公式()求();再用公式()求();最后用公式()求()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.圆柱的底面周长是62.8米,高4米。 3.14×102 ×4=1256(立方米)
把?
V=1413立方厘米
4V71=厘? 米
做一 做 • 1.一个圆锥的底面积是25平方分米,高
是12分米,它的体积是多少?
• 2.一个圆锥的底面直径是20厘米,高是9 厘米,它的体积是多少?
• 3.一个圆锥的底面周长是18.84米,高是 4米,它的体积是多少?
判断题
1.圆柱体积是圆锥体积的3倍。 (× )
2.一个圆柱木块削成一个最大的圆锥, 削去了圆柱体积的 2 。 (√ )
3
1 3
3分.一米个,圆体锥积,1底立面方积分是米13。平(方分√ )米,高是
27
填空
(1)一个圆锥体的体积是a立方分米, 和它等底等高的圆柱体体积是(3 a )立方 分米。
圆锥的体积练习课
教学目标
• 1.通过练习,进一步理解和掌握圆锥体积公 式,能运用公式正确迅速地计算圆锥的体 积。
• 2.通过练习,进一步深刻理解圆柱和圆锥体 积之间的关系。
• 3.进一步培养将所学知识运用和服务于生活 的能力。
口答
1.一个圆柱体积是27立方分米,与它等 底等高的圆锥体积是( 9 )立方分米.
2.一个圆锥体积是150立方厘米,与它等 底等高的圆柱体积是( 450 )立方厘米.
求圆柱的体积。
1.圆柱的底面积是3平方米,高5米。 3×5=15(立方米)
2.圆柱的底面半径是2分米,高10分米。 3.14×22 ×10=125.6(立方分米)
3.圆柱的底面直径是2米,高3米。 3.14×12 ×3=9.42(立方米)
(2)把一段圆钢切削成一个最大的圆锥 体,圆柱体体积是6立方厘米,圆锥体体 积是( 2)立方厘米。
应用题
• 一个圆锥形煤堆,高3米,底面 周长12.56米,如每立方米的煤 重1.4吨,这堆煤重多少吨?
相关文档
最新文档