2020-2021高二数学上期中试卷带答案(4)

合集下载

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷一、选择题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)2.椭圆+=1的离心率是()A.B.C.D.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二.多选题(共4小题).9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0 10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.812.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1三、填空题(共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.参考答案一、单选题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)解:依题意,(3,2)为直线的一个法向量,∴则直线的一个方向向量为(2,﹣3),故选:A.2.椭圆+=1的离心率是()A.B.C.D.解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,解:根据两条平行直线2x﹣y+3=0和ax﹣3y+4=0,可得=≠,可得a=6,可得两条平行直线即6x﹣3y+9=0和6x﹣3y+4=0,故它们间的距离为d==,故选:D.4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.解:∵四棱锥P﹣OABC的底面是矩形,,,,E是PC的中点,∴=+=﹣+=﹣+(+)=﹣+(﹣+)=﹣﹣+,故选:B.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.解:∵平面α的方程为3x﹣5y+z﹣7=0,∴平面α的一个法向量为=(3,﹣5,1),∵经过(0,0,0)直线l的方程为,∴直线l的一个方向向量为=(3,2,﹣1),设直线1与平面α所成角为θ,则sinθ=|cos<,>|=||=||=,∴直线1与平面α所成角的正弦值为.故选:B.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.7.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°解:由AC⊥m,BD⊥m,可得AC⊥CD,BD⊥CD,故可得=0,=0,∴=()•=+||2+=0+12+0=1,∴cos<,>==,∵与夹角的取值范围为[0,π],故向量的夹角为60°,∴异面直线l,m所成的角等于60°.故选:C.8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.二.多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0解:当直线经过原点时,直线的斜率为k=,所以直线的方程为y=x,即3x﹣2y=0;当直线不过原点时,设直线的方程为x+y=a,代入点P(2,3)可得a=5,所以所求直线方程为x+y=5,即x+y﹣5=0.综上可得,所求直线方程为:x+y﹣5=0或3x﹣2y=0.故选:AC.10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线解:曲线C:mx2+ny2=1.若m>n>0,方程化为,得>0,则C是椭圆,其焦点在y轴上,故A 正确;B错误;若m=n>0,方程化为,则C是圆,其半径为,故C错误;若m=0,n>0,方程化为,即y=,则C是两条直线,故D正确.故选:AD.11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.8解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,可得以AB为直径的圆和圆C有交点,得PO=|AB|=m,即4≤m≤6,结合选项可得,m的值可能取6和5.故选:BC.12.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1解:由椭圆方程可得F1(,0),F2(),由y1>,可得<x1<,则直线PF1的方程为,即,直线PF2的方程为,即.∵M(m,0)在∠F1PF2的平分线,∴,①∵=,=,﹣<m<,∴①式转化为,即m=,又<x1<,∴<m<.结合选项可得m的可能取值为1,0,﹣1,故选:ACD.三、填空题(本题共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=1.解:∵平面α的一个法向量,平面β的一个法向量,α⊥β,∴=﹣x+y﹣1=0,解得y﹣x=1.故答案为:1.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.解:如图,取C1C的中点G,连接BG,可得BF∥C1G,BF=C1G,则四边形BGC1F为平行四边形,∴C1F∥BG.连接EG,得EG∥CD∥AB,EG=CD=AB,则四边形ABGE为平行四边形,得BG∥AE,则FC1∥AE,∵AE⊂平面AB1E,FC1⊄平面AB1E,∴FC1∥平面AB1E,∴直线FC1到平面AB1E的距离等于F到平面AB1E的距离,∵正方体ABCD﹣A1B1C1D1中的棱长为1,∴,AE=,,则cos∠EAB1=,∴sin,则=.设F到平面AB1E的距离为h,由,得,即h=.∴直线FC1到平面AB1E的距离为.故答案为:.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.解:由椭圆,得a2=25,b2=16,∴a=5,b=4,c==3,∴椭圆的焦点分别为F1(﹣3,0)、F2(3,0),设△ABF2的内切圆半径为r,∵△ABF2的内切圆周长为2π,∴r=1,根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.∴△ABF2的面积S=(|AB|+|AF2|+|BF2|)×r=×20×1=10,又∵△ABF2的面积S=+=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的两侧),∴3|y1﹣y2|=10,解得|y1﹣y2|=.故答案为:.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为3;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.解:(1)根据条件得到两圆的圆心坐标分别为(﹣4,0),(4,0),设公切线方程为y=kx+m(k≠0)且k存在,则,解得k=±,m=0,故公切线方程为y=±x,则Q到直线l的距离d=,故l截圆Q的弦长=2=3;(2)设方程为y=kx+m(k≠0)且k存在,则三个圆心到该直线的距离分别为:d1=,d2=,d3=,则d2=4(4﹣d12)=4(4﹣d22)=4(9﹣d32),即有()2=()2,①4﹣()2=9﹣()2,②解①得m=0,代入②得k2=,则d2=4(4﹣)=,即d=,故答案为:3;.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.解:(1)设AC边的中点为M,则M(,),∴直线BM斜率k==,∴直线BM的方程为y+1=(x+2),化为一般式可得9x﹣5y+13=0,∴AC边中线所在直线的方程为:9x﹣5y+13=0(2)设点D坐标为(x,y),由已知得M为线段BD中点,∴有,解得,∴D(3,8),∵B(﹣2,﹣1),C(2,3)∴;(3)由B(﹣2,﹣1),C(2,3)可得直线BC的方程为x﹣y+1=0,∴点A到直线BC的距离d==2,∴△ABC的面积S=×4×2=8.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.解:(1)∵∴AT⊥AB,又T在AC上∴AC⊥AB,△ABC为Rt△ABC,又AB边所在直线的方程为x﹣3y﹣6=0,所以直线AC的斜率为﹣3.又因为点T(﹣1,1)在直线AC上,所以AC边所在直线的方程为y﹣1=﹣3(x+1).即3x+y+2=0.(2)AC与AB的交点为A,所以由解得点A的坐标为(0,﹣2),∵∴M(2,0)为Rt△ABC的外接圆的圆心又r=.从△ABC外接圆的方程为:(x﹣2)2+y2=8.(3)因为动圆P过点N,所以|PN|是该圆的半径,又因为动圆P与圆M外切,所以,即.故点P的轨迹是以M,N为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距c=2.所以虚半轴长.从而动圆P的圆心的轨迹方程为.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.解:如图建立空间直角坐标系,A(1,0,0),C(0,0,1),F(1,1,0),E(0,1,0),∵CM=BN=a,∴M(,0,1﹣),N(,,0).(Ⅰ)=;(Ⅱ)=,当a=时,|MN|最小,最小值为;(Ⅲ)由(Ⅱ)可知,当M,N为中点时,MN最短,则M(,0,),N(,,0),取MN的中点G,连接AG,BG,则G(,,),∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,∴∠AGB是平面MNA与平面MNB的夹角或其补角.∵,,∴cos<>==.∴平面MNA与平面MNB夹角的余弦值是.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.解:(Ⅰ)由题意可得2a=4,∴a=2,∵,∴c=1,∴b=,∴椭圆C1的标准方程为:.(Ⅱ)联立直线l与椭圆方程,消去y得:7x2﹣8x﹣8=0,设A(x1,y1),B(x2,y2),则,,∴|AB|===.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.【解答】(Ⅰ)证明:∵四边形ABB1A1为菱形,AB=BC,AC=,∴AC2=AB2+BC2,得AB⊥BC,又平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,∴BC⊥平面ABB1A1,又B1C1∥BC,∴B1C1⊥平面ABB1A1;(Ⅱ)取A1B1的中点O,A1C1的中点N,连接OA,ON,∵B1C1⊥平面ABB1A1,∴ON⊥平面ABB1A1,得ON⊥OA1,ON⊥OA,又四边形ABB1A1为菱形,,O是A1B1的中点,∴OA⊥A1B1,故OA1,ON,OA两两互相垂直.以O为坐标原点,分别以OA1、ON、OA所在直线为x、y、z轴建立空间直角坐标系,∴B1(﹣1,0,0),C1(﹣1,2,0),E1(﹣1,1,),B(﹣2,0,),由图可知,平面EB1C1的一个法向量为,设平面BB1C1C的一个法向量为,则,取z=1,得.设平面EB1C1与平面BB1C1C所成角的大小为θ,则cosθ=|cos<>|=||=,又∵θ∈(0,],∴,故平面EB1C1与平面BB1C1C所成角的大小为.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.解:(Ⅰ)由题意可知:|EP|=|EA|,|CE|+|EP|=2,∴|CE|+|EA|=2>|CA|=2,∴点E的轨迹是以C,A为焦点的椭圆,且2a=2,c=1,∴其轨迹方程为.(Ⅱ)设M(x1,y1),N(x2,y2),不妨设y1>0,y2<0,由题意可知,直线l的斜率不为零,可设直线l的方程为x=my+1,联立方程,消去x得:(m2+2)y2+2my﹣1=0,则,,∴=,∴===,当且仅当即m=0时,△CMN的面积取得最大值,此时直线l的方程为x=1.。

2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)

2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)

2020-2021学年山西省太原市高二(上)期中数学试卷一、选择题(共12小题).1.(3分)直线x﹣2y+6=0的斜率为()A.2B.﹣2C.D.﹣2.(3分)长方体的长、宽、高分别为,,1,且其顶点都在同一球面上,则该球的表面积为()A.3πB.6πC.12πD.24π3.(3分)已知A(0,0),B(1,1),直线l过点(2,0)且和直线AB平行,则直线l的方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.2x﹣y﹣4=0D.2x+y﹣4=0 4.(3分)圆(x﹣1)2+(y+2)2=1的一条切线方程是()A.x﹣y=0B.x+y=0C.x=0D.y=05.(3分)已知直线a,b,c满足a⊥b,a⊥c,且a⊂α,b,c⊂β,有下列说法:①a⊥β;②α⊥β;③b∥c.则正确的说法有()A.3个B.2个C.1个D.0个6.(3分)直线x﹣2y+2=0关于直线x=1对称的直线方程是()A.x+2y﹣4=0B.2x+y﹣1=0C.2x+y﹣3=0D.2x+y﹣4=0 7.(3分)在三棱锥A﹣BCD中,E,F分别为AC,AD的中点,设三棱锥A﹣BCD的体积为V1,四棱锥B﹣CDFE的体积为V2,则V1:V2=()A.4:3B.2:1C.3:2D.3:18.(3分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.19.(3分)如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是()A.BC⊥平面APCB.BC⊥PC,AP⊥PCC.AP⊥PB,AP⊥PCD.AP⊥PC,平面APC⊥平面BPC10.(3分)已知半径为1的圆经过直线x+2y﹣11=0和直线2x﹣y﹣2=0的交点,那么其圆心到原点的距离的最大值为()A.4B.5C.6D.711.(3分)如图,正方体ABCD﹣A1B1C1D1中,DD1的中点为N,则异面直线AB1与CN 所成角的余弦值是()A.B.C.D.012.(3分)在同一平面直角坐标系中,直线y=k(x﹣1)+2和圆x2+y2﹣4x﹣2ay+4a﹣1=0的位置关系不可能是()A.①③B.①④C.②④D.②③二、填空题(共4小题).13.(4分)空间直角坐标系中,已知点A(4,1,2),B(2,3,4),则|AB|=.14.(4分)已知一个几何体的三视图如图所示,则该几何体的侧面积为.15.(4分)已知圆C:x2+y2﹣2mx﹣4y+m2=0(m>0)被直线l:x﹣y+3=0截得的弦长为2,则m=.16.(4分)已知四棱锥的底面是边长为2的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.三、解答题(本大题共3小题,共48分,解答应写出文字说明,证明过程或演算步骤)17.(8分)已知直线l1经过点M(2,1),在两坐标轴上的截距相等且不为0.(1)求直线l1的方程;(2)若直线l2⊥l1,且过点M,求直线l2的方程.18.(10分)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC,BD为圆锥底面的两条直径,M为母线PD上一点,连接MA,MO,MC.(1)若M为PD的中点,证明:PB∥平面MAC;(2)若PB∥平面MAC,证明:M为PD的中点.19.(10分)已知圆C经过点A(0,1),B(2,1),M(3,4).(1)求圆C的方程;(2)设点P为直线l:x﹣2y﹣1=0上一点,过点P作圆C的两条切线,切点分别为E,F.若∠EPF=60°,求点P的坐标.四.(本小题满分10分)说明:请同学们在(20)、(21)两个小题中任选一题作答。

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。

2020-2021学年山东省青岛胶州市高二上学期期中考试数学试题

2020-2021学年山东省青岛胶州市高二上学期期中考试数学试题

青岛胶州市2020-2021学年高二上学期期中考试数学本试卷4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线2021x =的倾斜角为()A .90︒B .0︒C .180︒D .45︒2.已知向量(1,2,),(,1,2)a t b t ==,且a b ⊥,则实数t =()A .1B .1-C .23-D .233.若直线1:10l ax y ++=与直线2:210l x ay a ++-=平行,则实数a =()A .1B .1-C .0D .1±4.已知三棱柱111ABC A B C -,点P 为线段11B C 的中点,则AP =()A .11122AB AC AA ++ B .11122AB AC AA ++ C .11122AB AC AA +- D .11122AB AC AA ++ 5.已知二面角βα--l 的大小为60︒,B A ,为棱l 上不同两点,D C ,分别在半平面, αβ内,,AC BD 均垂直于棱l ,22AC BD AB ===,则异面直线CD 与AB 所成角的余弦值为()A .15B C .13D .126.若过原点的直线l 与圆22430x x y -++=有两个交点,则l 的倾斜角的取值范围为()A .(,)33ππ-B .(,)66ππ-C .5[0,)(,)66πππD .2[0,)(,)33πππ7.已知椭圆22:14x C y +=上两点B A ,,若AB 的中点为D ,直线OD 的斜率等于1,则直线AB 的斜率等于()A .1-B .1C .12-D .14-8.已知圆222:(0)O x y r r +=>1+=交于, A B 两点,且AB =,则圆O 与函数()ln(1)f x x =-的图象交点个数为()个A .2B .1C .0D .3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知直线:10l x my m -+-=,则下述正确的是()A .直线l 的斜率可以等于0B .直线l 的斜率有可能不存在C .直线l 可能过点(2,1)D .若直线l 的横纵截距相等,则1m =±10.已知椭圆C :221625400x y +=,关于椭圆C 下述正确的是()A .椭圆C 的长轴长为10B .椭圆C 的两个焦点分别为(0,3)-和(0,3) C .椭圆C 的离心率等于35D .若过椭圆C 的焦点且与长轴垂直的直线l 与椭圆C 交于,P Q ,则32||5PQ =11.已知点12(1,0),(1,0)F F -,动点P 到直线2x =的距离为d ,2PF d =,则()A .点P 的轨迹是椭圆B .点P 的轨迹曲线的离心率等于12C .点P 的轨迹方程为2212x y += D .12PF F ∆的周长为定值12.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 三、填空题:本题共4个小题,每小题5分,共20分.13.圆221:40C x y x ++=与圆222:(2)(1)9C x y -+-=的位置关系为 .14.已知椭圆2219x y m +=的离心率等于31,则实数m = . 15.已知正方体1111ABCD A B C D -的棱长为1,点P 为线段1AC 上一点,||1PA =,则点P 到平面ABCD 的距离为 .16.在平面直角坐标系中,(1,2),(2,1)A D ,点,B C 分别在x 轴、y 轴上,则(1)||||AB BD +的最小值是 ;(2)||||||AC CB BD ++的最小值是 . (第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知O 为坐标原点,直线:10l ax y a +--=(R a ∈),圆22:1O x y +=. (1)若l 的倾斜角为120︒,求a ;(2)若l 与直线0:20l x y -=的倾斜角互补,求直线l 上的点到圆O 上的点的最小距离; (3)求点O 到l 的最大距离及此时a 的值. 18.(12分)在平面直角坐标系中,圆C 过点(1,0)E 和点(0,1)F ,圆心C 到直线0x y +=. (1)求圆C 的标准方程;(2)若圆心C 在第一象限,M 为圆C 外一点,过点M 做圆C 的两条切线,切点分别为,A B ,四边形MACBM 的轨迹方程. 19.(12分)在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PD ⊥平面ABCD ,M 为PC 中点. (1)如果4PD =,求证:PC ⊥平面MAD ; (2)当BP 与平面MBD 所成角的正弦值最大时,求三棱锥D MBC -的体积V .20.(12分)在平面直角坐标系中,1(0,C ,圆22:(C x y +2C 相切. (1)求动点P 的轨迹C 的标准方程;(2)若直线l 过点(0,1),且与曲线C 交于,A B ,已知,A B 4l 的方程. 21.(12分)如图,在几何体ABCDEF 中,四边形ABCD 为菱形,BCF ∆为等边三角形,60ABC ∠=︒,2,//AB EF CD =,平面⊥BCF 平面ABCD .(1)证明:在线段BC 上存在点O ,使得平面ABCD ⊥平面AOF ; (2)求二面角B AF C --的余弦值; (3)若//ED 平面AOF ,求线段EF 的长度. 22.(12分)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,12||2F F =,P 为椭圆的上顶点,以P 为圆心且过12,F F 的圆与直线2x =-相切.(1)求椭圆C的标准方程;(2)已知直线l 交椭圆C 于,M N 两点.(ⅰ)若直线l 的斜率等于1,求OMN ∆面积的最大值;(ⅱ)若1OM ON ⋅=-,点D 在l 上,OD l ⊥.证明:存在定点W ,使得||DW 为定值.2020-2021学年度第一学期期中检测 高二数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分。

2020-2021学年湖北省新高考联考协作体高二上学期期中数学试卷(解析版)

2020-2021学年湖北省新高考联考协作体高二上学期期中数学试卷(解析版)

2020-2021学年湖北省新高考联考协作体高二(上)期中数学试卷一、选择题(共8小题).1.命题p:∃x∈R,2x+1>0的否定为()A.∀x∈R,2x+1<0B.∃x∈R,2x+1≤0C.∀x∈R,2x+1>0D.∀x∈R,2x+1≤02.下列各组数中方差最小的是()A.1,2,3,4,5B.2,2,2,4,5C.3,3,3,3,3D.2,3,2,3,2 3.已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为,则m的值为()A.﹣B.C.﹣D.4.一个等比数列的第3项和第7项分别为8和18,则它的第5项为()A.12B.﹣12C.±12D.5.已知某圆拱桥拱高5米,水面跨度为30米,则这座圆拱桥所在圆的半径为()米A.20B.25C.24D.236.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行阶梯水价,每人月用水量中不超过a立方米的部分按2.5元/立方米收费,超出a立方米的部分按7元/立方米收费,从该市随机调查了10000位居民,获得了他们某年的月均用水量数据,整理得到如下频率分布直方图:如果a为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为()A.2B.2.5C.3D.47.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为()A.B.C.D.8.已知动点M到A(1,1),B(﹣3,3)两点的距离相等,P是圆(x﹣3)2+y2=5上的动点,则|PM|的最小值为()A.B.C.2D.二、选择题(共4个小题)9.若A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,则下列说法正确的是()A.P(A)+P(B)<1B.P(A)+P(B)≤1C.P(A∪B)=1D.P(A∩B)=010.某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:x23456y 2.2 3.8 6.57.0已知根据表中原始数据得回归直线方程为=1.23x+0.08.某位工作人员在查阅资料时发现表中有个数据模糊不清了,下列说法正确的是()A.所支出的维修费用与使用年限正相关B.估计使用10年维修费用是12.38万元C.根据回归方程可推断出模糊不清的数据的值为5D.点(4,5)一定在回归直线=1.23x+0.08上11.下列命题为真命题的是()A.“a,A,b成等差数列”的充要条件是“2A=a+b”B.“a,A,b成等比数列”的充要条件是“A2=ab”C.“a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件D.已知直线l过点(3,1),则“直线l的斜率为”是“直线l与圆(x﹣1)2+(y﹣2)2=4相切”的充分不必要条件12.已知数列{a n}的前n项和S n满足,下列说法正确的是()A.若首项a1=1,则数列{a n}的奇数项成等差数列B.若首项a1=1,则数列{a n}的偶数项成等差数列C.若首项a1=1,则S15=477D.若首项a1=a,若对任意n∈N*,a n<a n+1恒成立,则a的取值范围是(3,5)三、填空题(共4个小题)13.若“x≤a”是“x≤2”的必要不充分条件,则实数a的取值范围为.14.在所有7位自然数中任取一个数,则头两位都是3的概率为15.已知直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,若这三条直线交于一点,则交点坐标为,点(m,n)到原点的距离最小值为.16.长为的线段AB的两个端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C,已知过定点P(2,0)的直线l与曲线C相交于E,F两点,O为坐标原点,当△EOF的面积取到最大值时,直线l的斜率为四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知A(2,0),B(3,3),C(﹣1,1).(1)求点A到直线BC的距离;(2)求△ABC的外接圆的方程.18.(12分)在①a2﹣2,a3,a4+6成等比数列,②a3+1,a5,a6+1成等差数列,③a2,a4+2,a6+10成等比数列,这三个条件中任选一个,补充在下列问题中并作答.正项等差数列{a n}满足a1=4,且______.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和.19.(12分)由于疫情,学生在家经过了几个月的线上学习,某高中学校为了了解学生在家学习情况,复学后进行了复学摸底考试,并对学生进行了问卷调查,如表(单位:人)是对高二年级数学成绩及“认为自己在家学习态度是否端正”的问卷调查的统计结果,其中成绩不低于120分为优秀,成绩不低于90分且小于120分的为及格,成绩小于90分的为不及格.优秀及格不及格学习态度端正91300a学习态度不端正9200322按成绩用分层抽样的方法在高二年级中抽取50人,其中优秀的人数为5.(1)求a的值;(2)用分层抽样的方法在及格的学生中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2人,求至少有1人学习不端正的概率;(3)在及格的学生中随机抽取了10人,他们的分数如图所示的茎叶图,已知这10名学生的平均分为104.5,求a>b的概率.20.(12分)已知命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立;命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立.(1)若命题p为真,求实数a的取值范围;(2)若命题p和命题q一真一假,求实数a的取值范围.21.(12分)已知圆C:(x﹣1)2+(y﹣1)2=25,直线l:(m+2)x+(m+1)y+4m+6=0.(1)证明:不论实数m为何值,直线l与圆C始终相交;(2)若直线l与圆C相交于A,B两点,设集合M={x|x=|AB|且x∈N},在集合M中任取两个数,求这两个数都不小于8的概率.22.(12分)已知数列{a n}的前n项和S n满足S n=3a n﹣3,.(1)求数列{a n},{b n}的通项公式;(2)记,若数列{c n}为递增数列,求λ的取值范围.参考答案一、选择题(共8小题).1.命题p:∃x∈R,2x+1>0的否定为()A.∀x∈R,2x+1<0B.∃x∈R,2x+1≤0C.∀x∈R,2x+1>0D.∀x∈R,2x+1≤0解:命题为特称命题,则命题的否定为:∀x∈R,2x+1≤0,故选:D.2.下列各组数中方差最小的是()A.1,2,3,4,5B.2,2,2,4,5C.3,3,3,3,3D.2,3,2,3,2解:根据各个选项的数据,显然选项C的方差是0,方差最小,故选:C.3.已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为,则m的值为()A.﹣B.C.﹣D.解:根据题意,直线AB的倾斜角为,则其斜率k=tan=﹣,又由A(3,m+1),B(4,2m+1),则AB的斜率k==m,则有m=﹣,故选:C.4.一个等比数列的第3项和第7项分别为8和18,则它的第5项为()A.12B.﹣12C.±12D.解:∵a3•a7=8×18,∴a5=±=±=±12,∵等比数列的奇数项的符号相同,∴a5=12,故选:A.5.已知某圆拱桥拱高5米,水面跨度为30米,则这座圆拱桥所在圆的半径为()米A.20B.25C.24D.23解:设圆的半径为r,由题意可得弦心距为r﹣5,半弦长为15,故有152+(r﹣5)2=r2,求得r=25,故选:B.6.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行阶梯水价,每人月用水量中不超过a立方米的部分按2.5元/立方米收费,超出a立方米的部分按7元/立方米收费,从该市随机调查了10000位居民,获得了他们某年的月均用水量数据,整理得到如下频率分布直方图:如果a为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为()A.2B.2.5C.3D.4解:由频率分布直方图得:用水量在[0,0.5)的频率为0.08×0.5=0.04,用水量在[0.5,1)的频率为0.16×0.5=0.08,用水量在[1,1.5)的频率为0.30×0.5=0.15,用水量在[1.5,2)的频率为0.44×0.5=0.22,用水量在[2,2.5)的频率为0.50×0.5=0.25,用水量在[2.5,3)的频率为0.28×0.5=0.14,∵用水量在[0,2.5)的频率为:0.04+0.08+0.15+0.22+0.25=0.74,用水量在[0,3)的频率为:0.04+0.08+0.15+0.22+0.25+0.14=0.88.∴根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为3元.故选:C.7.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为()A.B.C.D.解:一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色.则两次摸球全是白球的概率为×=,故两次摸出的球中至少有一个黑球的概率为1﹣=,故选:B.8.已知动点M到A(1,1),B(﹣3,3)两点的距离相等,P是圆(x﹣3)2+y2=5上的动点,则|PM|的最小值为()A.B.C.2D.解:由动点M到A(1,1),B(﹣3,3)两点的距离相等,得M在线段AB的垂直平分线上,∵AB的中点坐标为(﹣1,2),,∴AB的垂直平分线方程为y﹣2=2(x+1),即2x﹣y+4=0.P是圆C:(x﹣3)2+y2=5上的动点,如图:∵圆心C到直线2x﹣y+4=0的距离d=,∴|PM|的最小值为.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.若A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,则下列说法正确的是()A.P(A)+P(B)<1B.P(A)+P(B)≤1C.P(A∪B)=1D.P(A∩B)=0解:∵A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,∴P(A)+P(B)≤1,P(A∩B)=0,故A错误,B正确,C错误,D正确.故选:BD.10.某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:x23456y 2.2 3.8 6.57.0已知根据表中原始数据得回归直线方程为=1.23x+0.08.某位工作人员在查阅资料时发现表中有个数据模糊不清了,下列说法正确的是()A.所支出的维修费用与使用年限正相关B.估计使用10年维修费用是12.38万元C.根据回归方程可推断出模糊不清的数据的值为5D.点(4,5)一定在回归直线=1.23x+0.08上解:由线性回归方程为=1.23x+0.08,回归系数为>0,所支出的维修费用与使用年限正相关,选项A正确;x=10时,=1.23×10+0.08=12.38,所以估计使用10年维修费用是12.38万元,选项B 正确;某设看不清的数字为a,计算=×(2+3+4+5+6)=4,=×(2.2+3.8+a+6.5+7.0)=,代入回归直线方程=1.23x+0.08中,得=1.23×4+0.08,解得a=5.5,所以根据回归方程可推断出模糊不清的数据值为5.5,选项C错误;样本中心点(4,5)在线性回归方程=1.23x+0.08上,所以选项D正确.故选:ABD.【点评】本题考查了线性回归方程过样本中心点的应用问题,也考查了运算求解与推理能力,是中档题.11.下列命题为真命题的是()A.“a,A,b成等差数列”的充要条件是“2A=a+b”B.“a,A,b成等比数列”的充要条件是“A2=ab”C.“a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件D.已知直线l过点(3,1),则“直线l的斜率为”是“直线l与圆(x﹣1)2+(y﹣2)2=4相切”的充分不必要条件解:对于A:由2A=a+b得A﹣a=b﹣A,即a,A,c成等差数列,若a,A,b成等差数列,则A﹣a=b﹣A,即“2A=a+b“是“a,A,b成等差数列”的充要条件,故A正确;对于B:若a,A,b成等比数列,则A=±(ab>0),由A=,可得a,A,b成等比数列,或“x=0且a与b中至少一个为0”,属于a,A,b成等比数列”的必要条件是“A2=ab”不对,故B错误;对于C:当a=﹣时,代入方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0,可得k=0,表示平行于x轴的直线”当示平行于x轴的直线时,可得6a2﹣a﹣2=0,可得a=﹣或a=,所以a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件;故C正确;对于D:已知直线l过点(3,1),且直线l的斜率为”与圆(x﹣1)2+(y﹣2)2=4相切”,而过(3,1)与圆(x﹣1)2+(y﹣2)2=4相切”的直线l的斜率有两个值,所以是充分不必要条件,故D正确;故选:ACD.【点评】本题等差等比的性质应用和直线方程以及圆的切线问题,属于中档题.12.已知数列{a n}的前n项和S n满足,下列说法正确的是()A.若首项a1=1,则数列{a n}的奇数项成等差数列B.若首项a1=1,则数列{a n}的偶数项成等差数列C.若首项a1=1,则S15=477D.若首项a1=a,若对任意n∈N*,a n<a n+1恒成立,则a的取值范围是(3,5)解:数列{a n}的前n项和S n满足,所以,,当n=1时,S1+S2=4×4=16,即2a1+a2=16,当n=2时,a3+2S2=36,对于A:已知a1=1,故a2=14,a3=6,所以a3﹣a1=5≠8,故数列{a n}的奇数项不成等差数列,故A错误;对于B:故a n+1+a n=4(2n+1),a n+a n﹣1=4(2n﹣1),所以a n+1﹣a n﹣1=8,故数列{a n}的偶数项成等差数列,故B正确;对于C:S15=(a1+a3+…+a15)+(a2+a4+…+a14)=1+6×+,故C正确;对于D:由a1=a,知,所以a2=16﹣2a,,解得a3=4+2a,a4=24﹣2a.若对任意n∈N*,a n<a n+1恒成立,只需满足a1<a2<a3<a4,即a<16﹣2a<4+2a<24﹣2a,解得:3<a<5.故a的取值范围是(3,5),故D正确.故选:BCD.【点评】本题考查的知识要点:数列的递推关系式,数列的求和,裂项相消法在求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分.13.若“x≤a”是“x≤2”的必要不充分条件,则实数a的取值范围为(2,+∞).解:设P={x|x≤a},Q={x|x≤2},由条件知,“x∈P”是“x∈Q”的必要不充分条件,则Q⫋P;∴a>2,即则实数a的取值范围为(2,+∞).故答案为:(2,+∞).【点评】本题主要考查充分条件和必要条件的应用,根据定义建立不等式关系是解决本题的关键,属于基础题.14.在所有7位自然数中任取一个数,则头两位都是3的概率为解:在所有7位自然数中任取一个数,基本事件总数n=9×106,其中头两位都是3包含的基本事件个数m=105,则头两位都是3的概率p===.故答案为:.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.15.已知直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,若这三条直线交于一点,则交点坐标为(1,2),点(m,n)到原点的距离最小值为.解:联立,得,∵直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,这三条直线交于一点,∴交点坐标为(1,2),把(1,2)代入直线l1:mx+ny+5=0得:m+2n+5=0,即m=﹣2n﹣5,点(m,n)到原点的距离:d====,∴当n=﹣2,m=﹣1时,点(m,n)到原点的距离最小值为.故答案为:(1,2),.【点评】本题考查直线的交点坐标、两点间的距离的最小值的求法,考查直线方程、两点间距离公式等基础知识,考查运算求解能力,是基础题.16.长为的线段AB的两个端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C,已知过定点P(2,0)的直线l与曲线C相交于E,F两点,O为坐标原点,当△EOF的面积取到最大值时,直线l的斜率为±解:设M点坐标为(x,y),则A点坐标为(2x,0),B点坐标为(0,2y),由|AB|=2,得(2x﹣0)2+(0﹣2y)2=8,化简得x2+y2=2,所以曲线C的方程x2+y2=2,由题知,直线l斜率存在,设直线l的斜率为k,方程为y=k(x﹣2),即kx﹣y﹣2k=0,△EOF的面积取到最大值时,OE⊥OF,圆心到直线的距离d=1,∴d==1,∴k=±.故答案为:±.【点评】本题考查了点的轨迹方程,直线与圆的位置关系,考查点到直线的距离公式的运用,确定△AOB的面积取到最大值时,OA⊥OB是关键,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知A(2,0),B(3,3),C(﹣1,1).(1)求点A到直线BC的距离;(2)求△ABC的外接圆的方程.解:(1)∵A(2,0),B(3,3),C(﹣1,1),故直线BC的方程为=,即2x﹣y+3=0.故点A到直线BC的距离d===.(2)△ABC的外接圆的方程为x2+y2+dx+ey+f=0,把A、B、C的坐标代入可得,求得,故△ABC的外接圆的方程为x2+y2﹣2x﹣4y=0.【点评】本题主要考查用两点式求直线的方程,点到直线的距离公式,用待定系数法求圆的方程,属于中档题.18.(12分)在①a2﹣2,a3,a4+6成等比数列,②a3+1,a5,a6+1成等差数列,③a2,a4+2,a6+10成等比数列,这三个条件中任选一个,补充在下列问题中并作答.正项等差数列{a n}满足a1=4,且______.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和.解:若选①:(1)设正项等差数列{a n}的公差为d,由题设可得:a32=(a2﹣2)(a4+6),又a1=4,∴(4+2d)2=(4+d﹣2)(4+3d+6),解得:d=2或d=﹣2(舍),∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.若选②:(1)设正项等差数列{a n}的公差为d,由题设可得:2a5=a3+a6+2,又a1=4,∴2(4+4d)=4+2d+4+5d+2,解得:d=2,∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.若选③:(1)设正项等差数列{a n}的公差为d,由题设可得:(a4+2)2=a2(a6+10),又a1=4,∴(4+3d+2)2=(4+d)(4+5d+10),解得:d=2或d=﹣(舍),∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.19.(12分)由于疫情,学生在家经过了几个月的线上学习,某高中学校为了了解学生在家学习情况,复学后进行了复学摸底考试,并对学生进行了问卷调查,如表(单位:人)是对高二年级数学成绩及“认为自己在家学习态度是否端正”的问卷调查的统计结果,其中成绩不低于120分为优秀,成绩不低于90分且小于120分的为及格,成绩小于90分的为不及格.优秀及格不及格学习态度端正91300a学习态度不端正9200322按成绩用分层抽样的方法在高二年级中抽取50人,其中优秀的人数为5.(1)求a的值;(2)用分层抽样的方法在及格的学生中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2人,求至少有1人学习不端正的概率;(3)在及格的学生中随机抽取了10人,他们的分数如图所示的茎叶图,已知这10名学生的平均分为104.5,求a>b的概率.解:(1)设高二年级总人数为n人,由题意可得=,解得n=1000,则a=100﹣(91+9)﹣322﹣(300+200)=78,(2)设所抽样本中有x人学习态度端正的学生,则由分层抽样可知=,解得x=3,因此抽取一个容量为5的样本中,由2个学习态度不端正,3个学习态度端正,分别记作a,b,A,B,C,从中任取2个的基本事件为(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10个.至少含有11人学习不端正的基本事件有7个,(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),∴从中任取2人,至少有1人学习不端正的概率P=;(3)记事件A为“a>b“,因为平均分为104.5,则(90×3+100×4+110×3+2+a+b+5+6+8+3+6+7)=104.5,解得a+b=8,∴a和b的取值共有9种情况,它们是(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0),其中a>b有4种情况,它们是(5,3),(6,2),(7,1),(8,0),故P(A)=.20.(12分)已知命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立;命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立.(1)若命题p为真,求实数a的取值范围;(2)若命题p和命题q一真一假,求实数a的取值范围.解:命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立,即a<在[2,3]上有解,又当2≤x≤3时,2≤x2﹣x≤6,所以,故a,命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立,所以,因为y=()x﹣x在[﹣1,2]上单调递减,故x1∈[﹣1,2]时,值域[﹣,3],所以∃x2∈[1,2],,即a>=x+在[1,2]上有解,因为y=x+在[1,2]上先减后增,当x=时取得最小值2,故a>2,(1)若命题p为真,则a的范围{a|a},(2)若命题p和命题q一真一假,当p真q假时,即a<,当p假q真时,即a>2,综上,实数a的取值范围{a|a<或a>2}.21.(12分)已知圆C:(x﹣1)2+(y﹣1)2=25,直线l:(m+2)x+(m+1)y+4m+6=0.(1)证明:不论实数m为何值,直线l与圆C始终相交;(2)若直线l与圆C相交于A,B两点,设集合M={x|x=|AB|且x∈N},在集合M中任取两个数,求这两个数都不小于8的概率.【解答】(1)证明:化直线l:(m+2)x+(m+1)y+4m+6=0为m(x+y+4)+2x+y+6=0,由,解得,∴直线l过定点P(﹣2,﹣2),又(﹣2﹣1)2+(﹣2﹣1)2=18<25,∴点P在圆内,∴不论实数m为何值,直线l与圆C始终相交;(2)解:设C到直线l的距离为d,∵|AB|=,∴当d最大时|AB|最小,d最小时|AB|最大,又0≤d≤|CP|,即当l与直线CP垂直时,,∴.|AB|max=10,即M={x|且x∈N}={6,7,8,9,10},从6,7,8,9,10中任取两数的基本事件有:(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)共10种,两数都不小于8的有(8,9),(8,10),(9,10)共3种.∴在集合M中任取两个数,这两个数都不小于8的概率为.22.(12分)已知数列{a n}的前n项和S n满足S n=3a n﹣3,.(1)求数列{a n},{b n}的通项公式;(2)记,若数列{c n}为递增数列,求λ的取值范围.解:(1)∵S n=3a n﹣3,∴S n﹣1=3a n﹣1﹣3(n≥2),两式相减得:a n=3a n﹣3a n﹣1,即a n=a n﹣1,n≥2,又当n=1时,有S1=3a1﹣3,解得:a1=,∴数列{a n}是首项、公比均为的等比数列,∴a n=()n,b n=3log a n+1=3n+1;(2)由(1)可得:=()n﹣λ(3n+1)2,∵数列{c n}为递增数列,∴c n+1﹣c n=()n+1﹣λ(3n+4)2﹣()n+λ(3n+1)2=×()n﹣λ(18n+15)>0对∀n∈N*恒成立,即λ<对∀n∈N*恒成立,设f(n)=,n∈N*,则=×,由>1解得:n>,∴当n≥2时,f(n+1)>f(n);当n=1时,f(n+1)<f(n),∴f(n)min=f(2)=,∴λ<,即λ的取值范围为(,+∞).。

2020-2021北京市北京四中高二数学上期中模拟试题(带答案)

2020-2021北京市北京四中高二数学上期中模拟试题(带答案)

2020-2021北京市北京四中高二数学上期中模拟试题(带答案)一、选择题1.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s =>C .270,75x s ><D .270,75x s <>2.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( ) A .12B .13C .14D .153.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 4.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示:则实数m =( ) A .0.8B .0.6C .1.6D .1.85.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 A .7B .15C .25D .356.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+7.我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i≤=-= C .17?,,+12i s s i i i ≤=-= D .1128?,,22i s s i i i≤=-= 8.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为A.4n mB.2nmC.4mnD.2mn9.下列说法正确的是()A.若残差平方和越小,则相关指数2R越小B.将一组数据中每一个数据都加上或减去同一常数,方差不变C.若2K的观测值越大,则判断两个分类变量有关系的把握程度越小D.若所有样本点均落在回归直线上,则相关系数1r=10.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为().A.16,26,8B.17,24,9C.16,25,9D.17,25,8 11.已知函数()cos3xf xπ=,根据下列框图,输出S的值为()A.670B.16702C.671D.67212.设点(a,b)为区域40x yxy+-≤⎧⎪>⎨⎪>⎩内任意一点,则使函数f(x)=2ax2bx3-+在区间[12,+∞)上是增函数的概率为A.13B.23C.12D.14二、填空题13.在区间[2,4]-上随机地取一个实数x,若实数x满足||x m≤的概率为23,则m=_______.14.在区间[-3,5]上随机取一个实数x,则事件“11422x≤≤()”发生的概率为____________.15.某校连续5天对同学们穿校服的情况进行统计,没有穿校服的人数用茎叶图表示,如图,若该组数据的平均数为18,则x=_____________.16.为了防止职业病,某企业采用系统抽样方法,从该企业全体1200名员工中抽80名员~中随机抽取一个数,如果抽到工做体检,现从1200名员工从1到1200进行编号,在115~这15个数中应抽取的数是__________.的是7,则从4660n=,则输出的S为 ________.17.执行如图所示的程序框图,如果输入318.用秦九韶算法计算多项式f(x)=2x4-x3+3x2+7,在求x=2时对应的值时,v3的值为___. 19.某路公交车站早上在6:30,7:00,7:30准点发车,小明同学在6:50至7:30之间到达该车站乘车,且到达该站的时刻是随机的,则他等车时间不超过8分钟的概率是__________.20.如果执行下面的程序框图,那么输出的s=______________.三、解答题21.自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A城市和B城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:关注不关注合计A城高中家长2050(1)完成上面的列联表;(2)根据上面列联表的数据,是否有95%的把握认为家长对自主招生关注与否与所处城市有关;(3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好,A B 两城市各一人的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++(其中n a b c d =+++).22.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x 与旅游收入y (单位:万元)之间有如下表对应数据:(1)求旅游收入y 对广告支出费x 的线性回归方程y bx a =+,若广告支出费12万元,预测旅游收入;(2)在已有的五组数据中任意抽取两组,根据(1)中的线性回归方程,求至少有一组数据,其预测值与实际值之差的绝对值不超过5的概率.(参考公式:1221ni ii nii x y nxyb xnx==-=-∑∑,a y bx =-,其中,x y 为样本平均值,参考数据:521145i i x ==∑,52113500i i y ==∑,511380i ii x y==∑)23.自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:20以下[20,30)[30,40)[40,50)[50,60)[60,70]70以上使用人数312176420未使用人数003143630(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率;(2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?24.某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积m(单位:平方米,60130m≤≤)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价y(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积m(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为X,求X的分布列与数学期望;(3)根据散点图选择ˆˆˆy a x=+ˆˆˆlny c d x=+两个模型讲行拟合,经过数据处理得到两个回归方程,分别为ˆ0.93690.0285y x=+ˆ0.95540.0306lny x=+,并得到一些统计量的值,如表所示:ˆ0.93690.0285y x=+ˆ0.95540.0306lny x=+()()1ni iix x y y=--∑0.0054590.005886()()2211nni i i i x x y y ==--∑∑ 0.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:ln 20.69≈,ln3 1.10≈,ln15 2.71≈,3 1.73≈,15 3.87≈,17 4.12≈参考公式:()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑25.我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了n 个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.分组 频数 频率 [)0,10 25[)10,200.19[)20,3050[)30,40 0.23 [)40,500.18[)50,605(1)分别求出n ,,a b 的值;(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;(3)从样本中年用水量在[]50,60(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等). 26.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y b x a =+$$; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:()1122211()()nni i i i i i n n ii i i x x y y x y nxy b x x x nx a y bx====⎧---⎪==⎪⎨--⎪=-⎪⎩∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案. 【详解】由题意,根据平均数的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x L , 则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦L ()()()2221248170707050050x x x L ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦L ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦L , 故275s <.选A . 【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.2.C解析:C 【解析】 【分析】甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,甲、乙将贺年卡都送给丁有1种情况,利用古典概型求解即可. 【详解】(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种, 所以甲、乙将贺年卡送给同一人丁的情况一种,概率是:14, 故选C . 【点睛】本题主要考查了古典概型的定义及计算,排列,计数原理,属于中档题.3.B解析:B 【解析】 【分析】计算18x =,27.2x =,210.4s =,22 2.16s =得到答案.【详解】17888985x ++++==,26677107.25x ++++==,故12x x >.()()()()()222222178888888980.45s -+-+-+-+-==;()()()()()222222267.267.277.277.2107.2 2.165s -+-+-+-+-==,故2212s s <.故选:B. 【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.4.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m my +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】试题分析:抽样比是,所以样本容量是.考点:分层抽样6.B解析:B 【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.B解析:B 【解析】【分析】分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论. 【详解】由题意,执行程序框图,可得: 第1次循环:11,42S i =-=; 第2次循环:111,824S i =--=; 第3次循环:1111,16248S i =--==; 依次类推,第7次循环:11111,256241288S i =----==L , 此时不满足条件,推出循环,其中判断框①应填入的条件为:128?i ≤, 执行框②应填入:1S S i=-,③应填入:2i i =. 故选:B . 【点睛】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 9.B解析:B 【解析】 【分析】由残差平方和越小,模型的拟合效果越好,可判断A ;由方差的性质可判断B ;由的随机变量2K 的观测值的大小可判断C ;由相关系数r 的绝对值趋近于1,相关性越强,可判断D .【详解】对于A ,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,相关指数2R 越大,故A 错误;对于B ,将一组数据的每一个数据都加上或减去同一常数后,由方差的性质可得方差不变,故B 正确;对于C ,对分类变量X 与Y ,它们的随机变量2K 的观测值越大,“X 与Y 有关系”的把握程度越大,故C 错误;对于D ,若所有样本点均落在回归直线上,则相关系数1r =,故D 错误. 故选:B. 【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.10.D解析:D 【解析】 【分析】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,从而求出三个营区被抽中的人数. 【详解】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,记为{},n a n N +∈,其中13a =,公差12d =,则第n 个号()11129n a a n d n =+-=-.令200n a ≤,即5129200,1712n n -≤∴≤,所以第一营区抽17人; 令500n a ≤,即5129500,4212n n -≤∴≤,所以第二营区抽421725-=人; 三个营区共抽50人,所以第三营区抽5017258--=人. 故选: D . 【点睛】本题考查系统抽样,属于基础题.11.C解析:C 【解析】 【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可. 【详解】由程序框图知:第一次运行()11cos 32f π==,10.1122S n =+=+=; 第二次运行()212cos32f π==-,12S =,213n =+=,第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos 32f π==-,12S =,415n =+=, 第五次运行()515cos32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =, 直到2016n =时,程序运行终止,Q 函数cos3n y π=是以6为周期的周期函数,201563355=⨯+, 又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=,∴程序运行2015次时,输出33621671S =⨯-=.故选C . 【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12.A解析:A 【解析】作出不等式组对应的平面区域如图所示:若f (x )=2ax 2bx 3-+在区间[12,+∞)上是增函数, 则02122a b a >⎧⎪-⎨-≤⎪⎩,即020a a b >⎧⎨-≥⎩,则A(0,4),B(4,0),由4020a ba b+-=⎧⎨-=⎩得8343ab⎧=⎪⎪⎨⎪=⎪⎩,即C(83,43),则△OBC的面积S=14423⨯⨯=83.△OAB的面积S=14482⨯⨯=.则使函数f(x)=2ax2bx3-+在区间[12,+∞)上是增函数的概率为P=OBCOABSSnn=13,故选:A.二、填空题13.2【解析】【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识解析:2【解析】【分析】画出数轴,利用x满足||x m≤的概率,可以求出m的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x,若x满足||x m≤的概率为23,则有2263m=,解得2m=,故答案是:2.【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.【解析】【分析】解不等式可得出所求事件的区域长度又可求出所有基本事件构成的区域长度由几何概型可求出概率【详解】设事件表示由得则即构成事件的区域的长度为又因为所有的基本事件构成的区域的长度为所以事件的解析:38【解析】【分析】解不等式11422x⎛⎫≤≤⎪⎝⎭,可得出所求事件的区域长度,又可求出所有基本事件构成的区域长度,由几何概型可求出概率.【详解】设事件A表示11|422xx⎧⎫⎪⎪⎛⎫≤≤⎨⎬⎪⎝⎭⎪⎪⎩⎭,由11422x⎛⎫≤≤⎪⎝⎭得2111222x-⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭,则21x-≤≤,即构成事件A的区域的长度为12=3+.又因为所有的基本事件构成的区域的长度为53=8+,所以事件A的概率3 ()8 P A=.故答案为38.【点睛】本题考查了几何概型的概率公式,属基础题.15.8【解析】【分析】根据茎叶图计算平均数【详解】由茎叶图得【点睛】本题考查茎叶图以及平均数考查基本运算能力属基础题解析:8【解析】【分析】根据茎叶图计算平均数.【详解】由茎叶图得1617101920188.5xx+++++=∴=【点睛】本题考查茎叶图以及平均数,考查基本运算能力,属基础题.16.52【解析】由题意可知抽取的人数编号组成一个首项为7公差为15的等差数列则从这个数中应抽取的数是:故答案为52解析:52【解析】由题意可知,抽取的人数编号组成一个首项为7,公差为15的等差数列,则从4660~这15个数中应抽取的数是:715352+⨯=. 故答案为 52.17.【解析】【分析】根据框图可知该程序实现了对数列求和的功能输入时求【详解】根据框图可知执行该程序实现了对数列求和当时故填【点睛】本题主要考查了程序框图裂项相消法求和属于中档题解析:37【解析】 【分析】根据框图可知,该程序实现了对数列1(21)(21)n a n n =-+ 求和的功能,输入3n =时,求3S .【详解】根据框图可知,执行该程序,实现了对数列1(21)(21)n a n n =-+ 求和,当3n =时,3111111111=++=1)133557233557S -+-+-⨯⨯⨯( 1131)277-=(, 故填37. 【点睛】本题主要考查了程序框图,裂项相消法求和,属于中档题.18.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7, ∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18. 故答案为:18.19.【解析】由题意可知小明在和之间到达车站时满足题意由几何概型公式可得:他等车时间不超过10分钟的概率是点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围当考察对象为点点的活动范围在线段 解析:25【解析】由题意可知,小明在6:507:00-和7:207:30-之间到达车站时满足题意,由几何概型公式可得:他等车时间不超过10分钟的概率是201402=. 点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.20.46【解析】第一次执行程序执行第二次程序执行第三次程序执行第四次程序符合判断框条件退出循环输出故填46点睛:本题主要考查含循环结构的框图问题属于中档题处理此类问题时一般模拟程序的运行经过几次运算即可解析:46 【解析】第一次执行程序2,2(11)4i s ==⨯+=,执行第二次程序3,2(41)10i s ==⨯+=,执行第三次程序4,2(101)22i s ==⨯+=,执行第四次程序5,2(221)46i s ==⨯+=,符合判断框条件,退出循环,输出46s =,故填46.点睛:本题主要考查含循环结构的框图问题。

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。

巴蜀中学高二数学上学期期中试题

巴蜀中学高二数学上学期期中试题

重庆市巴蜀中学2020-2021学年高二数学上学期期中试题本试卷共4页,22题.全卷满分150分,考试时间120分钟. 注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.综合题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效. 4.考试结束后,将答题卡交回,试题卷自行保存.一、选择题(本大题共12小题,每题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的.) 1.直线l 的方程是3260x y -+=,则直线l 经过( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限2.已知椭圆22:14y C x +=,则椭圆C 的( )A .焦距为B .焦点在x 轴上C .离心率为12D .长轴长为43.下列说法正确的是( ) A .直四棱柱是正四棱柱B .两个面平行且相似,其余各面都是梯形的多面体是棱台C .圆锥的顶点与底面圆周上任意一点的连线都是母线D .以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥4.下列双曲线中,渐近线方程为43y x =±的是( ) A .22143x y -=B .22143y x -=C .221169x y -=D .221169y x -=5.直线250x y ++=与直线20kx y +=互相垂直,则它们的交点坐标为( )A .(1,3)--B .(2,1)--C .1,12⎛⎫-- ⎪⎝⎭D .(1,2)-- 6.直线10()x my m R ++=∈与椭圆2212x y +=的位置关系是()A .相交B .相切C .相离D .以上三种关系都可能7.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .C .D . 8.已知,αβ是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列命题正确的是( )A .若//,//m n αβ,且//αβ,则//m nB .若m α⊥,//n β,且αβ⊥,则m n ⊥C .若,m ααβ⊥⊥,则//m βD .若//,m m αβ⊥,则αβ⊥ 9.已知(4,0)A -,B 是圆22(1)(4)1x y -+-=上的点,点P在双曲线22197x y -=的右支上,则||||PA PB +的最小值为( ) A .9 B .6+ C .10 D .1210.已知F 为椭圆C :2212x y +=的右焦点,点F 关于直线:1m y x =+的对称点为Q ,若直线l 过点Q ,且//l m ,则椭圆C 上的点到直线l 距离的最大值为( )AB C D11.已知点P是双曲线22221(0,0)x y a b a b -=>>上一动点,AB 为圆2224a x y +=的直径,若PA PB ⋅最小值为22c ,则双曲线的离心率为( )AB C .2 D12.已知三棱锥P ABC -的所有棱长均为2,点M 为BC 边上一动点,若AN PM ⊥且垂足为N ,则线段CN 长的最小值为( )A B C D .1二、填空题(本大题共4小题,每题5分,共20分.) 13.已知双曲线2222mx my -=的一个顶点是(0,1),则m 的值是_______________. 14.过两圆224x y +=和22(2)(1)1x y -++=交点的直线方程为____________.15.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若该二十四等边体棱长为1,则该二十四等边体的体积为____________.16.如图,已知P 为椭圆C :22221(0)x y a b a b +=>>上的点,点A 、B 分别在直线12y x =与12y x =-上,点O 为坐标原点,四边形OAPB 为平行四边形,若平行四边形OAPB 四边长的平方和为定值,则椭圆C 的离心率为________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分) 已知12,F F 分别是双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点,点P 是双曲线上一点,满足12PF PF ⊥且128,6PF PF ==.(1)求双曲线C 的标准方程;(2)若直线l 交双曲线于A ,B 两点,若AB 的中点恰为点(2,6)M ,求直线l 的方程.18.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为矩形,1PA =,直线PB 、PD 与平面ABCD 所成角分别为30°、45°,E 为CD 的中点.(1)已知点F 为PB 中点,求证://CF 平面PAE ; (2)求二面角P BD A --的余弦值. 19.(本小题满分12分) 已知椭圆C :22221(0,0)x y a b a b +=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的标准方程;(2)直线:1l y x =+与椭圆C 交于M 、N 两点,O 为坐标原点,若点E 满足()OE t OM ON =+,且点E 在椭圆C 上,求实数t 的值. 20.(本小题满分12分)已知圆C 的圆心在第一象限内,圆C 关于直线3y x =对称,与x 轴相切,被直线y x =截得的弦长为27. (1)求圆C 的方程;(2)若点P 在直线10x y ++=上运动,过点P 作圆C 的两条切线PA 、PB ,切点分别为A 、B 点,求四边形PACB 面积的最小值.21.(本小题满分12分)如图,已知四棱柱ABCD A B C D '-'''的侧棱长为4,底面ABCD 是边长为2的菱形,点E 为BC 中点,直线AE 和CD 交于点H ,C H '⊥面ABCD .(1)求证:BD A H ⊥';(2)若3BAD π∠=,在线段AA '上是否存在一点M ,使得平面MBD 与平面BCC '所成锐二面角为60°,若存在,求||MA AA'的值;若不存在,请说明理由.22.(本小题满分12分)已知椭圆2222:1(0,0)x y C a b a b +=>>的左、右焦点为1F ,2F ,P是椭圆上的点,当点P 在椭圆上运动时,12PF F 面积的最大值为4,当1PF x ⊥轴时,12PF F 面积为22.(1)求椭圆C 的标准方程;(2)如图,若直线1PF 、2PF 交椭圆另一点分别是A 、B ,点P 不在x 轴上,且||||2PA PB +=P 的坐标.高2022届高二(上)期中考试参考答案数学一、单选题答案 1 2 3 4 5 6 7 8 9 10 11 12 A DCD BAC DCB A A二、填空题答案131415162-240x y --=52332解析:9题:设点(1,4)C ,点B 在圆上,则||||||1PB PC r PC ≥-=-,由点P 在双曲线右支上,点A 为双曲线左焦点,设A '为双曲线右焦点,所以由双曲线定义知|?|||2||6PA PA a PA =+=+', 所以||||||6||61||55510PA PB PA PB PA PC A C '+=++≥++-≥+=+='',故选C . 10题:由点2(1,0)F 关于直线1PF :1y x =+对称点为(1,2)Q -,所以直线:3l y x =+,设椭圆的参数方程为2cos sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),设点(2cos ,sin )M θθ,则点M 到直线l 的距离为:|2cos 3sin ||33sin()|33222d θθθφ+--++==≤,故选B .11题:222223()()()()44a a PA PB PO OA PO OB PO OA PO OA PO OA a ⋅=++=+-=-≥-=,所以222233422a c c a =⇒=,所以23622e e =⇒=,故选A .12题:取PA 中点O ,因为AN PM ⊥,所以点N 在以O 为球心,半径为1的球面上,又点N 在平面PBC 上,故N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,且点1O PS ∈(S 为BC 中点),则点N在以1O 为圆心的圆弧上,经计算得163OO=,则133NO =,1213CO=,当点N 在1CO 上时,CN 取最小值2133-,故选A.14解:两圆方程相减就得公共弦的方程:240x y --=.152,则正方体的体积为22又截去的8个三棱锥为全等三棱锥,都有三条互相垂直的棱长,故截去体积为211832223⎛⨯⨯⨯⨯= ⎝⎭,所以24等边体的体积为V ==.16解:(法一)设()0,P x y ,则直线PA 的方程为0122xy x y =-++,直线PB 方程为00122x y x y =-+,联立方程组0012212x y x y y x⎧=-++⎪⎪⎨⎪=⎪⎩,解得0000,242x x y A y ⎛⎫++⎪⎝⎭, 联立方程组0012212x y x y y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得0000,242x x y B y ⎛⎫--+ ⎪⎝⎭, 则2222222200000000005524224282x x y x x y PA PB y y x y ⎛⎫⎛⎫⎛⎫⎛⎫+=-+-++++=+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又点P 在椭圆上,则有22222200b xa y ab +=,因为22005582x y +为定值,则22222213,,44b a b e e a a -====法二:设()121200,,,,,22x x A x B x P x y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由AB 和OP 中点相同,则1201202x x x x x y +=⎧⎪⎨-=⎪⎩, 所以()222221201204224x x x AB x x y ⎛⎫=-++=+ ⎪⎝⎭平行四边形性质边长平方和等于222222220000004544x x AB OP y x y y ⎛⎫+=+++=+ ⎪⎝⎭为定值,又点P 在椭圆上,则有2222220b xa y ab +=,因为220014x y +为定值,则22222213,,44b a b e e a a -====.三、解答题答案: 17.解:(1)1222a PF PF =-=,所以1a =,在三角形12PF F 中,2221212100F F PF PF =+=,所以24100c =,22225c a b ==+,则224b =,故双曲线的标准方程为:22124y x -=(5分) (2)设()()1122,,,A x y B x y ,有222212122112222212424124y x y y x x y x ⎧-=⎪-⎪⇒-=⎨⎪-=⎪⎩,所以221212122112122224y y y y y y x x x x x x --+==⋅--+ 又121212126,32ABy y y y kx x x x -+===-+,所以3248AB AB k k ⋅=⇒=,所以直线AB 方程为:68(2)810y x y x -=-⇒=-,满足0∆>,符合题意 (10分)18.(1)取AB 中点G ,连结GF ,CG ,∵在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为矩形,E 为CD 的中点,∴//,//CG AE FG PA , ∵,CG FG G AE PA A ⋂=⋂=,∴//CG 平面PAE ,//FG 平面PAE ∴平面//CFG 平面PAE ,∵CF ⊂平面CFG ,∴//CF 平面PAE . (6分)(2)由PA ⊥面ABCD ,所以PBA ∠为PB 与面ABCD 所成角,30PBA ∠=︒ 所以PDA ∠为PB 与面ABCD 所成角,45PDA ∠=︒由1PA =,所以1AB AD ==,以A 为坐标原点,,,AB AD AP 为x ,y ,z 正方向建立空间直角坐标系,则(0,0,0),(0,1,0),(0,0,1)A B D P ,平面PBD 中:(3,0,1)PB =-,(0,1,1)PD =-,设法向量(,,)n x y z =,则0PB n PDn ⎧⋅=⎪⎨=⎪⎩,0z y z -=-=⎪⎩取z =则1,x y ==,则(1,3,n =,又PA ⊥平面ABCD ,故平面ABD 的法向量为:(0,0,1)m =, 设二面角P BD A --的平面角为θ,所以||3cos ||77m n m n θ⋅===. (12分)也可以不建系,直接找出二面角的平面角来求.19.解:(1)122c a c a =⇒=,所以22224,3a c b c ==,所以椭圆方程为:22243x y c +=,过点31,2P ⎛⎫⎪⎝⎭, 所以2914143c =+=,所以椭圆方程为:22143x y +=,(4分)(2)设()()1122,,,M x y N x y ,联立2212212817788043817x x x y x x x x y x ⎧⎧+=-⎪⎪+=⎪⎪⇒+-=⇒⎨⎨⎪⎪=-=+⎪⎪⎩⎩所以12128611277yy x x +=+++=-+= 又()()()121286(),,77t t OE t OM ON t xx t y y ⎛⎫=+=++=- ⎪⎝⎭,所以点86,77t t E ⎛⎫- ⎪⎝⎭,带入椭圆中:2226436749491434t t t t +=⇒=⇒= (12分)20.解:(1)设圆C 的标准方程为:222()(),(0,0)x a y b r a b -+-=>>,所以圆心C 为(,)a b由圆C 关于直线3y x =对称有:3b a = ① 与x 轴相切:3r b a == ② 点C 到y x =的距离为:d ===, 被直线y x =截得的弦长为有:222r d =+,结合②有:22927a a =+,所以21a=,又0a >,所以1a =,33r b a ===, 所以圆的标准方程为:22(1)(3)9x y -+-=, (6分)(2)由,PA PB 与圆相切,所以,,3CA PA CB PB CA CB ⊥⊥==,由PAC PAB≌,所以12232PABPACBSSCA PA PA ==⨯⨯=四边形,又PA ==C l PC d →≥==(当PC l ⊥时取等)所以3PACBSPA =≥=四边形(当PC l ⊥时取等)所以四边形PACB 面积的最小值为2 (12分) 21.解:(1)由菱形ABCD 中:BD AC ⊥,又//AC A C '',所以BD A C ⊥'', 又C H '⊥面ABCD,所以C H BD '⊥,所以BD ⊥面A C H'',所以BD A H '⊥(4分) (2)在HAD 中,1//,2CE AD CE AD =,所以 CE 为中位线,则C 为DH 中点,CD CH=,∴AB CH =又//AB CH ,所以ABHC 为平行四边形,∴,//BH AC BH AC =,又ACC A ''为平行四边形,∴BH A C ='',//BH A C '',∴BHC A ''为平行四边形 ∴//,C H A B C H A B ''''=又C H '⊥面ABCD ,所以A B '⊥面ABCD . 在RtC CH'中,4,2CC CH ='=,则23C H '=,三角形ABD 中,,3AB AD BAD π=∠=,所以2BD AB ==,所以三角形BCD 为正三角形,以点B 为坐标原点,,BA BA '为y ,z 轴正方向建立如图所示的直角坐标系,则(0,0,0),(3,1,0),(0,2,23)(0,2,0),(0,0,23),(3,1,0)B C B A A D -''-设(0,2,23),(01),(0,223)AM AA BM BA AM λλλλλλ'==-≤≤=+=-,所以点(0,22,23)M λλ-,面MBD 中:(3,1,0)BD =,(0,22,23)BM λλ=-,设法向量(,,)n x y z =00n BD n BM ⎧⋅=⎪⎨⋅=⎪⎩,则30(22)30x y y z λ⎧+=⎪⎨-+=⎪⎩,取3y λ=, 则,1x z λλ=-=-,所以(,3,1)n λλλ=--平面BB C '中,(3,1,0),(0,2,23)BC BB =-=-',设法向量(,,)m x y z =,00m BC m BB ⎧⋅=⎪⎨⋅=⎪⎩, 则302230x y y z -=-+=⎪⎩,取3y =,则1,1x z ==,所以(1,3,1)m =若存在,则22||1cos60254(1)n m n m λλ⋅︒===+-∣∣,化简有:()2224(31)54(1)λλλ-=+- 有2111410λλ--=,所以7215λ-=7215+由721572151-+<>,且01λ≤≤,所以在线段AA '上不存在点M . (12分) 22.解(1)2222422222bc a b c a b c a b c=⎧⎪⎧=⎪⎪⇒=⎨⎨==⎪⎩⎪⎪=+⎩,所以椭圆方程为22184x y +=(4分)(2)设直线1PF 为:2x my =-,2PF :2x ny =+联立方程22228x my x y =-⎧⎨+=⎩,消x 有:()222440m y my +--=,则()21221223214242m m y y m y y m ⎧∆=+⎪⎪⎪+=⎨+⎪-⎪=⎪+⎩则()2212224211||142122m PA m y y m m +⎫=+-==-⎪++⎭同理可得:)2212224211||142122n PB n y n n +⎫=+-==-⎪++⎭,由||||2PA PB +=,所以2211211222m n ⎫-+-=⎪++⎭2222122m n ⎛⎫+= ⎪++⎝⎭,则224||2m n mn =⇒=, 又00001212y m x y n x ⎧=⎪+⎪⎨⎪=⎪-⎩,则20201142y mn x ==±-,若22200020112442y y x mn x ==-⇒=--,又220028x y +=,有220048x x +-=,矛盾,不成立,若22200020112442y y x mn x ==⇒=--,又220028x y +=,所以2002006611x x y y ⎧⎧==⎪⎪⇒⎨⎨==±⎪⎪⎩⎩所以点P 的坐标为6,1),(6,1),(6,1),(6,1)--. (12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021高二数学上期中试卷带答案(4)一、选择题1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A .e m =0m =xB .e m =0m <xC .e m <0m <xD .0m <e m <x3.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示: x 1 2 3 4 y0.1m3.14则实数m =( ) A .0.8B .0.6C .1.6D .1.84.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI 的统计数据.则下列叙述正确的是( )A .这12天的AQI 的中位数是90B .12天中超过7天空气质量为“优良”C .从3月4日到9日,空气质量越来越好D .这12天的AQI 的平均值为1005.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .100,10D .200,106.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为( ) A .35B .13C .415D .157.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξC .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<8.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn9.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤L ,()1150k b k ≤≤为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( ) A .12150b b b M n ++=LB .12150150b b b M ++=LC .12150b b b M n++>LD .12150150b b b M ++>L10.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.设点(a,b)为区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内任意一点,则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为 A .13B .2 3C .1 2D .1 4二、填空题13.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.14.已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是______. 15.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表:用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.16.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得101ii x =∑=80, 101ii y =∑=20, 110i i i x y =∑=184, 1210i ix =∑=720.则家庭的月储蓄y 对月收入x 的线性回归方程为__________.附:线性回归方程y =bx +a 中, 1221nii i n ii x y nxy b x nx==-=-∑∑,a=y -b x ,其中x , y 为样本平均值.线性回归方程也可写为ˆy=ˆb x +ˆa . 17.如图,四边形ABCD 为矩形,3AB =,1BC =,以A 为圆心,1为半径作四分之一个圆弧»DE,在DAB ∠内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.18.假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________19.执行如图所示的程序框图,则输出S 的结果为________.20.某学生每次投篮的命中概率都为40%.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.三、解答题21.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.22.随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份2014 2015 2016 2017 2018 年份代号t 1 2 3 4 5 人均纯收入y547810(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?附:回归直线的斜率和截距的最小二乘估计公式分别为()()()121niii nii tty y b tt==--=-∑∑$,a y bt =-$$.23.(1)从区间[1,10]内任意选取一个实数x ,求26160x x --≤的概率; (2)从区间[1,12]内任意选取一个整数x ,求()ln 22x -<的概率.24.从2013年开始,国家教育部要求高中阶段每学年都要组织学生进行学生体质健康测试,方案要求以学校为单位组织实施,某校对高一(1)班学生根据《国家学生体质健康标准》的测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图.所示,已知[90,100]分数段的人数为2. (1)求[70,80)分数段的人数;(2)现根据预备测试成绩从成绩在80分以上(含80分)的学生中任意选出2人代表班级参加学校举行的一项体育比赛,求这2人的成绩一个在[80,90)分数段、一个在[90,100]分数段的概率.25.某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表一生产能力分[100,110)[110,120)[120,130)[130,140)[140,150)组人数48x53表二生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618①先确定,x y再补全下列频率分布直方图(用阴影部分表示).②就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)③分别估计A类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).26.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.y(微克)x (千克)x vy u vw v()281ii x x =-∑()821ii w w =-∑()()81iii x x y y =--∑ ()()81iii w w y y =--∑3 38 11 10 374 -121 -751其中2x ω=(I )根据散点图判断,ˆybx a =+与2ˆy dx c =+,哪一个适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)若用解析式2ˆydx c =+作为蔬菜农药残量ˆy 与用水量x 的回归方程,求出ˆy 与x 的回归方程.(c ,d 精确到0.1)(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据5 2.236≈)附:参考公式:回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为: ()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.2.D解析:D 【解析】试题分析:由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即e m =5.5,5出现的次数最多,故0m =5,23341056637282921030x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈5.97于是得0m <e m <x . 考点:统计初步.3.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m my +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】这12天的AQI 指数值的中位数是959293.52+= ,故A 不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B 不正确;;从4日到9日,空气质量越来越好,,故C 正确;这12天的AQI 指数值的平均值为110,故D 不正确. 故选 C .5.B解析:B 【解析】 【分析】 【详解】试题分析:由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B. 【考点定位】本题考查分层抽样与统计图,属于中等题.6.C解析:C 【解析】 【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案. 【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615C p C ==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115C p C ==; 故12415p p p =+=. 故选:C . 【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.7.A解析:A 【解析】()11222m n m np m n m n m n +=+⨯=+++,()()()()()()()()2112111313m m n n mn p m n m n m n m n m n m n --=+⨯+⨯++-++-++-()()2233231m m mn n n m n m n -++-=++-,()()()()()()()()2222123212332233223161m n m n m m mn n nm n m m mn n n p p m n m n m n m n m n ++---++-+-++--=-=+++-++-()()()51061mn n n m n m n +-=>++-,故12p p >,()()()112201222nm n m n E m n m n m n ξ++⎛⎫=⨯⨯+⨯= ⎪+++⎝⎭,()()()()()()()()22212133201131331n n mn m m mn n n E m n m n m n m n m n m n ξ⎛⎫⎛⎫--++-=⨯⨯+⨯+⨯ ⎪⎪ ⎪ ⎪++-++-++-⎝⎭⎝⎭()()2233231m m mn n n m n m n -++-=++-,由上面比较可知()()12E E ξξ>,故选A考点:独立事件的概率,数学期望.8.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 9.A解析:A 【解析】 【分析】由于选项中必有一项正确,故本选择题利用特殊法解决.设2n =,这2名学生的得分分别为150,150.则这2名学生中得分至少为(1150)k k 剟分的人数分别为:2,2,⋯,2,2.一共有150个“2”,计算12150b b b n++⋯+的值,再对照选项即可得到答案.【详解】 利用特殊法解决.假设2n =,这2名学生的得分分别为150,150. 则这2名学生中得分至少为1分的人数分别为:12b =, 这2名学生中得分至少为2分的人数分别为:22b =, 这2名学生中得分至少为3分的人数分别为:32b =,⋯这2名学生中得分至少为150分的人数分别为:1502b =, 即这2名学生中得分至少为(1150)k k 剟分的人数k b 分别为: 2,2,⋯,2,2.一共有150个“2”,从而得k 分的同学会被记k 次,所有k b 的和恰好是所有人得分的总和, 即12112k k b b b b a a -++⋯++=+, 从而121502222215015022b b b n ++⋯++++⋯+⨯===.12150222221502150150150b b b ++⋯++++⋯+⨯===.对照选项,只有(A )正确. 故选:A . 【点睛】本题主要考查众数、中位数、平均数、数列求和等基础知识,考查运算求解能力,考查特殊化思想思想、化归与转化思想.属于基础题.10.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.11.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差12.A解析:A 【解析】作出不等式组对应的平面区域如图所示:若f (x )=2ax 2bx 3-+在区间[12,+∞)上是增函数, 则02122a b a >⎧⎪-⎨-≤⎪⎩,即020a a b >⎧⎨-≥⎩,则A (0,4),B (4,0),由4020a b a b +-=⎧⎨-=⎩得8343a b ⎧=⎪⎪⎨⎪=⎪⎩,即C (83,43), 则△OBC 的面积S=14423⨯⨯=83. △OAB 的面积S=14482⨯⨯=. 则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为P=OBC OABS S n n =13, 故选:A .二、填空题13.【解析】【分析】首先计算出五位数的总的个数然后根据可被或整除的五位数的末尾是偶数或计算出满足的五位数的个数根据古典概型的概率计算公式求出概率即可【详解】因为五位数的总个数为:能被或整除的五位数的个数解析:35【解析】 【分析】首先计算出五位数的总的个数,然后根据可被2或5整除的五位数的末尾是偶数或5计算出满足的五位数的个数,根据古典概型的概率计算公式求出概率即可. 【详解】因为五位数的总个数为:55A =120,能被2或5整除的五位数的个数为:443A =72⨯, 所以7231205P ==. 故答案为:35. 【点睛】本题考查排列组合在数字个数问题方面的应用,难度一般.涉及到不同数字组成的几位数个数问题时,若要求数字不重复,可以通过排列数去计算相应几位数的个数.14.【解析】数据4849525556的平均数为×(48+49+52+55+56)=52∴该组数据的方差为:s2=×(48–52)2+(49–52)2+(52–52)2+(55–52)2+(56–52)2 解析:0.1【解析】数据4.8,4.9,5.2,5.5,5.6的平均数为15x =×(4.8+4.9+5.2+5.5+5.6)=5.2, ∴该组数据的方差为:s 2=15×[(4.8–5.2)2+(4.9–5.2)2+(5.2–5.2)2+(5.5–5.2)2+(5.6–5.2)2]=0.1.故答案为0.1.15.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >. 【解析】分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求$,a b$,写出回归方程,回归直线方程恒过点(,)x y .b $的正负,决定正相关与负相关.16.y =03x -04【解析】由题意知又由此得故所求回归方程为故答案为解析:y =0.3x -0.4【解析】由题意知1118012010,8,21010n n i i i i n x x y y n n =========∑∑, 又222172010880nii xnx =-=-⨯=∑,1184108224ni i i x y nxy =-=-⨯⨯=∑,由此得240.3ˆˆˆ,20.380.480bay bx ===-=-⨯=-,故所求回归方程为ˆy 0.30.4x =-,故答案为ˆy0.30.4x =-. 17.【解析】【分析】连接可求得满足条件的事件是直线AP 与线段BC 有公共点根据几何概型的概率公式可得【详解】连接如图所示所以满足条件的事件是直线AP 在∠CAB 内且AP 与BC 相交即直线AP 与线段BC 有公共点解析:13【解析】 【分析】连接AC ,可求得CAB ∠,满足条件的事件是直线AP 与线段BC 有公共点,根据几何概型的概率公式可得CABP DAB∠=∠. 【详解】连接AC ,如图所示,3tan 3CB CAB AB ∠==,所以π6CAB ∠=, 满足条件的事件是直线AP 在∠CAB 内且AP 与BC 相交,即直线AP 与线段BC 有公共点,所以所求事件的概率π16π32CAB P DAB ∠===∠. 故答案为:13.【点睛】本题考查几何概型的概率计算,考查学生的计算能力与推理能力,属于基础题.18.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy 则所有事件集可表示为0≤x ≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x 解析:1625【解析】 【分析】根据几何概型的概率公式求出对应的测度,即可得到结论. 【详解】分别设两个互相独立的短信收到的时间为x ,y .则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25, 阴影部分的面积2125252162-⨯-=() ,所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为1625. 【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础.19.30【解析】时继续时继续时停止输出点睛:本题考查的是算法与流程图算法与流程图的的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循解析:30 【解析】3i =时,0236S =+⨯=,继续, 5i =时,62516S =+⨯=,继续,7i =时,162730S =+⨯=,停止, 输出30S =.点睛:本题考查的是算法与流程图.算法与流程图的的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.20.【解析】这20组随机数中该学生三次投篮中恰有一次命中的有537730488027257683458925共8组则该学生三次投篮中恰有一次命中的概率约为故填 解析:25【解析】这20组随机数中, 该学生三次投篮中恰有一次命中的有537,730,488,027,257,683,458,925共8组,则该学生三次投篮中恰有一次命中的概率约为82205=,故填25.三、解答题21.(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii )67. 【解析】分析:(Ⅰ)由分层抽样的概念可知应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.且分布列为超几何分布,即P(X =k )=34337C C C k k -⋅(k =0,1,2,3).据此求解分布列即可,计算相应的数学期望为()127E X =. (ii )由题意结合题意和互斥事件概率公式可得事件A 发生的概率为67. 详解:(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.P (X =k )=34337C C C k k-⋅(k =0,1,2,3). 所以,随机变量X 的分布列为随机变量X 的数学期望()112184120123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A =B ∪C ,且B 与C 互斥,由(i )知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67. 所以,事件A 发生的概率为67. 点睛:本题主要在考查超几何分布和分层抽样.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X 的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.22.(1)$1.2 3.6y t =+ (2)2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元;10.8千元 【解析】 【分析】(1)根据所给数据利用公式计算,t ,y ,()51=-∑ii tt ,()()51=--∑i ii t ty y ,然后代入()()()1211==--=-∑∑$niii ni tty y btt,a y bt =-$$求解,再写出回归方程.(2)根据(1)的结果,由b$的正负来判断,将6t =,代入回归方程,预测该地区2019年农村居民家庭人均纯收入. 【详解】(1)由所给数据计算得()11234535t =⨯++++=, ()15678107.25y =⨯++++=,()514101410ii tt =-=++++=∑,()()()()()()()512 2.21 1.200.210.82 2.812iii tty y =--=-⨯-+-⨯-+⨯-+⨯+⨯=∑()()()1211121.210niii ni tty y bt t==--===-∑∑$, $7.2 1.23 3.6ay bt =-=-⨯=$, 所求回归方程为$1.2 3.6y t =+.(2)由(1)知, 1.20b=>$,故2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元.2019年时6t =,$1.26 3.610.8y =⨯+=,故预测该地区2019年农村居民家庭人均纯收入约为10.8千元. 【点睛】本题主要考查线性回归分析,还考查了运算求解的能力,属于中档题.23.(1)79;(2)712. 【解析】 【分析】(1)求解不等式26160x x --≤可得x 的范围,由测度比为长度比求得26160x x --≤的概率;(2)求解对数不等式可得满足()ln 22x -<的x 的范围,得到整数个数,再由古典概型概率公式求得答案. 【详解】解:(1)26160x x --≤Q ,∴28x -剟,又[]1,10x ∈Q []1,8x ∴∈故由几何概型可知,所求概率为8110971-=-. (2)()ln 22x -<Q ,222x e ∴<<+,则在区间[]1,12内满足()ln 22x -<的整数为3,4,5,6,7,8,9共有7个, 故由古典概型可知,所求概率为712. 【点睛】本题考查古典概型与几何概型概率的求法,正确理解题意是关键,是基础题. 24.(1)18;(2)37【解析】【分析】⑴由频率分布直方图可知,各个分数段的频率,求出50分以上的总人数,[)7080,分数段的频率,即可求出人数⑵求得[)8090,分数段的人数,列举出所有可能性情况,然后计算结果 【详解】(1)由频率分布直方图可知,[90,100]分数段的频率为0.005×10=0.05, [70,80)分数段的频率为1-(0.010+0.025+0.015+0.005)×10=0.45, 因为[90,100]分数段的人数为2,所以50分以上的总人数为=40,所以[70,80)分数段的人数为40×0.45=18.(2)由(1)可求得[80,90)分数段的人数为40×0.15=6,设[80,90)分数段的6名学生分别为A 1,A 2,A 3,A 4,A 5,A 6,[90,100]分数段的2名学生分别为B 1,B 2,则从中选出2人的选法有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 3,B 1),(A 3,B 2),(A 4,A 5),(A 4,A 6),(A 4,B 1),(A 4,B 2),(A 5,A 6),(A 5,B 1),(A 5,B 2),(A 6,B 1),(A 6,B 2),(B 1,B 2),共28种.其中这2人的成绩一个在[80,90)分数段、一个在[90,100]分数段的情况有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(A 5,B 1),(A 5,B 2),(A 6,B 1),(A 6,B 2),共12种, 则所求概率P ==. 【点睛】本题主要考查了频率分布直方图和概率公式,读懂频率分布直方图,运用计算方法求出结果,在计算概率时采用了列举法,将所有情况列举出来,然后再求概率. 25.(1)25,75名;(2)①直方图见解析;②B 类工人中个体间的差异程度更小;③123,121. 【解析】 【分析】(1)由分层抽样性质能求出A 类工人中和B 类工人中各抽查多少工人. (2)①由频率分布表列出方程能求出补x ,y ,并补全下列频率分布直方图. ②从频率分布直方图可以判断:B 类工人中个体间的差异程度更小. ③由频率分布直方图求出A 类工人生产能力的平均数和中位数. 【详解】解:(1)由分层抽样性质得:A 类工人中抽查:100250251000⨯=名工人, B 类工人中抽查:100750751000⨯=名工人. (2)①由题意得:485325x ++++=,解得5x =.6361875y +++=,解得15y =.补全频率分布直方图,如下图:②从频率分布直方图可以判断:B 类工人中个体间的差异程度更小. ③A 类工人生产能力的平均数为: 485310511513514512325252525A x =⨯+⨯+⨯+⨯=. A 类工人生产能力的中位数的估计值为:0.50.160.32120101210.2--+⨯=.【点睛】本题考查分层抽样、频率分布表、频率分布直方图的应用,考查平均数、中位数的求法,解题时要认真审题,注意频率分布直方图、分层抽样的性质的合理运用,属于中档题.26.(1)见解析; (2)2ˆ 2.060.0yx =-+;(3)需要用4.5千克的清水清洗一千克蔬菜. 【解析】 【分析】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型;(II )令2x ω=,先建立y 关于w 的线性回归方程,平均数公式可求出ω与y 的值从而可得样本中心点的坐标,从而求可得公式()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑, =38ˆˆ211=60cy dw =-+⨯,可得y 关于w 的回归方程,再代换成y 关于x 的回归方程可得结果;(III )解关于x 的不等式,求出x 范围即可. 【详解】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型; (Ⅱ)令2w x =,先建立y 关于w 的线性回归方程,由于()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑,∴=38ˆˆ211=60c y dw =-+⨯.∴y 关于w 的线性回归方程为 2.060.ˆ0yw =-+, ∴y 关于x 的回归方程为22.06.0ˆ0yx =-+.(Ⅲ)当ˆ20y<时,22.060.020x -+< , 4.5x >≈ ∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜.【点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.。

相关文档
最新文档