高二下学期期中数学试卷真题
高二数学期中考试试卷

高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
高二期中考试试卷数学

高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(-1) \)的值为:A. 6B. 4C. 2D. -22. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值:A. 37B. 38C. 39D. 403. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值:A. 1B. -1C. 0D. 无法确定5. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 26. 函数\( y = \ln(x) \)的图像在点(1,0)处的切线斜率是:A. 0B. 1C. 2D. -17. 已知\( \cos \theta = \frac{1}{3} \),求\( \sin \theta \)的值(假设\( \theta \)在第一象限):A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{2}}{9} \)C. \( -\frac{2\sqrt{2}}{3} \)D. \( -\frac{2\sqrt{2}}{9} \)8. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 根据题目所给的二元一次方程组\( \begin{cases} x + y = 3 \\ 2x - y = 1 \end{cases} \),求\( x \)的值:A. 1B. 2C. 3D. 无法确定10. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值:A. 3B. 6C. 8D. 10二、填空题(每题3分,共15分)11. 若\( a \),\( b \),\( c \)成等差数列,且\( a + b + c = 6 \),则\( b \)的值为______。
2024高二数学期中考试题及答案

2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)

天津市部分区2023~2024学年度第二学期期中练习高二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试用时100分钟.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题公共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线1y x x=-在2x =处的切线斜率为( )A . 3-B .34C .54D . 52.用0~6这7个自然数,可以组成没有重复数字的三位数的个数为( )A .60B .90C .180D .2103.函数ln xy x=的单调递增区间为( )A . (),e -∞B . ()0,e C . ()1,+∞D . ()e,+∞4. ()()52x y x y +-的展开式中33x y 项的系数为( )A . 30-B . 10-C . 10D .305.已知函数()y f x =,其导函数()y f x '=的图象如图所示,则对于()y f x =的描述正确的是()A .在区间(),0-∞上单调递减B .当0x =时取得最大值C .在区间()3,+∞上单调递减D .当1x =时取得最小值6.甲乙两位同学从5种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种7.已知函数()32113f x x x ax =+-+在R 上单调递增,则实数a 的取值范围为( )A . (],1-∞-B . (),1-∞-C . ()1,-+∞D . [)1,-+∞8.函数()()sin 1cos f x x x x =-+在区间[]0,2π上的最大值为( )A . 1-B .1C .1π+D .2π+9.若对任意的()12,,x x m ∈+∞,不等式122112ln ln 2x x x x x x ->-恒成立,则实数m 的取值范围是( )A . 31,e e ⎛⎫ ⎪⎝⎭B . 31,e e ⎡⎤⎢⎥⎣⎦C . ()3e ,+∞D . )3e ,⎡+∞⎣第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.10.设函数()21ex f x -=,()f x '为其导函数,则()1f '=______.11.765765A 6A 6A --=______.12.在1,2,3,…,500中,被5除余3的数共有______个.13.在6⎛ ⎝的展开式中,2x 的系数是______.(用数字作答)14.如图,现要用4种不同的颜色对4个区域进行着色,要求有公共边的两个区域不能用同一种颜色,共有______种不同的着色方法.(用数字作答)15.已知函数()()()()22f x x a x a =--∈R ,当2x =时,()f x 有极大值,则a 的取值范围为______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()312f x x x =-.(1)求()f x 的单调区间;(2)求()f x 的极值.17.(本小题满分12分)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?18.(本小题满分12分)已知函数()()()256ln f x a x x a =-+∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)求a 的值;(2)求()f x 在区间[]1,3上的最小值.19.(本小题满分12分)已知函数()ln af x x x=+,a ∈R .(1)若()f x 在点()()1,1f 处取得极值.①求a 的值;②证明:()1f x ≥;(2)求()f x 的单调区间.20.(本小题满分12分)已知函数()e xf x x x a =--,()22g x x x =-,a ∈R .(1)求函数()y f x =-的导数;(2)若对任意的[]11,e x ∈,[]21,2x ∈,使得()()12f x g x ≥成立,求a 的取值范围;(3)设函数()()ln h x f x x =-,若()h x 在区间()0,e 上存在零点,求a 的最小值.天津市部分区2023~2024学年度第二学期期中练习高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案CCBBCBACD二、填空题:本大题共6小题,每小题4分,共24分.10.2e 11.012.10013.192-14.4815.2a >三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)解:(1)函数()f x 的定义域为R ,导函数()2312f x x '=-,令()0f x '=,解得2x =±,则()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2()2,+∞()f x '+0-0+()f x 单调递增取极大值单调递减取极小值单调递增故函数()f x 的单调增区间为(),2-∞-和()2,+∞,单调减区间为()2,2-;(2)由小问1知,当2x =-时,函数()f x 取得极大值16;当2x =时,函数()f x 取得极小值16-.17.(本小题满分12分)解:(1)每个小组从12名同学中选4名同学,选法种数为412C 495=;(2)每个小组从12名同学中选4名同学,选法种数为412C ,再从选出的同学中选定1名作为替补选法种数为14C ,因此还要从选出的同学中指定1名作替补,那么每个小组的选法种数为41124C C 1980=.(3)每个小组从12名同学中选4名同学并分别被指定为第一、二、三、四辩手,选法种数为412A 11880=.18.(本小题满分12分)解:(1)因为()()256ln f x a x x =-+,所以()()625f x a x x'=-+,令1x =,则()116f a =,()168f a '=-.所以曲线()yf x =在点()()1,1f 处的切线方程为()()16681y a a x -=--.由点()0,6在切线上,可得61686a a -=-,解得12a =.(2)由(1)得()()()2156ln 02f x x x x =-+>所以()()()2365x x f x x x x--'=-+=令()0f x '=,解得12x =,23x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x()1,22()2,3()f x '+0-()f x 单调递增单调递减又由于()18f =,()326ln 38f =+>.所以,当1x =时,()f x 取得最小值8.19.(本小题满分12分)解:(1)①()221a x af x x x x-'=-+=,因为()f x 在点()()1,1f 处取得极值,所以()11101af a -'==-=;所以1a =.②中①得,()1ln f x x x =+,()21x f x x-'=令()0f x '=,解得1x =,当x 变化时,()f x ',()f x 的变化情况如表所示.x()0,11()1,+∞()f x '-0+()f x 单调递减1单调递增所以,当1x =时,()f x 取得最小值.所以()()11f x f ≥=,即()1f x ≥.(2)函数()f x 的定义域为()0,+∞,()221a x a f x x x x-'=-+=,当0a ≤时,()0f x '>恒成立,所以()f x 的单调递增区将为()0,+∞,无单调递减区间;当0a >时,令()0f x '=解得x a =,()0f x '>的解集为{}x x a >,()0f x '<的解集为{}0x x a <<,所以()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a 综上所述:当0a ≤时,()f x 的单调递增区间为()0,+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a .20.(本小题满分12分)解:(1) ()e x y f x x x a -=-=-+-,所以e e 1x x y x --'=-++(2)因为()()1e 1x f x x '=+-,[]11,e x ∈,所以()0f x '≥,故()f x 在[]1,e 上单调递增,所以()e 1e 1,ee f x a a +⎡⎤∈----⎣⎦,又()()22211g x x x x =-=--,所以()g x 在[]1,2上也是单调递增,所以()[]1,0g x ∈-,因为对任意的[]11,e x ∈,[]21,2x ∈,使()()12f x g x ≥成立,等价于()()12min max f x g x ⎡⎤⎡⎤≥⎣⎦⎣⎦,即e 10a --≥,所以e 1a ≤-.故实数a 的范围是(],e 1-∞-.(3)由()e ln 0x h x x x x a =---=,即e ln x x x x a --=,令()e ln x p x x x x =--,()0,e x ∈,而()()()()1e 111e e 11e xx x xx x x p x x x x x x+-+'=+--=+-=,令()e 1x q x x =-,()0,e x ∈,则()ee 0xx q x x '=+>,即函数()q x 在()0,e 上单调递增,因为()010q =-<,()1e 10q =->,即()()010q q ⋅<,所以存在唯一的()00,1x ∈,使得()00q x =,即00e 10xx -=,即01ex x =,00ln x x =-,所以当00x x <<时,()0q x <,()0p x '<,函数()p x 单调递减;当0e x x <<时,()0q x >,()0p x '>,函数()p x 单调递增,所以()()0000000min e ln 11x p x p x x x x x x ==--=-+=,又0x +→时,()p x →+∞,所以要使()h x 在()0,e 存在零点,则1a ≥,所以a 的最小值为1.。
高二数学下学期期中考试试卷含答案(word版)

第二学期期中考试 高二级数学试卷考试时间:120分钟 满分:150分第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:,sin 1p x x ∀∈≤R ,它的否定是( ) A .存在,sin 1x x ∈>R B .任意,sin 1x x ∈≥R C .存在,sin 1x x ∈≥R D .任意,sin 1x x ∈>R2.已知复数z 满足(z-1)i=i+1,复平面内表示复数z 的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是 q 的充分条件D . p 既不是q 的充分条件,也不是q 的必要条件4.有下列命题:①若0xy =,则0x y +=;②若a b >,则a c b c +>+;③矩形的对角线互相垂直.其中真命题有( )A .0个B .1个C .2个D .3个5.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( )A .2-B .12-C . 12 D .26.双曲线2214y x -=的渐近线方程和离心率分别是( )A . 2,y x e =±=B . 1,2y x e =±=C .1,2y x e =± D .2,y x e =±=7.若函数()ln f x x x =-的单调递增区间是( ) A .()0,1 B .()0,e C .()0,+∞ D .()1,+∞8.按照图1——图3的规律,第10个图中圆点的个数为( )个. A .40 B .36 C .44 D .52图1图2图39. 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y bx a =+ 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ). A .63.6万元B .65.5万元C .67.7万元D .72.0万元10. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道两人的成绩B .丁可能知道两人的成绩C . 乙、丁可以知道自己的成绩D .乙、丁可以知道对方的成绩11. 已知函数3()63f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是( )A . ,0-∞B .1(0,)2C . 1,2⎛⎫+∞ ⎪⎝⎭D . ()0,112.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1][4,)+∞B .3][4,)+∞C .(0,1][9,)+∞D .3][9,)+∞第II 卷二.填空题:本大题共4小题.每小题5分,满分20分. 13.设()11i x yi +=+,其中,x y 是实数,则x yi += .14. 如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a = .15.已知双曲线的顶点为椭圆2212y x +=长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是16. 已知曲线ln y x x =+在点 ()1,1处的切线与曲线()221y ax a x =+++ 相切,则a = . 三.解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)已知:p 关于x 的方程210x mx ++=有两个不等的负根;:q 关于x 的方程244(2)10x m x +-+=无实根。
高二期中考试(数学)试卷含答案

高二期中考试(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.已知集合{}34,5A =,,{}4,5,6B =,则AB =A .{}3B .{}4,5C .{}34,5,D .{}34,5,6,2.(4分)2.圆22240x y x y +-+=的圆心坐标是A .(1,2)B .(1-,2)C .(1,2-)D .(1-,2-)3.(4分)3.已知向量(,1)a x =-,(4,2)b =,且a b ,则x 的值是A .2B .12 C .12- D . 2- 4.(4分)4.若运行右图的程序,则输出的结果是A .15B .4C .11D .75.(4分)5.函数()(1)x f x a =-在R 上是减函数,则a 的取值范围是A .a >1B .0<a <1C .1<a <2D .·a >26.(4分)6.某学校高一、高二、高三年级的学生人数分别为300,200.400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是A .6.4.8B .6,6,6C .5,6,7 D·4,6,87.(4分)7.如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( ) A 、54 B 、53 C 、21 D 、528.(4分)8.不等式(1)(2)x x --≥0的解集是A .{}12x x ≤≤B .{}12x x <<C .{}12x x x ≤≥或D .{}12x x x <>或9.(4分)9.如果一个几何体的正视图是矩形,则这个几何体不可能是A .正方体B .正三棱柱C .圆柱D .圆锥10.(4分)10.已知实数x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值为A .0B .4C .3D .5二、 填空题 (本题共计5小题,总分20分) 11.(4分)11.已知cos (0,)2παα=∈,则sin(2)______πα+=· 12.(4分)12.直线l 过点(0,2)且与直线1x =垂直,则l 的方程为____________。
高二期中考试(数学)试卷含答案

高二期中考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.化简 ()i 23i +=( )A .32i -B .32i +C .32i --D .32i -+2.(5分)2.曲线324y x x =-+在点(1,3)处的切线的斜率为 ( )A .1B .1-C .2-D .23.(5分)3.有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择的种数为 ( ) A .35 B .53 C .35CD .35A4.(5分)4.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .55.(5分)5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种6.(5分)6.已知曲线3()=2f x x x +-在点P 处的切线平行与直线41y x =-,则点P的坐标为( ). A .(1,0)B .(1,4)--C .(1,4)-D .(1,0)或(1,4)--7.(5分)7.已知函数()21ln 2f x x x =-,则()f x 的单调减区间是( ) A .[)1,+∞B .(],1-∞-C .(]0,1D .[]1,1-8.(5分)8.设函数)('x f 是偶函数)(x f 的导函数,满足0)2(=f ,且0>x 时,满足0)()('<-x f x xf ,则使得0)(<xx f 时,x 的取值范围是( ) A.)2,2-( B .),()(∞+-20,2 C .)1,1-( D .),()(200,2 - 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .2z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限10.(5分)10.将4个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子,则不同的放法种数是( ) A .11114323C C C CB .2343C AC .3143A CD .21342322C C A A ⋅ 11.(5分)11.已知函数()y f x =,其导函数()y f x '=的图象如下图所示,则()y f x =( )A .在1-=x 处取极小值B .在3=x 处取极小值C .在)2,1-(上为增函数 D .在)2,1(上为减函数 12.(5分)12.下列关于函数ln ()xf x x=的说法,正确的有( )A .x e =为函数()f x 的极大值点B .x e =为函数()f x 的极小值点C .函数()f x 在(0,)e 上单调递增D .函数()f x 在(,)e +∞上单调递增三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i 是虚数单位,计算12i2i-+ 的结果为_____________. 14.(5分)14.曲线321y x x =+-在点(1,(1))f 处的切线方程为______________. 15.(5分)15.为了更好地进行新冠肺炎的疫情防控,某社区安排6名工作人员到A ,B ,C 三个小区讲解疫情防控的注意事项,若每个小区安排两名工作人员,则不同的安排方式的种数为_________(.数字作答).16.(5分)16.已知函数x a e x f x ln )(-=在[]41,上单调递增,则a 的取值范围为_________.四、 解答题 (本题共计6小题,总分70分)17.(10分)17、(10分)若复数()()2262z m m m m i =+-+--,当实数m 为何值时?(1)z 是实数;(2)z 是纯虚数.18.(12分)18、(12分)在广外佛山外校某次颁奖典礼上,需要合影留念,现有3名女生和4名男生排成一排,问:(1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?19.(12分)19、(12分)已知函数13)(3+-=x x x f .(1)求()f x 的单调区间;(2)求函数的极值;(要列表).20.(12分)20、(12分)为了参加广外佛山外校第一届“辩论赛”,现在要从报名的5名男生和4名女生中再选出4人去参加比赛,问: (1)如果4人中男生和女生各选2人,有多少种选法? (2)如果4人中既要有男生,也有女生,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?21.(12分)21、(12分)已知函数()ln ),(f x x x ax b a b R =++∈在点()()1,1f 处的切线为320x y --=. (1)求函数()f x 的解析式:(2)若对于∀x 1,14⎡⎤∈⎢⎥⎣⎦,都有xx f m m )(12>--恒成立,求m 的取值范围. 22.(12分)22、(12分)某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售收入(单位:万元)的函数为)50(2152≤≤-=x x x R ,其中x 是产品生产并售出的数量(单位:百台). (1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大?(不需求出利润最大值)答案一、 单选题 (本题共计8小题,总分40分) 1.(5分) D 2.(5分) A 3.(5分)B 4.(5分)D 5.(5分)C 6.(5分)D 7.(5分)A 8.(5分)B二、 多选题 (本题共计4小题,总分20分) 9.(5分)BCD 10.(5分) CD 11.(5分) AC 12.(5分) AC三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i -14.(5分) 14. 035=--y x 15.(5分) 15.9016.(5分) 16.],e ∞-(四、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)当z 是实数时,220m m --=,解得2m =或1m =-,所以,所求的m 值为2或1-........5分.(2)当z 是纯虚数时,222060m m m m ⎧--≠⎨+-=⎩,解得3m =-,所以,所求的m 值为3-............................10分18.(12分)18.解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有5个元素,排成一排有55A 种排法,而其中每一种排法中,三个女生间又有33A 种排法,因此共有55A ·33A =720(种)不同排法.............................................................................4分(2)(插空法)先排4个男生,有44A 种排法,这4个男生之间和两端有6个位置,从中选取3个位置排女生,有35A 种排法,因此共有44A ·35A =1440(种)不同排法....................................8分(3)因为两端不排女生,只能从4个男生中选2人排列,有24A 种排法,剩余的位置没有特殊要求,有55A 种排法,因此共有24A ·55A =1440(种)不同排法...........................................12分19.(12分)19.解:(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ...............................................2分由'()0f x =可得1x =或1x =-..................................................................................................................4分①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-....................................................6分(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:...........................................10分当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-..............................................................................12分20.(12分)20.解:(1)根据题意,从5名男生中选出2人,有2510C =种选法,从4名女生中选出2人,有246C =种选法,则4人中男生和女生各选2人的选法有10660⨯=种;............................................................4分(2)先在9人中任选4人,共有49126C =种选法,4人都是男生的有545=C 种选法,4人都是女生的有144=C 种选法,则4人中既要有男生,也有女生,有12015126=--种选法..................................8分(3)先在9人中任选4人,有49126C =种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种,则甲与女生中的乙至少要有1人在内的选法有1263591-=种;...........................12分21.(12分)21.(1)由题意知:()f x 的定义域为(0,)+∞...........................................................................................1分∵()ln 1'=++f x x a ∴(1)13(1)1f a f a b =+=⎧⎨=+='⎩,解得21a b =⎧⎨=-⎩......................................................................5分 故()ln 21f x x x x =+-............................................................................................................................6分 (2)令()1()ln 2f x h x x x x==-+,则22'111)(xxx x x h +=+=...........................................................8分 0)(1,41'>∴⎥⎦⎤⎢⎣⎡∈x h x , ,即函数)(x h 在⎥⎦⎤⎢⎣⎡∈1,41x 上单调递增.所以要使得⎥⎦⎤⎢⎣⎡∈∀>--1,41)(12x x x f m m ,恒成立...............................................................................10分 只要1)1()(1max 2==>--f xx f m m )(即可,解得:2,1>-<m m 或...........................................12分22.(12分)22.(1)设利润为y 万元,得⎪⎩⎪⎨⎧>--⨯-⨯≤≤---=)5(25.05.05215550(25.05.021522x x x x x x y )即⎪⎩⎪⎨⎧>-≤≤-+-=)5(25.01250(5.04.75212x x x x x y )...........................6分(2)显然当05x ≤≤时,企业会获得最大利润,此时,21( 4.75)10.781252y x =--+, 4.75x ∴=,即年产量为475台时,企业所得利润最.....12分.。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期期中数学试卷
一、选择题
1. 设集合M={x|x2+2x﹣8<0},N={y|y=2x},则M∩N=()
A . (0,4)
B . [0,4)
C . (0,2)
D . [0,2)
2. 下列函数中,在其定义域上既是奇函数又是增函数的是()
A . y=logax
B . y=x3+x
C . y=3x
D . y=﹣
3. 已知a,b均为实数,则“ab(a﹣b)<0”是“a<b<0”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
4. 函数y= (0<a<1)的图象的大致形状是()
A .
B .
C .
D .
5. 在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()
A . 45
B . 60
C . 120
D . 210
6. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有
且只有两位女生相邻,则不同排法的种数是()
A . 60
B . 48
C . 42
D . 36
7. 设实数a,b,t满足|a+1|=|sinb|=t.则()
A . 若t确定,则b2唯一确定
B . 若t确定,则a2+2a唯一确定
C . 若t确定,则sin 唯一确定
D . 若t确定,则a2+a唯一确定
8. 已知函数f(x)=x2﹣(k+1)2x+1,若存在x1∈[k,k+1],x2∈[k+2,k+4],使得f(x1)=f(x2),则实数k的取值范围为()
A . [﹣,]
B . [﹣,﹣1]∪[1,3]
C . [﹣2,﹣1]∪[1,2]
D . [﹣,﹣]∪[ ,]
二、填空题
9. 已知集合A={|m|,0},B={﹣2,0,2},C={﹣2,﹣1,0,1,2,3},若A⊆B,则m=________;若集合P满足B⊆P⊆C,则集合P的个数为________个.
10. 已知C =36,则n=________;已知6p=2,log65=q,则
=________.
11. 若f(x)= ,则f(f(﹣1))=________,f(f(x))≥1的解集为________
12. 如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=________;
②f(n)=________.
13. 将5名志愿者分成4组,其中一组有2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有________种.(用数字作答)
14. 若存在x0∈[﹣1,1]使得不等式| ﹣a• +1|≤
成立,则实数a的取值范围是________.
15. 已知f(x)的定义域为R,f(1)= ,且满足4f(x)f(y)=f (x+y)+f(x﹣y),则f(2016)=________.
三、解答题
16. 函数f(x)= .
(1)求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a、b∈(B∩∁RA)时,证明:
|.
17. 若不等式对一切正整数n都成立,求正整数a的最大值,并证明结论.
18. 已知函数f(x)=3x2+2(k﹣1)x+k+5.
(1)求函数f(x)在[0,3]上最大值;
(2)若函数f(x)在[0,3]上有零点,求实数k的取值范围.
19. 已知F1,F2为椭圆的左、右焦点,F2在以
为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.
(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.
20. 若函数fA(x)的定义域为A=[a,b),且fA(x)=(+ ﹣1)2﹣+1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整数,对一切正整数k,不等式(x1)+ (x2))<m都有解,求m的取值范围;
(3)若对任意x1,x2,x3∈A,都有,,为三边长构成三角形,求的取值范围.。