上海交大附中2017-2018学年高二(下)期中数学试卷 Word版含解析
【解析】上海市宝山区交大附中2018-2019学年高二下学期期中考试数学试题

上海交通大学附属中学2018-2019学年度第二学期高二数学期中考试试卷一、填空题:本大题共12个小题,满分54分. 将答案填在答题纸上1.如果一条直线与两条平行直线都相交,那么这三条直线共可确定_________个平面.【答案】1【分析】两条平行直线确定1个平面,根据两点在平面上可知直线也在平面上,从而得到结果. 【详解】两条平行直线可确定1个平面Q 直线与两条平行直线交于不同的两点 ∴该直线也位于该平面上∴这三条直线可确定1个平面本题正确结果:1【点睛】本题考查空间中直线与平面的关系,属于基础题.2.已知球的体积为36π,则该球主视图的面积等于________【答案】9π由球的体积公式,可得34363r ππ=,则3r =,所以主视图的面积为239S ππ=⨯=. 3.若正三棱柱的所有棱长均为a ,且其体积为a = .【答案】4试题分析:2V a =⨯=4a =. 考点:棱柱的体积.【名师点睛】1.解答与几何体的体积有关的问题时,根据相应的体积公式,从落实公式中的有关变量入手去解决问题,例如对于正棱锥,主要研究高、斜高和边心距组成的直角三角形以及高、侧棱和外接圆的半径组成的直角三角形;对于正棱台,主要研究高、斜高和边心距组成的直角梯形.2.求几何体的体积时,若给定的几何体是规则的柱体、锥体或台体,可直接利用公式求解;若给定的几何体不能直接利用公式得出,常用转换法、分割法、补形法等求解.4.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB u u u u r 的坐标为(4,3,2),则1AC u u u u v 的坐标为________【答案】(4,3,2)-如图所示,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在直线为坐标轴,建立空间直角坐标系,因为1DB u u u u r 的坐标为(4,3,2),所以(4,0,0),(0,3,2)A C ,所以1(4,3,2)AC =-u u u u v.5.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示). 【答案】1arccos 3.设圆锥的底面半径为r ,母线长为l ,由题意23rl r ππ=,即3l r =,母线与底面夹角为θ,则1cos 3r l θ==为,1arccos 3θ=. 【考点】圆锥的性质,圆锥的母线与底面所成的角,反三角函数.6.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,,A B 是下底面圆周上两个不同的点,BC 是母线,如图,若直线OA 与OB 所成角的大小为6π,则1r=__________【答案】试题分析:如图,过A 作与BC 平行的母线AD ,连接OD ,则∠OAD 为直线OA 与BC 所成的角,大小为,在直角三角形ODA 中,因为∠OAD=,所以,故答案为。
上海市上海交通大学附属中学2017-2018学年高二下学期3月月考数学试题

(2)求到两定点 、 的“直角距离”和为定值 的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)
① , , ;
② , , ;
③ , , .
(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).
(2)答案不唯一,见解析
(3) 、 、 、 、 、 、 、 、 ,理由见解析
【解析】
【分析】
(1)由“直角距离”的定义知 ,进而得到所求点坐标;
(2)根据“直角距离”的定义,分别结合条件①②③,得到动点轨迹方程;利用分类讨论的方式去掉绝对值符号即可得到不同区间内动点的轨迹,从而做出图形;
(3)由条件①可得: ;由条件②可得: ,在平面直角坐标系中做出两个条件下的点构成的区域,取交集,结合图形得到最终结果.
11.已知椭圆 的焦距为 ,则实数 __________.
12.已知 , 是实系数一元二次方程 的两根,则 的值为__________.
13.若 为非零实数,则下列四个命题都成立:
① ② ③若 ,则
④若 ,则 。则对于任意非零复数 ,上述命题仍然成立的序号是 。
14.如图, 是三角形 所在平面外的一点, ,且 , 、 分别是 和 的中点,则异面直线 与 所成角的大小为__________(用反三角函数表示).
【详解】
由双曲线的相关性质可知,双曲线 的焦点为 ,顶点为 ,
所以椭圆的顶点为 ,焦点为 ,
因为 ,所以椭圆的方程为 ,
故答案为 。
【点睛】
本题考查圆锥曲线的相关性质,主要考查椭圆、双曲线的几何性质,考查椭圆的标准方程,正确运用椭圆、双曲线的几何性质是关键.
2017-2018学年上海交大附中高二(下)期末数学试卷(J)

2017-2018学年上海交大附中高二(下)期末数学试卷(J)副标题题号一二三总分得分一、选择题(本大题共4小题,共4.0分)1.设地球的半径为R,地球上A,B两地都在北纬45∘的纬度线上去,且其经度差为90∘,则A,B两地的球面距离是()A. πRB. πR2C. πR3D. πR6【答案】C【解析】解:设在北纬45∘的纬圆的圆心为C,球心为O,连结OA、OB、OC、AC、BC,则OC⊥平面ABCRt△ACO中,AC=OAcos45∘=√22R,同理BC=√22R,∵A、B两地经度差为90∘,∴∠ACB=90∘,Rt△ABC中,AB=√AC2+BC2=R由此可得△AOB是边长为R的等边三角形,得∠AOB=π3∴A、B两地的球面距离是π3R.故选:C.设在北纬45∘的纬圆的圆心为C,球心为O,连结OA、OB、OC、AC、BC.根据地球纬度的定义,算出小圆半径AC=BC=√22R.由A、B两地经度差为90∘,在Rt△ABC中算出AB=√AC2+BC2=R,从而得到∠AOB=π3,利用球面距离的公式加以计算,即可得到A、B两地的球面距离.本题求地球上北纬45度圈上两点的球面距离,着重考查了球面距离及相关计算、经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于基础题.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都平行于γ②存在平面γ,使得α,β都垂直于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l//α,l//β,m//α,m//β.其中,可以判定α与β平行的条件有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:①α与β平行.此时能够判断①存在平面γ,使得α,β都平行于γ;两个平面平行,所以正确.②存在平面γ,使得α,β都垂直于γ;可以判定α与β平行,如正方体的底面与相对的侧面.也可能α与β不平行.②不正确.③不能判定α与β平行.如α面内不共线的三点不在β面的同一侧时,此时α与β相交;④可以判定α与β平行.∵可在α面内作l′//l,m′//m,则l′与m′必相交.又∵l//β,m//β,∴l′//β,m′//β,∴α//β.故选:B.直线与平面的位置关系,平面与平面的位置关系,对选项进行逐一判断,确定正确选项即可.本题考查平面与平面平行的判定与性质,平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,是基础题.3.一个正方体的展开图如图所示,B,C,D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为()A. √510B. √105C. √55D. √1010【答案】D【解析】解:还原正方体如右图所示设AD=1,则AB=√5,AF=1,BE=EF=2√2,AE=3,CD与AB所成角等于BE与AB所成角,所以余弦值为cos∠ABE=2×√5×2√2=√1010,故选:D.先还原正方体,将对应的字母标出,CD与AB所成角等于BE与AB所成角,在三角形ABE中再利用余弦定理求出此角的余弦值即可.本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.4.已知函数y=f(x)的图象是一条连续不断的曲线,若f(0)=A,f(1)=B,那么下列四个命题中①必存在x∈[0,1],使得f(x)=A+B2;②必存在x∈[0,1],使得f(x)=√AB;③必存在x∈[0,1],使得f(x)=√A2+B22;④必存在x∈[0,1],使得f(x)=21A+1B.真命题的个数是()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:函数y=f(x)的图象是一条连续不断的曲线,若f(0)=A,f(1)=B,对于①,由y=f(x)−A+B2,[f(0)−A+B2]⋅[f(1)−A+B2]=−(A−B)22≤0,可得函数y存在零点,即①成立;对于②,由y=f(x)−√AB,[f(0)−√AB]⋅[f(1)−√AB]=(A−√AB)(B−√AB),若A>0,B>0,则上式为−√AB(√A−√B)2≤0,可得函数y存在零点;若A<0,B<0,则上式>0,可得函数y不一定存在零点;即有②不成立;对于③,由y=f(x)−√A2+B22,[f(0)−√A2+B22]⋅[f(1)−√A2+B22]=[A−√A2+B22][B−√A2+B22],若A<0,B<0,则上式>0,可得函数y不一定存在零点;即有③不成立;对于④,由y=f(x)−21A+1B,[f(0)−21A+1B]⋅[f(1)−21A+1B]=(A−21A+1B]⋅[B−21A+1B]=−ABA+B⋅(A−B)2,若AB(A+B)<0,则上式>0,可得函数y不一定存在零点;即有④不成立.故选:A.对于①,由y=f(x)−A+B2;对于②,由y=f(x)−√AB;对于③,由y=f(x)−√A2+B22;对于④,由y=f(x)−21A+1B,运用函数零点存在定理,即可判断是否成立.本题考查命题的真假判断,注意运用函数的零点存在定理,考查运算能力,属于中档题.二、填空题(本大题共12小题,共12.0分)5.函数f(x)=√x+1+12−x的定义域为______.【答案】[−1,2)U(2,+∞)【解析】解:根据题意:{2−x≠0x+1≥0解得:x≥−1且x≠2∴定义域是:[−1,2)∪(2,+∞)故答案为:[−1,2)∪(2,+∞)根据负数不能开偶次方根和分母不能为零来求解,两者求解的结果取交集.本题主要考查定义域的求法,这里主要考查了分式函数和根式函数两类.6.表面积为π的球的体积为______.【答案】16π【解析】解:由S=4πR2=π得R=12,所以V=43πR3=π6.则该球的体积为π6.故答案为:π6.先根据球的表面积,就可以利用公式得到半径,再求解该球的体积即可.本题考查球的体积和表面积,主要考查学生对公式的利用,是基础题.7.(2x−1x)7的二项展开式中,x项的系数是______.(用数字作答)【答案】−448【解析】解:(2x−1x )7的二项展开式的通项为T r+1=C7r(2x)7−r(−1x)r=(−1)r⋅27−r⋅C7r⋅x7−2r.由7−2r=1,得r=3.∴(2x−1x)7的二项展开式中,x项的系数是−24×C73=−448.故答案为:−448.写出二项展开式的通项,由x的指数为1求得r值,则答案可求.本题考查二项式定理的应用,关键是熟悉二项展开式的通项,是基础题.8.高一(10)班有男生36人,女生12人,若用分层抽样的方法从该班的全体同学中抽取一个容量为8的样本,则抽取男生的人数为______人.【答案】6【解析】解:由分层抽样的定义得抽取男生的人数为3636+12×8=3648×8=6人,故答案为:6根据分层抽样的定义建立比例关系即可得到结论.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.9.6个人排成一行,其中甲、乙两人不相邻的不同排法共有______种.(用数字作答)【答案】480【解析】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有A44中方法,然后把甲、乙两人插入4个人的5个空位,有A52种方法,所以共有:A44⋅A52=480.故答案为:480.排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.10.若交大附中共有400名教职工,那么其中至少有两人生日在同一天的概率为______.【答案】1【解析】解:∵交大附中共有400名教职工,∴其中至少有两人生日在同一天是必然事件,∴其中至少有两人生日在同一天的概率为1.故答案为:1.交大附中共有400名教职工,其中至少有两人生日在同一天是必然事件,由此能求出其中至少有两人生日在同一天的概率.本题考查概率的求法,考查必然事件等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.设函数f(x)=ln(1+|x|)−11+x2,则使得f(x)>f(2x−1)成立的x的取值范围为______.【答案】13<x<1【解析】解:由函数的解析式可得函数f(x)是定义域上的偶函数,且x>0时函数单调递增,则不等式等价于:f(|x|)>f(|2x−1|),脱去f 符号有:|x|>|2x −1|,求解关于实数x 的不等式可得使得f(x)>f(2x −1)成立的x 的取值范围为13<x <1. 故答案为:13<x <1.首先确定函数的单调性和函数的奇偶性,然后脱去f 符号求解自变量的取值范围即可. 本题考查函数的单调性,函数的奇偶性,不等式的解法等,重点考查学生对基础概念的理解和计算能力,属于中等题.12. 在长方体ABCD −A 1B 1C 1D 1中,AB =BC =4,AA 1=2,则直线BC 1与平面BB 1D 1D所成角的正弦值为______. 【答案】√105【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则B(2,2,0),C 1(0,2,1),D(0,0,0),D 1(0,0,1), BC 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,1),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1),设平面BB 1D 1D 的法向量n⃗ =(x,y ,z), 则{n⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0n ⃗ ⋅DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =z =0,取x =1,得n⃗ =(1,−1,0),设BC 1与平面BB 1D 1D 所成的角为θ, 则sinθ=|n ⃗⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n⃗⃗ |=√105. ∴BC 1与平面BB 1D 1D 所成的角的正弦值为:√105.故答案为:√105.以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出BC 1与平面BB 1D 1D 所成的角的正弦值.本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.13. 一个正方体的8个顶点可以组成______个非等边三角形. 【答案】48【解析】解:一个正方体的8个顶点可以组成C 83=56个三角形, 其中等边三角形有8个,如图所示;所以非等边三角形有56−8=48个.故答案为:48.找出一个正方体的8个顶点可以组成三角形的个数,去掉等边三角形的个数,即得所求.本题考查了空间几何体的结构特征应用问题,是基础题,14.将集合M={1,2,…,12}的元素分成互不相交的三个子集:M=A∪B∪C,其中A={a1,a2,a3,a4},B={b1,b2,b3,b4},C={c1,c2,c3,c4},且a k+b k=c k,k=1,2,3,4,则满足条件的集合C有______个.【答案】3【解析】解:若A={1,2,3,4},B={5,8,7,9},则C={6,10,12,11},若A={1,2,3,4},B={5,6,8,10},则C={7,9,12,11},若A={1,2,3,4},B={5,6,7,11},则C={8,10,12,9},故满足条件的集合C为3个,故答案为:3.讨论集合A与集合B,根据完并集合的概念知集合C本题考查集合的交、并、补的混合运算,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.15.设非空集合A为实数集的子集,若A满足下列两个条件:(1)0∈A,1∈A;(2)对任意x,y∈A,都有x+y∈A,x−y∈A,xy∈A,xy∈A(y≠0)则称A为一个数域,那么命题:①有理数集Q是一个数域;②若A为一个数域,则Q⊆A;③若A,B都是数域,那么A∩B也是一个数域;④若A,B都是数域,那么A∪B也是一个数域.其中真命题的序号为______.【答案】①②③④【解析】解:由已知中数域的定义可得:则有理数集Q满足定义,是一个数域,故①正确;若A为一个数域,则A中包含任意整数和分数,故Q⊆A,故②正确;若A,B都是数域,那么Q⊆A∩B,故A∩B中的元素均满足定义,故A∩B也是一个数域,故③正确;若A,B都是数域,那么Q⊆A∪B,故A∪B中的元素均满足定义,故A∪B也是一个数域,故④正确;故真命题的序号为①②③④,故答案为:①②③④根据已知中数域的定义,逐一分析给定四个答案的真假,可得答案.本题考查的知识点是命题的真假判断与应用,正确理解数域的定义,是解答的关键.16.已知函数f(x)=−2x2+bx+c在x=1时有最大值1,0<m<n,并且x∈[m,n]时,f(x)的取值范围为[1n ,1m],则m+n=______.【答案】3+√32【解析】解:根据题意,函数f(x)=−2x2+bx+c在x=1时有最大值1,则有−b−4=b4=1,即b=4,且−2+4+c=1,解可得c=−1,则f(x)=−2x2+4x−1,又有x ∈[m,n]时,f(x)的取值范围为[1n ,1m ], 则1m ≤1,解可得m ≥1, f(x)在[m,n]上单调递减, 则有f(m)=1m ,f(n)=1n ,即有m 、n 是方程−2x 2+4x −1=1x 的两个根, −2x 2+4x −1=1x ⇒(x −1)(2x 2−2x −1)=0, 其根为1、1+√32、1−√32,又有1≤m <n , 则m =1,n =1+√32,则m +n =3+√32; 故答案为:3+√32.根据题意,结合二次函数的性质分析可得b 、c 的值,即可得f(x)=−2x 2+4x −1,进而可得1m ≤1,解可得m ≥1,分析可得f(x)在[m,n]上单调递减,据此可得f(m)=1m ,f(n)=1n ,即有m 、n 是方程−2x 2+4x −1=1x 的两个根,又有−2x 2+4x −1=1x ⇒(x −1)(2x 2−2x −1)=0,求出方程的根,分析可得m 、n 的值,相加即可得答案. 本题考查二次函数的性质以及应用,关键是求出m 、n 的值,属于基础题.三、解答题(本大题共5小题,共5.0分)17. 某公司生产一种产品,每年投入固定成本0.5万元,此外,每生产1件这种产品还需要增加投入25元,经测算,市场对该产品的年需求量为500件,且当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t −12t 2(万元). (1)若该公司这种产品的年产量为x(单位:百件).试把该公司生产并销售这种产品所得的年利润y 表示为年产量x 的函数;(2)当该公司的年产量x 多大时,当年所得利润y 最大? 【答案】解:(1)由题意得:y ={(5x −12x 2)−0.5−0.25x,0<x ≤5(5×5−12×52)−0.5−0.25x,x >5={−12x 2+194x −12,0<x ≤5−14x +12,x >5(6分) (2)当0<x ≤5时,函数对称轴为x =194=4.75∈(0,5),故x =4.75时y 最大值为34532. (3分) 当x >5时,函数单调递减,故y <−54+12=434<34532,(3分)所以当年产量为475件时所得利润最大. (2分)【解析】(1)由已知中某公司生产一种产品,每年投入固定成本0.5万元,此外,每生产1件这种产品还需要增加投入25元,经测算,市场对该产品的年需求量为500件,且当t2(万元).根据年出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t−12利润=销售额−成立,构造出该公司生产并销售这种产品所得的年利润y表示为年产量x 的函数.(2)根据(1)的分段函数解析式,我们分别求出各段上函数的最大值,进而得到该公司当年所得利润y的最大值,及相应的生产量.本题考查的知识点是函数模型的选择与应用,函数的值域,分段函数的解析式求法,二次函数的性质,其中(1)中要注意由于市场对该产品的年需求量为500件,故要分0<x≤5,x>5两种情况将问题转化为分段函数模型,(2)要注意分段函数最值,分段处理.18.解关于x的不等式ax2+ax−1>x.(a∈R)【答案】解:关于x的不等式ax2+ax−1>x,a∈R;①当a=0时,解不等式得x<−1;②当a≠0时:(i)若a>0,则不等式化为ax2+(a−1)x−1>0,因为△=(a−1)2+4a=(a+1)2>0,;所以不等式化为:(ax−1)(x+1)>0,解得x<−1或x>1a<x<−1;(ii)当−1<a<0时,不等式化为(−ax+1)(x+1)<0,解得1a(iii)当a=−1时,不等式化为x2+2x+1<0,此时解集为空集;(iv)当a<−1时,不等式化为(−ax+1)(x+1)<0,解得−1<x<1;a综上,a=0时,不等式的解集为(−∞,−1);,+∞);a>0时,不等式的解集为(−∞,−1)∪(1a,−1);−1<a<0时,不等式的解集为(1aa=−1时,不等式的解集为空集;).a<−1时,不等式的解集为(−1,1a【解析】讨论a=0以及a>0和−1<a<0、a=−1以及a<−1时,求出对应不等式的解集.本题考查了含有字母系数的不等式的解法与应用问题,是中档题.19.如图,二面角D−AB−E的大小为π,四边形ABCD是边长2为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求二面角B−AC−E的大小;(3)求点D到平面ACE的距离.【答案】(1)证明:∵BF ⊥平面ACE ,∴BF ⊥AE ,∵二面角D −AB −E 为直二面角,且CB ⊥AB ,∴CB ⊥平面ABE , ∴CB ⊥AE , ∵BF ∩CB =B ,∴AE ⊥平面BCE ,则AE ⊥BE ;(2)解:设二面角B −AC −E 的大小为θ, 由(1)知,AE ⊥EB ,AE ⊥EC ,在Rt △AEB 中,由AB =2,可得AE =EB =√2, 则S △AEB =12×√2×√2=1,在Rt △CBE 中,由BE =√2,BC =2,可得EC =√6, ∴S △AEC =12×√2×√6=√3, ∴cosθ=S △AEB S △AEC=1√3=√33,即θ=arccos√33; (3)解:设点D 到平面ACE 的距离为h , 则V E−ADC =V D−ACE ,即12×13×2×2×1=13×√3ℎ,则ℎ=2√33, 即点D 到平面ACE 的距离为2√33. 【解析】(1)由BF ⊥平面ACE ,得BF ⊥AE ,再由二面角D −AB −E 为直二面角,且CB ⊥AB ,可得CB ⊥平面ABE ,则CB ⊥AE ,由线面垂直的判断可得AE ⊥平面BCE ,从而得到AE ⊥BE ;(2)设二面角B −AC −E 的大小为θ,分别求出三角形AEB 与三角形AEC 的面积,由两三角形面积比为二面角B −AC −E 的余弦值求解;(3)设点D 到平面ACE 的距离为h ,由V E−ADC =V D−ACE 列式求解点D 到平面ACE 的距离.本题考查空间中直线与直线、直线与平面间位置关系的判定,考查二面角平面角的求法,训练了利用等积法求多面体的体积,是中档题.20. 设全体空间向量组成的集合为V ,a⃗ =(a 1,a 2,a 3)为V 中的一个单位向量,建立一个“自变量”为向量,“应变量”也是向量的“向量函数”f(x ⃗ ):f(x ⃗ )=−x ⃗ +2(x ⃗ ⋅a ⃗ )a ⃗ (x ⃗ ∈V). (1)设u ⃗ =(1,0,0),v ⃗ =(0,0,1),若f(u ⃗ )=v ⃗ ,求向量a ⃗ ; (2)对于V 中的任意两个向量x ⃗ ,y ⃗ ,证明:f(x ⃗ )⋅f(y ⃗ )=x ⃗ ⋅y ⃗ ; (3)对于V 中的任意单位向量x ⃗ ,求|f(x ⃗ )−x ⃗ |的最大值.【答案】解:(1)依题意得:f(u⃗ )=−u ⃗ +2(u ⃗ ⋅a ⃗ )a ⃗ =v ⃗ , 设a⃗ =(x,y,z), 代入运算得:{2x 2−1=02xy =02xz =1,解得a ⃗ =(√22,0,√22)或a ⃗ =(−√22,0,−√22).证明:(2)设x⃗ =(a,b,c),y ⃗ =(m,n,t),a ⃗ =(a 1,a 2,a 3), 则f(x⃗ )⋅f(y ⃗ )=[−x ⃗ +2(x ⃗ ⋅a ⃗ )a ⃗ ]⋅[−y ⃗ +2(y ⃗ ⋅a ⃗ )a ⃗ ]=x ⃗ ⋅y ⃗ −4(y ⃗ ⋅a ⃗ )(x ⃗ ⋅a ⃗ )+4(y ⃗ ⋅a ⃗ )(x ⃗ ⋅a ⃗ )(a ⃗ )2=x ⃗ ⋅y ⃗ −4(y ⃗ ⋅a ⃗ )(x ⃗ ⋅a ⃗ )+4(y ⃗ ⋅a ⃗ )(x ⃗ ⋅a ⃗ )=x ⃗ ⋅y ⃗ . ∴f(x ⃗ )⋅f(y ⃗ )=x ⃗ ⋅y ⃗ .解:(3)设x⃗ 与a ⃗ 的夹角为α, 则x ⃗ ⋅a ⃗ =|x ⃗ |⋅|a ⃗ |cosα=cosα, 则|f(x ⃗ )−x ⃗ |=|2x ⃗ −2(x ⃗ ⋅a ⃗ )a ⃗ |=√(2x ⃗ −2cosαa ⃗ )2=√4−4cos 2α≤2, ∴|f(x ⃗ )−x ⃗ |的最大值为2.【解析】(1)f(u⃗ )=−u ⃗ +2(u ⃗ ⋅a ⃗ )a ⃗ =v ⃗ ,设a ⃗ =(x,y,z),列方程组能求出向量a ⃗ . (2)设x ⃗ =(a,b,c),y ⃗ =(m,n,t),a ⃗ =(a 1,a 2,a 3),由此能证明f(x ⃗ )⋅f(y ⃗ )=x ⃗ ⋅y ⃗ . (3)设x ⃗ 与a ⃗ 的夹角为α,则x ⃗ ⋅a ⃗ =|x ⃗ |⋅|a ⃗ |cosα=cosα,由此能求出|f(x ⃗ )−x ⃗ |的最大值为2.本题考查向量的求法,考查等式的证明,考查向量的模的最大值的求法,考查向量、向量的模、向量的数量积公式等基础知识,考查推理能力与计算能力,考查函数与方程思想,是中档题.21. 对于函数y =f(x),若关系式t =f(x +t)中变量t 是变量x 的函数,则称函数y =f(x)为可变换函数.例如:对于函数f(x)=2x ,若t =2(x +t),则t =−2x ,所以变量t 是变量x 的函数,所以f(x)=2x 是可变换函数.(1)求证:反比例函数g(x)=kx (k >0)不是可变换函数; (2)试判断函数y =−x 3是否是可变换函数并说明理由;(3)若函数ℎ(x)=log b x 为可变换函数,求实数b 的取值范围.【答案】(1)证明:假设g(x)是可变换函数,则t =g(x +t)=kx+t ⇒t 2+tx −k =0, ∵变量x 是任意的,故当△=x 2+4k <0时,此时有关变量t 的一元二次方程无解, 与假设矛盾,故原结论正确,∴反比例函数g(x)=kx (k >0)不是可变换函数; (2)解:若y =−x 3是可变换函数,则t =−(x +t)3, 则有关t 的两个函数:{ℎ(t)=(t +x)3ϕ(t)=−t必须有交点,而φ(t)连续且单调递减,值域为R ,ℎ(t)连续且单调递增,值域为R , ∴这两个函数φ(t)与ℎ(t)必定有交点,即变量t 是变量x 的函数,故y =−x 3是可变换函数;(3)解:函数ℎ(x)=log b x 为可变换函数,则t =ℎ(x +t)⇒t =log b (x +t),若b >1,则t 恒大于log b (x +t),即函数y =t 与y =log b (t +x)无交点,不满足题意; 若0<b <1,则{y =log b (t +x)y=t必定有交点,即方程t =log b (x +t)有解,从而满足题意,∴实数b 的取值范围为(0,1).【解析】(1)利用可变换函数的定义结合反证法证明;(2)由题意可得t =−(x +t)3,结合关于t 的两函数y =−t 与y =(x +t)3有交点可得函数y =−x 3是可变换函数;(3)由题意可得t =log b (x +t),若b >1,则t 恒大于log b (x +t),函数y =t 与y =log b (t +x)无交点;若0<b <1,则{y =log b (t +x)y=t必定有交点,从而得到实数b 的取值范围.本题是新定义题,考查函数解析式的求解及常用方法,考查逻辑思维能力与推理运算能力,属中档题.第11页,共11页。
最新上海交通大学附属中学2017-2018高二下学期期末考试数学试题含答案

2018年交附高二下数学期末试卷第Ⅰ卷(共54分)一、填空题(本大题共12题,1-6题每题4分,7-12题每题5分,满分54分,将答案填在答题纸上) 1.函数()112f x x x=+-的定义域为 . 2.表面积为π的球的体积为 .3.712x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 项的系数是 .(用数字作答)4.高一(10)班有男生36人,女生12人,若用分层抽样的方法从该班的全体同学中抽取一个容量为8的样本,则抽取男生的人数为 人.5.6人并排站成一行,其中甲、乙两人必须相邻,那么不同的排法有 种.(用数学作答)6.若交大附中共有400名教职工,那么其中至少有两人生日在同一天的概率为 .7.设函数()()21ln 11f x x x =+-+,则使得()()21f x f x >-成立的x 的取值范围是 .8.在长方体1111ABCD A B C D -中,4AB BC ==,12AA =,则直线1BC 与平面11BB D D 所成角的正弦值为 .9.一个正方体的8个顶点可以组成 个非等边三角形. 10.将集合{}1,2,,12M =的元素分成互不相交的三个子集:M A B C =,其中{}1234,,,A a a a a =,{}1234,,,B b b b b =,{}1234,,,C c c c c =,且k k k a b c +=,1,2,3,4k =,则满足条件的集合C 有 个.11.设非空集合A 为实数集的子集,若A 满足下列两个条件: (1)0A ∈,1A ∈;(2)对任意,x y A ∈,都有x y A +∈,x y A -∈,xy A ∈,()0xA y y∈≠ 则称A 为一个数域,那么命题:①有理数集Q 是一个数域;②若A 为一个数域,则Q A ⊆;③若A ,B 都是数域,那么A B也是一个数域;④若A ,B 都是数域,那么AB 也是一个数域.其中真命题的序号为 .12.已知函数()22f x x bx c =-++在1x =时有最大值1,0m n <<,并且[],x m n ∈时,()f x 的取值范围为11,n m ⎡⎤⎢⎥⎣⎦,则m n += .第Ⅱ卷(共96分)二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.13.设地球的半径为R ,地球上A ,B 两地都在北纬45的纬度线上去,且其经度差为90,则A ,B 两地的球面距离是( ) A .R π B .2R π C.3R π D .6Rπ 14.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得//l α,//l β,//m α,//m β 其中,可以判定α与β平行的条件有( )A .1个B .2个 C. 3个 D .4个15.一个正方体的展开如图所示,点B ,C ,D 为原正方体的顶点,点A 为原正方体一条棱的中点,那么在原来的正方体中,直线CD 与AB 所成角的余弦值为( )A .10 B .5 C.5 D .1016.已知函数()y f x =的图像是一条连续不断的曲线,若()0f A =,()1f B =,那么下列四个命题中①必存在[]0,1x ∈,使得()2A Bf x +=;②必存在[]0,1x ∈,使得()f x =;③必存在[]0,1x ∈,使得()222A B f x +=; ④必存在[]0,1x ∈,使得()211f x A B=+.真命题的个数是( )A .1个B .2个 C. 3个 D .4个三、解答题 (本大题共5小题,共76分.解答应写出文字说明、证明过程或演算步骤.) 17. 某公司生产一种产品,每年投入固定成本0.5万元.此外,每生产1件这种产品还需要增加投入25万元.经测算,市场对该产品的年需求量为500件,且当出售的这种产品的数量为t (单位:百件)时,销售所得的收入约为2152t t -(万元). (1)若该公司这种产品的年产量为x (单位:百件),试把该公司生产并销售这种产品所得的年利润y 表示为年产量()x x R +∈的函数;(2)当该公司的年产量x 为多少时,当年所得利润y 最大?最大为多少? 18. 解关于x 的不等式21ax ax x +->.(a R ∈) 19. 如图,二面角D AB E --的大小为2π,四边形ABCD 是边长为2的正方形,AE EB =,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE BE ⊥;(2)求二面角B AC E --的大小; (3)求点D 到平面ACE 的距离.20. 设全体空间向量组成的集合为V ,()123,,a a a a =为V 中的一个单位向量,建立一个“自变量”为向量,“应变量”也是向量的“向量函数”()()()():2f x f x x x a a x V =-+⋅∈.(1)设()1,0,0u =,()0,0,1v =,若()f u v =,求向量a ; (2)对于V 中的任意两个向量x ,y ,证明:()()f x f y x y ⋅=⋅; (3)对于V 中的任意单位向量x ,求()f x x -的最大值.21. 对于函数()y f x =,若关系式()t f x t =+中变量t 是变量x 的函数,则称函数()y f x =为可变换函数.例如:对于函数()2f x x =,若()2t x t =+,则2t x =-,所以变量t 是变量x 的函数,所以()2f x x =是可变换函数. (1)求证:反比例函数()()0kg x k x=>不是可变换函数; (2)试判断函数3y x =-是否是可变换函数并说明理由; (3)若函数()log b h x x =为可变换函数,求实数b 的取值范围.试卷答案一、填空题 1.[)()1,22,-+∞ 2.16π 3.448- 4.6 5.480 6.1 7.113x <<8.5 9.48 10.3 11. ①②③④12.32+ 二、选择题 13-16:CBDA 三、解答题17.解析:(1)由题意得:2221119150.50.25,05,0522421112,55550.50.25,542x x x x x x x y x x x x ⎧⎛⎫⎧---<≤-+-<≤ ⎪⎪⎪⎪⎝⎭⎪=⇒⎨⎨⎛⎫⎪⎪-+>⨯-⨯--> ⎪⎪⎪⎩⎝⎭⎩;(2)当05x <≤时,函数对称轴为(]190,54x =∈, 故当194x =时,max 34532y =; 当5x >时,函数单调递减,故543345124432y <-+=<, 所以当年产量为475件时,所得利润最大. 18.解析:讨论法! ①当0a =时,1x <-; ②当0a ≠时:1 0a >,()2110ax a x +-->,因为()()221410a a a ∆=-+=+>,故等式左边因式分解得:()()()1110,1,ax x x a ⎛⎫-+>⇒∈-∞-+∞ ⎪⎝⎭; 2当10a -<<时,()()11101ax x x a-++<⇒<<-; 3当1a =-时,2210x x ++<,此时解集为空集;4当1a <-时,()()11101ax x x a-++<⇒-<<; 19.解析:(1)证明:∵BF ⊥平面ACE ,∴BF AE ⊥,∵二面角D AB E --为直二面角,且CB AB ⊥,∴CB ⊥平面ABE , ∴CB AE ⊥,∴AE ⊥平面BCE . (2)arcsin3;(3)3. 20.解析:(1)依题意得:()()2f u u u a a v =-+⋅=,设(),,a x y z =,代入运算得:2210220,0,21x xy a xz ⎧-=⎛⎪=⇒= ⎨ ⎝⎭⎪=⎩或2,0,a ⎛=- ⎝⎭;(2)设(),,x a b c =,(),,y m n t =,()123,,a a a a =,则()()()()22f x f y x x a a y y a a ⎡⎤⎡⎤⋅=-+⋅⋅-+⋅⎣⎦⎣⎦()()()()()()()()()24444x y y a x a y a x a ax y y a x a y a x a x y =⋅-⋅⋅+⋅⋅=⋅-⋅⋅+⋅⋅=⋅从而得证;(3)设x 与a 的夹角为α,则cos cos x a x a αα⋅=⋅=, 则()()()22222cos 44cos 2f x x x x a a x a α-=-⋅=-=-≤,故最大值为2.21.解析:(1)证明:假设()g x 是可变换函数,则()20kt g x t t tx k x t=+=⇒+-=+, 因为变量x 是任意的,故当240x k ∆=+<时,此时有关变量t 的一元二次方程无解, 则与假设矛盾,故原结论正确,得证;(2)若3y x =-是可变换函数,则()3t x t =-+,则有关t 的两个函数:()()()3t t h t t x ϕ=-⎧⎪⎨=+⎪⎩必须有交点,而()t ϕ连续且单调递减,值域为R , ()h t 连续且单调递增,值域为R ,所以这两个函数()t ϕ与()h t 必定有交点,即:变量t 是变量x 的函数,所以3y x =-是可变换函数;(3)函数()log b h x x =为可变换函数,则()()log b t h x t t x t =+⇒=+,若1b >,则t 恒大于()log b x t +,即无交点,不满足题意;()log b tt x ==+必定有交点,即方程()log b t x t =+有解,从而满足题意.单独统一招生考试语文冲刺模拟试题(五)总分:__________一、语文知识(每小题4分,共40分)】内讧.(h òng ) 呼号.(h ào ) 循规蹈矩. (j ǔ) 押解.(ji è) 贿赂.(l ù) 脍.(ku ài )炙人 埋.(m án )怨 勉强.(qi ǎng ) 含情脉脉.(m ò) 剽.(pi āo )悍 拘泥.(n ì) 拈.(ni ān )轻怕 】磐竹难书 临渊羡鱼,不如退而结网 并行不背 功欲善其事,必先利其器 一诺千金 城门失火,殃及池鱼自立更生 穷则独善其身,达则兼济天下 】_________这个成语的含义通常不很好。
上海市交通大学附属中学2018-2019学年高二下学期期中数学试题

…………装校:___________姓…………装绝密★启用前 上海市交通大学附属中学2018-2019学年高二下学期期中数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .3 B .3 C . D . 2.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( ) C.1 3.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )……○…………线……题※※ ……○…………线……A.227 B.258 C.15750 D.355113 4.在正方体''''ABCD A B C D 中,若点P (异于点B )是棱上一点,则满足PB 和'AC 所成的角为45的点P 有( ) A .6个 B .4个C .3个D .2个…………○……○…………订………学校______班级:___________考号:______…………○……○…………订………第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 5.如果一条直线与两条平行直线都相交,那么这三条直线共可确定_________个平面. 6.已知球的体积为36π,则该球主视图的面积等于________ 7.若正三棱柱的所有棱长均为a ,且其体积为a = .8.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为()4,3,2,则AC 的坐标是______. 9.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示). 10.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,,A B 是下底面圆周上两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则1r =__________ 11.已知ABC ∆三个顶点到平面α的距离分别是3,3,6,则其重心到平面α的距离为__________.(写出所有可能值) 12.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动, 则·DC AP 的取值范围 是 .○…………外……………订…………………线……※※线※※内※※答※※题※○…………内……………订…………………线……13.如图,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ∆,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则折叠后以(),,,A B C D O 为顶点的四面体的体积为__________. 14.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则34x y +的最大值为__________.15.已知,,,A B C P 为半径为R 的球面上的四点,其中,,AB AC BC 间的球面距离分别为3R π,2R π,2R π,若OP xOA yOB zOC =++,其中O 为球心,则x y z ++的最大值是__________.16.如图,在四面体ABCD 中,,E F 分别为,AB CD 的中点,过EF 任作一个平面α分别与直线,BC AD 相交于点,G H ,则下列结论正确的是___________.①对于任意的平面α,都有直线GF ,EH ,BD 相交于同一点;②存在一个平面0a ,使得点G 在线段BC 上,点H 在线段AD 的延长线上; ③对于任意的平面α,都有EFG EFH S S ∆∆=;④对于任意的平面α,当,G H 在线段,BC AD 上时,几何体AC EGFH -的体积是一个定值.…………○…………○…………订………学校:_________班级:___________考号:______…………○…………○…………订………三、解答题 17.现有四个正四棱柱形容器,1号容器的底面边长是a ,高是b ;2号容器的底面边长是b ,高是a ;3号容器的底面边长是a ,高是a ;4号容器的底面边长是b ,高是b .假设a b ¹,问是否存在一种必胜的4选2的方案(与,a b 的大小无关),使选中的两个容器的容积之和大于余下的两个容器的容积之和?无论是否存在必胜的方案,都要说明理由.18.如图,已知圆锥底面半径20r cm =,O 为底面圆圆心,点Q 为半圆弧AC 的中点,点P 为母线SA 的中点,PQ 与SO 所成的角为arctan 2,求: (1)圆锥的侧面积; (2),P Q 两点在圆锥面上的最短距离. 19.如图,在四棱锥P ABCD -中PA ⊥底面ABCD ,DAB ∠为直角,//AB CD ,222AD CD AB PA ====,,E F 分别为,PC CD 的中点. (1)试证:CD ⊥平面BEF ; (2)求BC 与平面BEF 所成角的大小; (3)求三棱锥P DBE -的体积. 20.如图,P ABC -是底面边长为1的正三棱锥,,,D E F 分别为棱长,,PA PB PC 上外…………○…………线…………○…※※请内…………○…………线…………○…(棱长和是指多面体中所有棱的长度之和)(1)证明:P ABC-为正四面体;(2)若12PD PA=,求二面角D BC A--的大小;(结果用反三角函数值表示)(3)设棱台DEF ABC-的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF ABC-有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P ABC-的体积减去棱锥P DEF-的体积.)21.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型构筑物。
2018-2019学年上海市交大附中高二(下)期中数学试卷

2018-2019学年上海市交大附中高二(下)期中数学试卷一、填空题1.(3分)如果一条直线与两条直线都相交,这三条直线共可确定个平面.2.(3分)已知球的体积为36π,则该球主视图的面积等于.3.(3分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.4.(3分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.5.(3分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).6.(3分)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.7.(3分)已知△ABC三个顶点到平面α的距离分别是3,3,6,则其重心到平面α的距离为(写出所有可能值)8.(3分)正方体ABCD﹣A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则的取值范围是.9.(3分)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为.10.(3分)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则3x+4y的最大值为11.(3分)已知A、B、C、P为半径为R的球面上的四点,其中AB、AC、BC间的球面距离分别为、、,若,其中O为球心,则x+y+z的最大值是12.(3分)如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面α分别与直线BC,AD相交于点G,H,则下列结论正确的是.①对于任意的平面α,都有直线GF,EH,BD相交于同一点;②存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;③对于任意的平面α,都有S△EFG=S△EFH;④对于任意的平面α,当G,H在线段BC,AD上时,几何体AC﹣EGFH的体积是一个定值.二、选择题13.(3分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π14.(3分)如图,在大小为45°的二面角A﹣E F﹣D中,四边形ABFE与CDEF都是边长为1的正方形,则B与D两点间的距离是()A.B.C.1D.15.(3分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式2V≈L h相当于将圆锥体积公式中的π近似取为()A.B.C.D.16.(3分)在正方体ABCD﹣A′B′C′D′中,若点P(异于点B)是棱上一点,则满足BP与AC′所成的角为45°的点P的个数为()A.0B.3C.4D.6二、解答题17.现在四个正四棱柱形容器,1号容器的底面边长是a,高是b;2号容器的底面边长是b,高是a;3号容器的底面边长是a,高是a;4号容器的底面边长是b,高是b.假设a≠b,问是否存在一种必胜的4选2的方案(与a、b的大小无关),使选中的两个容器的容积之和大于余下的两个容器的容积之和?无论是否存在必胜的方案,都要说明理由18.如图,已知圆锥底面半径r=20cm,O为底面圆圆心,点Q为半圆弧的中点,点P 为母线SA的中点,PQ与SO所成的角为arctan2,求:(1)圆锥的侧面积;(2)P,Q两点在圆锥侧面上的最短距离.19.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD =2AB=2PA=2,E、F分别为PC、CD的中点.(1)试证:CD⊥平面BEF;(2)求BC与平面BEF所成角的大小;(3)求三棱锥P﹣DBE的体积.20.如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P﹣ABC为正四面体;(2)若,求二面角D﹣BC﹣A的大小(结果用反三角函数值表示);(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P﹣ABC的体积减去棱锥P ﹣DEF的体积).21.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)2018-2019学年上海市交大附中高二(下)期中数学试卷参考答案与试题解析一、填空题1.(3分)如果一条直线与两条直线都相交,这三条直线共可确定1或2或3个平面.【分析】讨论这两条直线的位置情况,从而得出三条直线所确定的平面数.【解答】解:如果三条直线都交于一点,且三线不共面,则每两条直线都确定一个平面,共确定3个平面;如果三条直线两两相交,交于不同的三点,则只确定1个平面;如果两条直线异面,另一条与其均相交,则只确定2个平面;如果两条直线平行,另一条与其均相交,则只确定1个平面.综上,这三条直线共可确定1或2或3个平面.故答案为:1或2或3.【点评】本题考查了由直线确定平面的应用问题,是平面的基本性质与推论的应用问题,是基础题目.2.(3分)已知球的体积为36π,则该球主视图的面积等于9π.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.3.(3分)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【分析】由题意可得(?a?a?sin60°)?a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为?a?a?sin60°,正棱柱的高为a,∴(?a?a?sin60°)?a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.4.(3分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2).【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.(3分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.6.(3分)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.【分析】过A作与BC平行的母线AD,由异面直线所成角的概念得到∠OAD为.在直角三角形ODA中,直接由得到答案.【解答】解:如图,过A作与BC平行的母线AD,连接OD,则∠OAD为直线OA与BC所成的角,大小为.在直角三角形ODA中,因为,所以.则.故答案为【点评】本题考查了异面直线所成的角,考查了直角三角形的解法,是基础题.7.(3分)已知△ABC三个顶点到平面α的距离分别是3,3,6,则其重心到平面α的距离为0,2,4(写出所有可能值)【分析】根据题意画出图形,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连接CG交AB于中点E,又设E、G在平面α上的射影分别为E′、G′,利用平面图形:直角梯形EE′C′C中数据可求得△ABC的重心到平面α的距离GG′即可.【解答】解:如图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连接CG交AB于中点E,又设E、G在平面α上的射影分别为E′、G′,则E′∈A′B',G′∈C′E',设A A'=BB'=3,CC'=6,EE'=3,由CG=2GE,在直角梯形EE′C′C中可求得GG′=4;当AB和C在平面α的两侧,由于EE':CC'=1:2,可得GG′=0;当AB垂直于平面α,由中位线定理可得GG'=2.故答案为:0,2,4.【点评】本题考查棱锥的结构特征、三角形的重心,考查计算能力,空间想象能力,是基础题,三角形重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.8.(3分)正方体ABCD﹣A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则的取值范围是[0,1].【分析】建立空间直角坐标系,求出有关点的坐标可得、、、的坐标,再由=1﹣λ∈[0,1],可得的取值范围.【解答】解:以所在的直线为x轴,以所在的直线为y轴,以所在的直线为z轴,建立空间直角坐标系.则D(0,0,0)、C(0,1,0)、A(1,0,0)、B(1,1,0)、D1(0,0,1).∴=(0,1,0)、(﹣1,﹣1,1).∵点P在线段BD1上运动,∴=λ?=(﹣λ,﹣λ,λ),且0≤λ≤1.∴=+=+=(﹣λ,1﹣λ,λ),∴=1﹣λ∈[0,1],故答案为[0,1].【点评】本题主要考查两个向量坐标形式的运算,两个向量的数量积公式,属于中档题.9.(3分)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为.第11页(共29页)【分析】根据题意,求出翻折后的几何体为底面边长,侧棱长,高,即可求出棱锥的体积.【解答】解:翻折后的几何体为底面边长为4,侧棱长为2的正三棱锥,高为所以该四面体的体积为=.故答案为:【点评】本题考查棱锥的体积,考查计算能力,是基础题.10.(3分)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则3x+4y的最大值为【分析】首先把三视图转换为几何体,进一步利用几何体的边长关系式和不等式的应用求出结果.【解答】解:根据几何体得三视图转换为几何体为:所以:利用三视图的关系,构造成四棱锥体,所以:x2=1+4﹣y2,第12页(共29页)整理得:x2+y2=5,故:(3x+4y)22222≤(3)(x+4+y),整理得:.故答案为:5【点评】本题考查的知识要点:三视图和几何体之间的转换,不等式的应用,主要考察学生的运算能力和转换能力,属于基础题型.11.(3分)已知A、B、C、P为半径为R的球面上的四点,其中AB、AC、BC间的球面距离分别为、、,若,其中O为球心,则x+y+z的最大值是【分析】以OA,OC所在直线分别为x轴,y轴建立空间坐标系,求出,,的坐标,根据P在球O上,得到||的长度为R,再结合柯西不等式即可得到结论.【解答】解:依题意,OA⊥OC,OB⊥OC,又OA∩OB=O,所以OC⊥平面OAB,以OA,OC所在直线分别为x轴,y轴,O为坐标原点立空间坐标系,则=(R,0,0),=(0,R,0)因为O A与OB夹角为,所以不妨设=(R,R,0),如图,则=((x+)R,R,R),因为P在球O上,所以||=R,所以+y2R2+=R2,2即+y+=1,所以由柯西不等式[12+12+][+y2+]≥1×(x+)+1×y+×=x+y+z,解得x+y+z≤=.故答案为:.第13页(共29页)【点评】本题考查了球面距离,空间向量的坐标运算,向量的模,柯西不等式等知识,属于中档题.12.(3分)如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面α分别与直线BC,AD相交于点G,H,则下列结论正确的是③,④.①对于任意的平面α,都有直线GF,EH,BD相交于同一点;②存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;③对于任意的平面α,都有S△EFG=S△EFH;④对于任意的平面α,当G,H在线段BC,AD上时,几何体AC﹣EGFH的体积是一个定值.【分析】①取AD的中点H,BC的中点G,则EGFH在一个平面内,此时直线GF∥EH ∥BD;②不存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;③分别取AC、BD的中点M、N,则BC∥平面MENF,AD∥平面MENF,且AD与BC到平面MENF的距离相等,可得对于任意的平面α,都有S△EFG=S△EFH.第14页(共29页)④对于任意的平面α,当G,H在线段BC,AD上时,可以证明几何体AC﹣EGFH的体积是四面体ABCD体积的一半.【解答】解:①取AD的中点H,BC的中点G,则EGFH在一个平面内,此时直线GF ∥EH∥BD,因此不正确;②不存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;③分别取AC、BD的中点M、N,则BC∥平面MENF,AD∥平面MENF,且AD与BC到平面MENF的距离相等,因此对于任意的平面α,都有S△EFG=S△EFH.④对于任意的平面α,当G,H在线段BC,AD上时,可以证明几何体AC﹣EGFH的体积是四面体ABCD体积的一半,因此是一个定值.综上可知:只有③④正确.故答案为:③④.【点评】本题考查了线面平行的判定与性质定理、三角形的中位线定理,考查了推理能力和计算能力,属于难题.二、选择题13.(3分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【分析】画出图形,根据圆锥的体积公式直接计算即可.【解答】解:如图为等腰直角三角形旋转而成的旋转体.2?h V=2×S?h=2×πR=2×π×()2×=.故选:B.【点评】本题考查圆锥的体积公式,考查空间想象能力以及计算能力.是基础题.14.(3分)如图,在大小为45°的二面角A﹣EF﹣D中,四边形ABFE与CDEF都是边长第15页(共29页)为1的正方形,则B与D两点间的距离是()A.B.C.1D.【分析】由=,利用数量积运算性质展开即可得出.【解答】解:∵四边形ABFE与CDEF都是边长为1的正方形,∴==0,又大小为45°的二面角A﹣E F﹣D中,∴?=1×1×cos(180°﹣45°)=﹣.∵=,∴=+++=3﹣,∴=.故选:D.【点评】本题考查了数量积运算性质、向量的多边形法则、空间角,考查了推理能力与计算能力,属于中档题.1的正方形,则B与C两点间的距离是()改为则B与D两点间的距离是(????15.(3分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V≈L2h,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,第16页(共29页)∴π=.故选:B.【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.16.(3分)在正方体ABCD﹣A′B′C′D′中,若点P(异于点B)是棱上一点,则满足BP与AC′所成的角为45°的点P的个数为()A.0B.3C.4D.6【分析】通过建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P的个数.【解答】解:建立如图所示的空间直角坐标系,不妨设棱长A B=1,B(1,0,1),C(1,1,1).①在Rt△AA′C中,tan∠AA′C==,因此∠AA′C≠45°.同理A′B′,A′D′与A′C所成的角都为a rctan°.故当点P位于(分别与上述棱平行)棱BB′,BA,BC上时,与A′C所成的角都为arctan°,不满足条件;②当点P位于棱AD上时,设P(0,y,1),(0≤y≤1),则=(﹣1,y,0),=(1,1,1).若满足BP与AC′所成的角为45°,则>|==,化为y2+4y+1=0,无正数解,舍去;同理,当点P位于棱B′C上时,也不符合条件;③当点P位于棱A′D′上时,设P(0,y,0),(0≤y≤1),第17页(共29页)则=(﹣1,y,﹣1),=(1,1,1).若满足BP与AC'所成的角为45°,则>|==,化为y2+8y﹣2=0,∵0≤y≤1,解得y=3﹣4,满足条件,此时点P.④同理可求得棱A′B′上一点P,棱A′A上一点P.而其它棱上没有满足条件的点P.综上可知:满足条件的点P有且只有3个.故选:B.【点评】熟练掌握通过建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角得到异面直线所成的角是解题的关键.二、解答题17.现在四个正四棱柱形容器,1号容器的底面边长是a,高是b;2号容器的底面边长是b,高是a;3号容器的底面边长是a,高是a;4号容器的底面边长是b,高是b.假设a≠b,问是否存在一种必胜的4选2的方案(与a、b的大小无关),使选中的两个容器的容积之和大于余下的两个容器的容积之和?无论是否存在必胜的方案,都要说明理由【分析】存在一种必胜的4选2的方案(与a、b的大小无关),使选中的两个容器的容积之和大于余下的两个容器的容积之和.理由如下:若选中3号容器与4号容器,则V3+V433>a2b+a b2(a≠b,a,b>0).通过作差即可证明结论.>V1+V2,即a+b【解答】解:存在一种必胜的4选2的方案(与a、b的大小无关),使选中的两个容器的容积之和大于余下的两个容器的容积之和.第18页(共29页)33>a2b+ab2(a≠b,a,理由如下:若选中3号容器与4号容器,则V3+V4>V1+V2,即a+bb>0).证明如下:a3+b3﹣(a2b+ab2)=(a+b)(a2﹣ab+b2)﹣ab(a+b)=(a+b)(a﹣b)2.∵a≠b,a,b>0,∴(a+b)(a﹣b)2>0.∴a3+b3>a2b+a b2(a≠b,a,b>0),即V3+V4>V1+V2.因此存在必胜方案是:选中3号容器与4号容器.【点评】本题考查了乘法公式、不等式的性质、作差法,考查了推理能力与计算能力,属于中档题.18.如图,已知圆锥底面半径r=20cm,O为底面圆圆心,点Q为半圆弧的中点,点P 为母线SA的中点,PQ与SO所成的角为arctan2,求:(1)圆锥的侧面积;(2)P,Q两点在圆锥侧面上的最短距离.【分析】(1)过点P作PH⊥底面圆O,交AC于H,连接HQ,求出HQ的值,找出PQ与SO所成的角,求得S O、SA的值,再计算圆锥的侧面积;(2)作圆锥的侧面展开图,找出所求的最短距离,利用余弦定理求出即可.【解答】解:(1)过点P作PH⊥底面圆O,交AC于H,连接HQ,∵圆锥底面半径r=20cm,O为底面圆圆心,点Q为半圆弧的中点,点P为母线SA 的中点,∴PH=,OQ⊥AC,OH=10,可得:HQ==10,∵PH∥S O,∴∠HPQ是PQ与SO所成的角,∵PQ与SO所成的角为arctan2,第19页(共29页)∴tan∠HPQ==2,∴HQ=2PH=S O,解得SO=10,l=SA==30,∴圆锥的侧面积:S=πrl=π×20×30=600π(cm2).(2)作圆锥的侧面展开图,线段PQ即为所求最短距离.由已知OQ⊥SO,OQ⊥S A,∴OQ⊥OA,故Q是弧AB的中点,即Q是扇形弧的点.因为扇形弧长即为圆锥底面周长4π,由(1)知SO=10,母线SA=30,从而扇形的中心角为,∴∠QSA=,在△QSA中,SP=15,由余弦定理得:PQ===5,P,Q两点在圆锥侧面上的最短距离5cm.第20页(共29页)【点评】本题考查了求圆锥的体积、多面体和旋转体表面上的最短距离问题,主要根据几何体的结构特征、直角三角形、题中的条件,求出锥体的母线长和高,进而求出对应的值,考查了分析和解决问题的能力.本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.19.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD =2AB=2PA=2,E、F分别为PC、CD的中点.(1)试证:CD⊥平面BEF;(2)求BC与平面BEF所成角的大小;(3)求三棱锥P﹣DBE的体积.【分析】(1)先证四边形ABFD为平行四边形,又∠DAB为直角,可得DC⊥BF,再由已知证明DC⊥PD,可得DC⊥EF,由线面垂直的判定可得DC⊥平面BEF;(2)由(1)知,DC⊥平面BEF,则∠CBF为BC与平面BEF所成角,求解三角形即可;(3)由(1)知,CD⊥平面PAD,则平面PDC⊥平面PAD,在Rt△PAD中,设A到PD的距离为h,利用等面积法求得h,得A到平面PDC的距离为,即B到平面PDC 的距离为,再利用等体积法求三棱锥P﹣DBE的体积.【解答】(1)证明:∵AB∥CD,CD=2AB,F为CD的中点,∴四边形ABFD为平行四边形,又∠DAB为直角,∴DC⊥BF,又PA⊥底面ABCD,∴平面PAD⊥平面ABCD,∵DC⊥AD,故DC⊥平面PAD,∴DC⊥PD,在△PCD内,E、F分别是PC、CD的中点,EF∥PD,∴DC⊥EF.由此得DC⊥平面BEF;(2)解:由(1)知,DC⊥平面BEF,则∠CBF为BC与平面BEF所成角,第21页(共29页)∴tan,则BC与平面BEF所成角的大小为;(3)解:由(1)知,CD⊥平面PAD,则平面PDC⊥平面PAD,在Rt△PA D中,设A到PD的距离为h,则PA?AD=PD?h,得h=,∴A到平面PDC的距离为,即B到平面PDC的距离为,,∴V P﹣DBE=V B==.﹣PDE【点评】本题考查直线与平面垂直的判定,考查线面角的求法,训练了利用等积法求多面体的体积,是中档题.20.如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P﹣ABC为正四面体;(2)若,求二面角D﹣BC﹣A的大小(结果用反三角函数值表示);(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P﹣ABC的体积减去棱锥P ﹣DEF的体积).∴tan,则BC与平面BEF所成角的大小为;(3)解:由(1)知,CD⊥平面PAD,则平面PDC⊥平面PAD,在Rt△PA D中,设A到PD的距离为h,则PA?AD=PD?h,得h=,∴A到平面PDC的距离为,即B到平面PDC的距离为,,∴V P﹣DBE=V B==.﹣PDE【点评】本题考查直线与平面垂直的判定,考查线面角的求法,训练了利用等积法求多面体的体积,是中档题.20.如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P﹣ABC为正四面体;(2)若,求二面角D﹣BC﹣A的大小(结果用反三角函数值表示);(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P﹣ABC的体积减去棱锥P ﹣DEF的体积).∴tan,则BC与平面BEF所成角的大小为;(3)解:由(1)知,CD⊥平面PAD,则平面PDC⊥平面PAD,在Rt△PA D中,设A到PD的距离为h,则PA?AD=PD?h,得h=,∴A到平面PDC的距离为,即B到平面PDC的距离为,,∴V P﹣DBE=V B==.﹣PDE【点评】本题考查直线与平面垂直的判定,考查线面角的求法,训练了利用等积法求多面体的体积,是中档题.20.如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P﹣ABC为正四面体;(2)若,求二面角D﹣BC﹣A的大小(结果用反三角函数值表示);(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P﹣ABC的体积减去棱锥P ﹣DEF的体积).∴tan,则BC与平面BEF所成角的大小为;(3)解:由(1)知,CD⊥平面PAD,则平面PDC⊥平面PAD,在Rt△PA D中,设A到PD的距离为h,则PA?AD=PD?h,得h=,∴A到平面PDC的距离为,即B到平面PDC的距离为,,∴V P﹣DBE=V B==.﹣PDE【点评】本题考查直线与平面垂直的判定,考查线面角的求法,训练了利用等积法求多面体的体积,是中档题.20.如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P﹣ABC为正四面体;(2)若,求二面角D﹣BC﹣A的大小(结果用反三角函数值表示);(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P﹣ABC的体积减去棱锥P ﹣DEF的体积).。
上海市交大附中高二期中数学学科考试试卷(含答案)(2019.04)

交大附中高二期中数学试卷2019.04一. 填空题1. 如果一条直线与两条平行直线都相交,那么这三条直线可确定 个平面2. 已知球的体积为36π,则该主视图的面积等于3. 若正三棱柱的所有棱长均为a ,且其体积为163,则a =4. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线均为坐标轴,建立空间直角坐标系,若1DB uuu u r 的坐标为(4,3,2),则1AC u u u u r 的坐标是5. 若圆锥的侧面积是底面积的3倍,则其母线与底面所成的角的大小为 (结果用反三角函数值表示)6. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则l r= 7. 已知△ABC 三个顶点到平面α的距离分别是3、3、6,则其重心到平面α的距离为 (写出所有可能值)8. 正方体1111ABCD A B C D -的棱长为1,若动点P 在线段上1BD 运动,则DC AP ⋅u u u r u u u r 的取值范围是9. 如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去△AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以()A B 、C 、D 、O 为顶点的四面体的体积为10. 某三棱锥的三视图如图所示,且这个三角形均为直线三角形,则34x y +的最大值为11. 已知A 、B 、C 、P 为半径R 的球面上的四点,其中AB 、AC 、BC 间的球面距离分别为3R π、2R π、2R π,若OP xOA yOB zOC =++u u u r u u u r u u u r u u u r ,其中O 为球心,则x y z ++的最大 值是12. 如图,在四面体ABCD 中,E 、F 分别为AB 、CD 的中点,过EF 任作一个平面α分别与直线BC 、AD 相交于点G 、H ,则下列结论正确的是① 对于任意的平面α,都有直线GF 、EH 、BD 相交于同一点;② 存在一个平面α,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③ 对于任意的平面α,都有EFG EFH S S =V V ;④ 对于任意的平面α,当G 、H 在线段BC 、AD 上时,几何体AC EFGH -的体积是一个定值.二. 选择题13. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. 23π B. 423π C. 22π D. 42π 14. 如图,在大小为45°的二面角A EF D --中,四边形ABFE 与CDEF 都是边长为1的正方形,则B 、D 点间的距离是( )A. 3B. 2C. 1D. 32-15. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有 系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也,又以高乘之,三十六成 一,该术相当于给出了由圆锥的底面周长L 与高h ,计算器体积V 的近似公式2136V L h ≈, 它实际上是将圆锥体积公式的圆周率π近似取3,那么近似公式2272V L h ≈相当于将圆锥体 积公式中的π近似取为( )A. 227B. 258C. 15750D. 35511316. 在正方形ABCD A B C D ''''-中,若点P (异于点B )是棱上一点,则满足BP 和AC '所成角为45°的点P 有( )A. 6个B. 4个C. 3个D. 2个三. 解答题17. 现有四个正四棱柱形容器,1号容器的底面边长是a ,高是b ;2号容器的底面边长是b ,高是a ;3号容器的底面边长是a ,高是a ;4号容器的底面边长是b ,高是b ,假设a b ≠,问是否存在一种必胜的4选2的方案(与a 、b 的大小无关),使选中的两个容器的容积之和大于余下的两个容器之和?无论是否存在必胜的方案,都要说明理由.18. 如图,已知圆锥底面半径20r cm =,点Q 为半圆弧AC 的中点,点P 为母线SA 的中点,PQ 与SO 所成角为arctan2,求:(1)圆锥的侧面积;(2)P 、Q 两点在圆锥侧面上的最短距离.19. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,DAB ∠为直角,AB ∥CD ,222AD CD AB PA ====,E 、F 分别为PC 、CD 的中点.(1)求证:CD ⊥平面BEF ;(2)求BC 与平面BEF 所成角的大小;(3)求三棱锥P DBE -的体积.20. 如图,P ABC -是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点,截面DEF ∥底面ABC ,且棱台DEF ABC -与棱锥P ABC -的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P ABC -为正四面体;(2)若12PD PA =,求二面角D BC A --的大小(结果用反三角函数值表示); (3)设棱台DEF ABC -的体积为V ,是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF ABC -有相同的棱长和?若存在,请具体构造这样的一个直平行六面体,并给出证明;若不存在,请说明理由.(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P ABC -的体积减去棱锥P DEF -的体积)21. 火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳构筑物,建在水源不十分充足的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却容器中排出的热水在其冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线冷却塔,此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米,双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但形体高大,施工复杂,造价较高.(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际请忽略)(1)右下图为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径 大于上底直径,已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m ,俯视图为 三个同心圆,其半径分别为40m 、60147m 、30m ,试根据上述尺寸计算主视图中该双 曲线的标准方程(m 为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线: 22221x y a b -=,0y =,y h =,绕y 轴旋转形成的旋转体的体积为________(用a 、b 、h 表 示)(用积分计算不得分)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m (底部),最薄处厚度为0.3m (喉部,即左右顶点处),试计算该冷却塔内壳所在的双曲线标准方程是________________,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是_________3m (计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和其他设备等施工费用不在本题计算范围内,超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加,现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元,试计算建造本题中冷却塔的施工费用(精确到万元).参考答案一. 填空题1. 12. 9π3. 44. (4,3,2)-5. 1arccos 3 6. 7. 0,2,4 8. [0,1]9. 3 10. 11. 3 12. ③④二. 选择题13. B 14. D 15. B 16. C三. 解答题17. 3322a b a b b a +>+,必胜方案为选择3号、4号容器18.(1)600π;(2)19.(1)略;(2)1arctan 2;(3)1320.(1)略;(2)arcsin 3;(3)存在21.(1)2219006300x y -=;(2)23223a h a h b ππ+,221882.096300x y +=,6728;(3)1516。
上海交通大学附属中学-2017-2018-学年度第二学期

13. A. The evolution of self-study books.
B. The importance of self-study books.
C. The difference among self-study books.
7. A. The job’s short hours make it impossible for her to refuse.
B. The job is turning into an excellent opportunity for her.
C. She’s looking forward to meeting her new colleagues.
B. Its competitors are less considerate of customers.
C. It creates great personal fortunes for investors.
D. Its business is kept in a traditional way.
C. He needs to talk to Harry soon. D. Harry doesn’t have a telephone.
3. A. The new doctor lacks experience.
B. She disagrees with what the man said.
C. The man had better talk with the patients first.
Questions 17 through 20 are based on the following conversation.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年上海交大附中高二(下)期中数学试卷一、填空题(本大题满分56分)1.抛物线y2=x的准线方程为______.2.计算i+2i2+3i3+…+2016i2016=______.3.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为______.4.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为______.5.已知△AOB内接于抛物线y2=4x,焦点F是△AOB的垂心,则点A,B的坐标______.6.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有______.(填上所有正确答案的序号)7.已知复数z1,z2满足|z1|=|z2|=1,|z1﹣z2|=,则|z1+z2|等于______.8.三个平面能把空间分为______部分.(填上所有可能结果)9.已知复数Z1,Z2满足|Z1|=2,|Z2|=3,若它们所对应向量的夹角为60°,则=______.10.已知复数z1,z2满足|z1|=|z2|=1,,则复数|z1+z2|=______.11.二面角α﹣l﹣β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l 于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为______.12.已知虚数z=(x﹣2)+yi(x,y∈R),若|z|=1,则的取值范围是______.13.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于______.14.如图,直线y=x与抛物线y=x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为______.二、选择题(本大题满分20分,共计4小题,每题5分)15.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面 C.平行 D.垂直16.(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,其中正确的个数为()A.3 B.2 C.1 D.017.如图所示,在正方体ABCD﹣A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为()A.B.C.D.18.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个,其中正确的是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④三、解答题(满分74分)19.已知复数z1=+(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.20.如图,已知直四棱柱ABCD﹣A1B1C1D1,DD1⊥底面ABCD,底面ABCD为平行四边形,∠DAB=45°,且AD,AB,AA1三条棱的长组成公比为的等比数列,(1)求异面直线AD1与BD所成角的大小;(2)求二面角B﹣AD1﹣D的大小.21.已知z为复数,ω=z+为实数,(1)当﹣2<ω<10,求点Z的轨迹方程;(2)当﹣4<ω<2时,若u=(α>0)为纯虚数,求:α的值和|u|的取值范围.22.动圆M与圆(x﹣1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,(1)求轨迹C的方程;(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)经过定点B(﹣2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].23.已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且.(1)若复数z1对应的点M(m,n)在曲线上运动,求复数z所对应的点P(x,y)的轨迹方程;(2)将(1)中的轨迹上每一点按向量方向平移个单位,得到新的轨迹C,求C的轨迹方程;(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.2015-2016学年上海交大附中高二(下)期中数学试卷参考答案与试题解析一、填空题(本大题满分56分)1.抛物线y2=x的准线方程为x=﹣.【考点】抛物线的简单性质.【分析】抛物线y2=x的焦点在x轴上,且开口向右,2p=1,由此可得抛物线y2=x的准线方程.【解答】解:抛物线y2=x的焦点在x轴上,且开口向右,2p=1∴∴抛物线y2=x的准线方程为x=﹣故答案为:x=﹣2.计算i+2i2+3i3+…+2016i2016=1008﹣1008i.【考点】复数代数形式的混合运算.【分析】利用复数单位的幂运算,化简求解即可.【解答】解:i+2i2+3i3+…+2016i2016=(i﹣2﹣3i+4)+(5i﹣6﹣7i+8)+…+2016=504(2﹣2i)=1008﹣1008i.故答案为:1008﹣1008i.3.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为[30°,90°] .【考点】异面直线及其所成的角.【分析】作b的平行线b′,交a于O点,所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',∠POP'是b′与面α的线面夹角,在平面α所有与OP'垂直的线,由此能求出直线b与c所成的角的范围.【解答】解:如图作b的平行线b′,交a于O点,所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',∠POP'是b′与面α的线面夹角,∠POP'=30°.在平面α中,所有与OP'平行的线与b′的夹角都是30°.在平面α所有与OP'垂直的线∵PP'⊥平面α,∴该线⊥PP′,则该线⊥平面OPP',∴该线⊥b',与b'的夹角为90°,与OP'夹角大于0°,小于90°的线,与b'的夹角为锐角且大于30°.∴直线b与c所成的角的范围[30°,90°].故答案为:[30°,90°].4.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.【考点】异面直线及其所成的角.【分析】先通过平移将两条异面直线平移到同一个起点B1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【解答】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为5.已知△AOB内接于抛物线y2=4x,焦点F是△AOB的垂心,则点A,B的坐标A(5,2),B(5,﹣2).【考点】抛物线的简单性质.【分析】根据垂心的性质可得A,B关于x轴对称,且AF⊥OB,设A(,y1)(y1>0),则B(,﹣y1).求出AF,OB的斜率,令k OB•k AF=﹣1解出y1即可得出A,B的坐标.【解答】解:抛物线焦点F(1,0),∵焦点F是△AOB的垂心,∴直线AB⊥x轴.∴A,B关于x轴对称.设A(,y1)(y1>0),则B(,﹣y1).∴k OB==﹣.k AF==.∵焦点F是△AOB的垂心,∴AF⊥OB.∴k OB•k AF=﹣1,即﹣•=﹣1,解得y1=2.∴A(5,2),B(5,﹣2).故答案为:A(5,2),B(5,﹣2).6.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有(2)、(4).(填上所有正确答案的序号)【考点】异面直线的判定.【分析】图(1)中,直线GH∥MN,图(2)中M∉面GHN,图(3)中GM∥HN,图(4)中,H∉面GMN.【解答】解析:如题干图(1)中,直线GH∥MN;图(2)中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图(3)中,连接MG,GM∥HN,因此,GH与MN共面;图(4)中,G、M、N共面,但H∉面GMN,∴GH与MN异面.所以图(2)、(4)中GH与MN异面.故答案为:(2)、(4)7.已知复数z1,z2满足|z1|=|z2|=1,|z1﹣z2|=,则|z1+z2|等于1.【考点】复数求模;复数的代数表示法及其几何意义.【分析】复数z1,z2满足|z1|=|z2|=1,故可令z1=cosA+isinA,z2=cosB+isinB,代入,|z1﹣z2|=,及|z1+z2|,比较即可求得所求的答案【解答】解:∵复数z1,z2满足|z1|=1,|z2|=1,可令z1=cosA+isinA,z2=cosB+isinB∵|z1﹣z2|=,故有(cosA﹣cosB)2+(sinA﹣sinB)2=3,整理得2cosAcosB+2sinAsinB=﹣1又|z1+z2|2=(cosA+cosB)2+(sinA+sinB)2=2+2cosAcosB+2sinAsinB=1∴|z1+z2|=1故答案为:1.8.三个平面能把空间分为4,或6,或7,或8部分.(填上所有可能结果)【考点】平面的基本性质及推论.【分析】此类问题可以借助实物模型来研究,用房屋的结构来研究就行.【解答】解:若三个平面两两平行,则把空间分成4部分;若三个平面两两相交,且共线,则把空间分成6部分;若三个平面两两相交,且有三条交线,则把空间分成7部分;当两个平面相交,第三个平面同时与两个平面相交时,把空间分成8部分,故答案为:4,或6,或7,或8.9.已知复数Z1,Z2满足|Z1|=2,|Z2|=3,若它们所对应向量的夹角为60°,则=.【考点】余弦定理的应用;复数求模.【分析】由余弦定理可得Z1+Z2|=,|Z1﹣Z2|=,故==【解答】解:如图在三角形OBC中由余弦定理得|Z1+Z2|=|OB|==,同理可得|Z1﹣Z2|=|CA=|=,∴===10.已知复数z1,z2满足|z1|=|z2|=1,,则复数|z1+z2|=.【考点】复数求模.【分析】复数z1,z2满足|z1|=|z2|=1,,判断三角形是直接三角形,即可求得所求的答案.【解答】解:因为|z1|=|z2|=1,,所以复数z1,z2,构成的三角形是直角三角形,|z1+z2|是平行四边形的对角线,则|z1+z2|=.故答案为:.11.二面角α﹣l﹣β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为.【考点】点、线、面间的距离计算.【分析】要求出AM+CM的最小值,可将空间问题转化成平面问题,将二面角展开成平面中在BD上找一点使AM+CM即可,而当A、M、C在一条直线时AM+CM的最小值,从而求出对角线的长即可.【解答】解:将二面角α﹣l﹣β平摊开来,即为图形当A、M、C在一条直线时AM+CM的最小值,最小值即为对角线AC而AE=5,EC=1故AC=故答案为:12.已知虚数z=(x﹣2)+yi(x,y∈R),若|z|=1,则的取值范围是[﹣,].【考点】复数求模;复数的代数表示法及其几何意义.【分析】根据复数的模,利用模长公式得:(x﹣2)2+y2=1,根据表示动点(x,y)与原点(0,0)连线的斜率.根据直线与圆相切的性质得到结果.【解答】解:∵复数(x﹣2)+yi(x,y∈R)的模为1,∴(x﹣2)2+y2=1根据表示动点(x,y)到定点(0,0)的斜率知:的最大值是,同理求得最小值是﹣,如图示:∴的取值范围是[﹣,]故答案为:[﹣,].13.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于2.【考点】抛物线的简单性质.【分析】设A(x1,y1),B(x2,y2),则,=4x2,两式相减可得:(y1+y2)(y1﹣y2)=4(x1﹣x2),利用中点坐标公式、斜率计算公式可得k AB,可得直线AB的方程为:y﹣2=x﹣2,化为y=x,与抛物线方程联立可得A,B的坐标,利用弦长公式可得|AB|,再利用点到直线的距离公式可得点F到直线AB的距离d,利用三角形面积公式求得答案.【解答】解:∵F是抛物线C:y2=4x的焦点,∴F(1,0).设A(x1,y1),B(x2,y2),则,=4x2,两式相减可得:(y1+y2)(y1﹣y2)=4(x1﹣x2),∵线段AB的中点为M(2,2),∴y1+y2=2×2=4,又=k AB,4k AB=4,解得k AB=1,∴直线AB的方程为:y﹣2=x﹣2,化为y=x,联立,解得,,∴|AB|==4.点F到直线AB的距离d=,∴S△ABF===2,故答案为:2.14.如图,直线y=x与抛物线y=x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为30.【考点】二次函数的性质.【分析】把直线方程抛物线方程联立求得交点A,B的坐标,则AB中点M的坐标可得,利用AB的斜率推断出AB垂直平分线的斜率,进而求得AB垂直平分线的方程,把y=﹣5代入求得Q的坐标;设出P的坐标,利用P到直线0Q的距离求得三角形的高,利用两点间的距离公式求得QO的长,最后利用三角形面积公式表示出三角形OPQ,利用x的范围和二次函数的单调性求得三角形面积的最大值.【解答】解:直线y=x与抛物线y=x2﹣4联立,得到A(﹣4,﹣2),B(8,4),从而AB的中点为M(2,1),由k AB═,直线AB的垂直平分线方程y﹣1=﹣2(x﹣2).令y=﹣5,得x=5,∴Q(5,﹣5).∴直线OQ的方程为x+y=0,设P(x,x2﹣4).∵点P到直线OQ的距离d==|x2+8x﹣32|,|OQ|=5,∴S△OPQ=|OQ|d=|x2+8x﹣32|,|∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,∴﹣4≤x<4﹣4或4﹣4<x≤8.∵函数y=x2+8x﹣32在区间[﹣4,8]上单调递增,∴当x=8时,△OPQ的面积取到最大值30.故答案为:30.二、选择题(本大题满分20分,共计4小题,每题5分)15.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面 C.平行 D.垂直【考点】空间中直线与直线之间的位置关系.【分析】直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交,可得结论.【解答】解:如图,在正方体AC1中:∵A1B∥D1C∴A1B与D1C可以确定平面A1BCD1,又∵EF⊂平面A1BCD1,且两直线不平行,∴直线A1B与直线EF的位置关系是相交,故选A.16.(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,其中正确的个数为()A.3 B.2 C.1 D.0【考点】的真假判断与应用;复数的基本概念.【分析】直接利用复数的基本概念频道的真假即可.【解答】解:(1)两个共轭复数的差是纯虚数;如果两个复数是实数,差值也是实数,所以(1)不正确;(2)两个共轭复数的和不一定是实数;不正确,和一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;不正确,因为实系数方程的虚根是共轭复数,所以(3)不正确;(4)若z为虚数,则z的平方根为虚数,如果虚数为i,则设z=x+yi(x,y∈R),由z2=(x+yi)2=i,得x2﹣y2+2xyi=i,∴,解得:或.∴z=+i或z=﹣﹣i.所以正确.故选:C.17.如图所示,在正方体ABCD﹣A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为()A.B.C.D.【考点】轨迹方程.【分析】点P到BC的距离就是当P点到B的距离,它等于到直线A1B1的距离,满足抛物线的定义,推断出P的轨迹是以B为焦点,以A1B1为准线的过A的抛物线的一部分.从而得出正确选项.【解答】解:依题意可知点P到BC的距离就是当P点B的距离,P到点B的距离等于到直线A1B1的距离,根据抛物线的定义可知,动点P的轨迹是以B为焦点,以A1B1为准线的过A的抛物线的一部分.A的图象为直线的图象,排除A.B项中B不是抛物线的焦点,排除B.D项不过A点,D排除.故选C.18.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个,其中正确的是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④【考点】空间中直线与平面之间的位置关系.【分析】根据公理1及直线在面内的定义,逐一对四个结论进行分析,即可求解.【解答】解:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;当a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.故选D三、解答题(满分74分)19.已知复数z1=+(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.【考点】复数代数形式的混合运算;复数的基本概念;复数的代数表示法及其几何意义.【分析】(1)由题设条件,可先通过复数的运算求出的代数形式的表示,再由其几何意义得出实部与虚部的符号,转化出实数a所满足的不等式,解出其取值范围;(2)实系数一元二次方程x2﹣6x+m=0的两个根互为共轭复数,利用根与系数的关系求出a 的值,从而求出m的值.【解答】解:(1)由条件得,z1﹣z2=()+(a2﹣3a﹣4)i…因为z1﹣z2在复平面上对应点落在第一象限,故有…∴解得﹣2<a<﹣1…(2)因为虚数z1是实系数一元二次方程x2﹣6x+m=0的根所以z1+==6,即a=﹣1,…把a=﹣1代入,则z1=3﹣2i,=3+2i,…所以m=z1•=13…20.如图,已知直四棱柱ABCD﹣A1B1C1D1,DD1⊥底面ABCD,底面ABCD为平行四边形,∠DAB=45°,且AD,AB,AA1三条棱的长组成公比为的等比数列,(1)求异面直线AD1与BD所成角的大小;(2)求二面角B﹣AD1﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)不妨设AD=1,由AD,AB,AA1三条棱的长组成公比为的等比数列,可得AB=,AA1=2.在△ABD中,利用余弦定理可得:DB=1.利用勾股定理的逆定理可得∠ADB=90°.由DD1⊥底面ABCD,可得DD1⊥DB,可得DB⊥平面ADD1,即可得出异面直线AD1与BD所成角.(2)由(1)可得:DB⊥平面ADD1.在Rt△ADD1中,经过点D作DO⊥AD1,垂足为O,连接OB,可得OB⊥AD1.∠BOD即为二面角B﹣AD1﹣D的平面角.利用直角三角形的边角关系即可得出.【解答】解:(1)不妨设AD=1,∵AD,AB,AA1三条棱的长组成公比为的等比数列,∴AB=,AA1=2.在△ABD中,DB2==1,解得DB=1.∴AD2+DB2=AB2,∠ADB=90°.∴AD⊥DB.∵DD1⊥底面ABCD,DB⊂平面ABCD,∴DD1⊥DB,又AD∩DD1=D,∴DB⊥平面ADD1,∴DB⊥AD1,∴异面直线AD1与BD所成角为90°.(2)由(1)可得:DB⊥平面ADD1.在Rt△ADD1中,经过点D作DO⊥AD1,垂足为O,连接OB,则OB⊥AD1.∴∠BOD即为二面角B﹣AD1﹣D的平面角.在Rt△ADD1中,OD===.在Rt△ODB中,tan∠BOD===.∴∠BOD=arctan.21.已知z为复数,ω=z+为实数,(1)当﹣2<ω<10,求点Z的轨迹方程;(2)当﹣4<ω<2时,若u=(α>0)为纯虚数,求:α的值和|u|的取值范围.【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】(1)设z=x+yi,x,y∈R,则ω=+i为实数,可得y﹣=0,因此y=0,或x2+y2=9.通过分类讨论即可得出.(2)由(1)可得:①y=0时,ω=x+,由﹣4<ω<2,可得﹣4<<2,利用基本不等式的性质即可得出.②x2+y2=9时.ω=2x,由于﹣4<ω<2,即可得出x的取值范围.由u=(α>0)为纯虚数,化简可得α,再利用模的计算公式、函数的单调性即可得出.【解答】解:(1)设z=x+yi,x,y∈R,则ω=z+=x+yi+=x+yi+=+i为实数,∴y﹣=0,∴y=0,或x2+y2=9.①y=0时,ω=x+∵﹣2<ω<10,∴﹣2<<10,x>0时,解得1<x<9.x<0时,x∈∅.综上可得:y=0时,点Z的轨迹方程是.②x2+y2=9时.ω=2x,∵﹣2<ω<10,∴﹣2<2x<10,解得﹣1<x<5.因此x2+y2=9时.可得:点Z的轨迹方程是x2+y2=9(﹣1<x<5).(2)由(1)可得:①y=0时,ω=x+∵﹣4<ω<2,∴﹣4<<2,∵x<0时,≤﹣6;x>0时,≥6.综上可得:y=0时,x∈∅,点Z的轨迹无方程.②x2+y2=9时.ω=2x,∵﹣4<ω<2,∴﹣4<2x<2,解得﹣2<x<1.∵u=(α>0)为纯虚数,u==,∴α2﹣9=0,2yα≠0,解得α=3,y≠0.∴u==,∵x∈(﹣2,1),∴|u|===∈.∴α=3,|u|∈.22.动圆M与圆(x﹣1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,(1)求轨迹C的方程;(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)经过定点B(﹣2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].【考点】轨迹方程.【分析】(1)设出动圆圆心M的坐标,利用动圆M与y轴相切且与圆(x﹣1)2+y2=1外切建立方程,化简得答案;(2)设M的坐标,利用两点间的距离公式结合配方法求得定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)写出过B斜率存在的直线方程,联立直线方程与抛物线方程,由判别式等于0求得k 值,再结合图形求得直线m与轨迹C的公共点个数,并分析对应的斜率情况.【解答】解:(1)设动圆圆心M的坐标为(x,y),则,∴(x﹣1)2+y2=x2+2|x|+1,当x<0时,y=0;当x≥0时,y2=4x;(2)如图,由图可知,M到轨迹C上的点与A的距离最小,则M在抛物线y2=4x上,设M(x,y),则|MA|===.∴当x=1,即M(1,±2)时,|MA|的最小值为;(3)设过B与抛物线y2=4x相切的直线方程为y﹣1=k(x+2),即y=kx+2k+1,联立,得k2x2+(4k2+2k﹣4)x+4k2+4k+1=0.由△=(4k2+2k﹣4)2﹣4k2(4k2+4k+1)=0,解得:k=﹣1或k=.∴当直线m的斜率k不存在时或斜率存在为0时或直线m的斜率k∈(,+∞)∪(﹣∞,﹣1)时,m与C有1个交点;当直线m的斜率为k=﹣1或k=或k∈[﹣,0)时,m与C有2个交点;当直线m的斜率k∈(0,)∪(﹣1,﹣)时,m与C有3个交点.23.已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且.(1)若复数z1对应的点M(m,n)在曲线上运动,求复数z所对应的点P(x,y)的轨迹方程;(2)将(1)中的轨迹上每一点按向量方向平移个单位,得到新的轨迹C,求C的轨迹方程;(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.【考点】抛物线的简单性质.【分析】(1)根据复数条件求出关系式,结合复数z1对应的点M(m,n)在曲线上运动即可得出复数z所对应的点P(x,y)的轨迹方程;(2)先按向量方向平移个单位得到即为向 x 方向移动 1×=个单位,向 y 方向移动 1×1=1 个单位,再进行函数式的变换即可得出C 的轨迹方程; (3)设A (x 0,y 0),斜率为k ,切线y ﹣y 0=k (x ﹣x 0) 代入(y +6)2=﹣2x ﹣3消去x 得到关于y 的一元二次方程,再结合根的判别式为0利用向量的数量即可求得定点,从而解决问题.【解答】解:(1)∵i ﹣z 2=(m ﹣ni )•i ﹣(2+4i )=(n ﹣2)+(m ﹣4)i ;∴⇒.∵复数z 1对应的点M (m ,n )在曲线上运动∴x +2=﹣(y +7)2﹣1⇒(y +7)2=﹣2(x +3).复数z 所对应的点P (x ,y )的轨迹方程:(y +7)2=﹣2(x +3).(2)∵按向量方向平移个单位,==1×.即为向 x 方向移动 1×=个单位,向 y 方向移动 1×1=1 个单位(y +7)2=﹣2(x +3)⇒y +7=±.得轨迹方程 y +7=±⇒(y +6)2=﹣2(x +)=﹣2x ﹣3.C 的轨迹方程为:(y +6)2=﹣2x ﹣3. (3)设A (x 0,y 0),斜率为k ,切线y ﹣y 0=k (x ﹣x 0) (k ≠0), 代入(y +6)2=﹣2x ﹣3整理得:(y +6)2=﹣2()﹣3,△=0⇒k=,设定点M (1,0),且.∴以线段AB 为直径的圆恒过一定点M ,M 点的坐标(1,0).2016年9月14日。