冀教版初二八年级数学下册《第二十二章复习》学案
冀教版数学八年级下册第二十二章《四边形》【学案】平行四边形及其边角性质

2021年春季复习题 练习 试卷 测试题2021年春季 平行四边形及其边角性质【学习目标】 1.理解掌握平行四边形定义和两条性质。
2.会应用性质解决问题。
【重点】理解并掌握平行四边形定义、性质.【难点】 用规范简明的语言归纳平行四边形的性质以及性质的简单应用. 【导学指导】一.知识链接利用生活中的图片,引导学生回顾平行四边形的有关知识.二.自主学习 1.平行四边形的概念及各要素(1)平行四边形:是两组对边分别平行的四边形.(强调关键词) (2)写法和读法(3)平行四边形的各要素,边、角、对角线.(4)对角线:连接平行四边形不相邻的两个顶点的线段.平行四边形有两条对角线.2.平行四边形的性质 (1)动手操作,探索平行四边形的中心对称性 (2)引导学生对平行四边形边角关系性质进行猜想并验证猜想. 【课堂练习】 1.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为___________. 2.平行四边形的周长为30,两邻边的差为5,则其较长边是________. 3.平行四边形具有,而一般四边形不具有的性质是( ) A .外角和等于360° B .对角线互相平分 C .内角和等于360° D .有两条对角线 4.平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________. 5.平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________ 6.平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .2021年春季小学数学 【拓展延伸】1.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的 面积是多少? 2.小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.3.如图2,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF . 求证:BE=DF .4.已知,如图,在△ABC 中,BD 是∠ABC 的平分线, DE∥BC 交AB 于E ,EF∥AC 交BC 于F ,则BE =FC ,为什么?2021年春季复习题练习【总结反思】1.本节课我学会了:还有些疑惑:2.做错的题目有:原因:。
冀教版八年级数学下册《二十二章 四边形 22.6 正方形》教案_2

正方形
教学目标:
1.掌握正方形的概念。
2.经历探索正方形的性质和判定方法,了解正方形与平行四边形、矩形、菱形之间的关系。
3.掌握正方形的性质和判定,并会应用其解决几何问题。
重点:正方形的性质和判定。
难点:应用性质和判定解决几何问题。
教学方法:探究、归纳法。
教学过程:
一、复习导入
平行四边形、矩形、菱形的定义及性质
二、探究新知
1.正方形的定义
2.正方形的性质
3.正方形的判定(观看正方形的演变动画图)
4.四边形、平行四边形、矩形、菱形、正方形之间的包含关系
三、例题解析
四、课堂总结
五、练习
六、作业:习题A组
七、板书设计
八、课后反思:由于正方形是特殊的矩形,也是特殊的菱形,融合了所有矩形和菱形的性质,在几何题的应用时考虑不全面,有待加强练习。
冀教版八年级数学下册《二十二章四边形回顾与反思》教案_12.doc

四边形复习一、教学目标:通过对本章知识的回顾,进一步认识四边形、特殊四边形的基本性质和判定方法,加深对三角形中位线的理解。
通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
二、教学重点:通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
三、教学过程:1.引入在本章我们学习了特殊的四边形——平行四边形、矩形、菱形、正方形。
他们之间具有一般与特殊的关系。
下面我们一起来梳理一下它们之间的关系以及特殊化的演进过程。
2.学生回顾四边形与特殊四边形的关系:正方形有一个角是直角对角线相等对角线垂直一组邻边相等菱形矩形对角线相等对角线垂直有一个角是直角一组邻边相等平行四边形三四个条两组对边对角线角边分别平行互相平分是相直等四边形在整个特殊化演进过程中,从平行四边形出发,按照边、角、对角线的特殊化进行分类,演化出了菱形、矩形。
菱形、矩形的边、角、对角线特殊化演化出了正方形。
3.知识梳理:通过对四边形与特殊四边形之间关系的梳理,进一步用表格的形式让学生来总结特殊四边形的性质与判定:( 1)特殊四边形的性质:四边形对称性边角对角线项目中心对称图形平行且相等对角相等互相平分平行四边形邻角互补矩形中心对称图形平行且相等四个角都互相平分且相等轴对称图形是直角中心对称图形平行互相垂直平分,且每一条对菱形对角相等角线平分一组对角轴对称图形且四边相等邻角互补正方形中心对称图形平行四个角都互相垂直平分且相等,每一轴对称图形且四边相等是直角条对角线平分一组对角( 2)特殊四边形的判定:四边形平行四边形矩形菱形正方形1. 定义:两组对边分别平行 2. 两组对边分别相等3. 一组对边平行且相等 4. 对角线互相平分5.两组对角分别相等1.定义:有一个角是直角的平行四边形2.三个角是直角的四边形3.对角线相等的平行四边形1.定义:一组邻边相等的平行四边形2.四条边都相等的四边形3.对角线互相垂直的平行四边形1.定义:一组邻边相等且有一个角是直角的平行四边形2. 有一组邻边相等的矩形3. 对角线互相垂直的矩形4. 有一个角是直角的菱形5. 对角线相等的菱形6.对角线相等且互相垂直的平行四边形( 3)三角形中位线与中点四边形:①三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。
新冀教版八年级数学下册第二十二章《正方形》学案

新冀教版八年级数学下册第二十二章《正方形》学案【学习课题】正方形例题解析如图:正方形ABCD的对角线AC,BD相交于点O,点E在OB的延长线上,且∠ECB=15 ° .求证:△AEC是等边三角形.[来源:]■动手做一做如图,E为正方形ABCD内一点,且△EBC是等边三角形,[来源:]求∠EAD与∠ECD的度数.[来源:学#科#网Z#X#X#K][来源:学+科+网]如图:正方形ABCD的边长为a,AE平分∠DAC,EF⊥AC,垂足为F,求:FC的长.小结回顾◆课堂练习◆1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;()⑤四个角相等的四边形是正方形.()3.已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.求证:∠AFE=∠AEF.4、已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.◆课后检测◆1、正方形具有而菱形不一定有的性质是()。
A。
四条边相等; B。
对角线互相垂直平分;C。
对角线平分一组对角;D。
对角线相等。
2、正方形具有而矩形不一定有的性质是()。
A。
四个角相等; B。
对角线互相垂直;C。
对角线相等; D。
对角互补。
3、对角线相等的菱形是正方形吗?为什么?4、对角线互相垂直的矩形是正方形吗?为什么?5、如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于点E,DF∥AB交AC于点F①四边形AEDF是______②当△ABC具备___________条件时, 菱形AEDF是正方形.6、已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.【学习目标】1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.[来源:]2.理解正方形与平行四边形、矩形、菱形的联系和区别提高逻辑思维能力.◆课前检测◆1、平行四边形的性质和判定2、矩形的性质和判定3、菱形的性质和判定◆课中实施◆★正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.◆试用一张长方形的纸片(如图所示)折出一个正方形来.◆通过折纸你认为具备什么条件的矩形是正方形?◆想一想,具备什么条件的菱形是正方形?★由此可得正方形的两个判定方法:有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.★正方形的性质研究:研究性质的角度:边、角、对角线、对称性;简要描述一下正方形、矩形、菱形、平行四边形之间的关系。
冀教版八年级数学下册第二十二章《四边形》同步学案设计

题的证明吗?相信你能行!
证明:
4.三角形中位线定理:三角形的中位线
并且
.
二、合作、交流、展示: 1.例 1 已知:如图,在四边形 ABCD 中,E、F、G、H 分别是 AB、BC、CD、DA 的中点.
9
求证:四边形 EFGH 是平行四边形.
2、 四边形的概念:
。
3、
叫做四边形的对角; 相对的两条边叫做四边形
的
。
叫做四边形的对角线。
4、你能说出右图中四边形的所有结构。
这个四边形可以记作
,
四个内角分别是
,
,
,
。
对角线是
和
边 AB 的对边是
;边 AD 的对边是
。
5、四边形可以分为两类:
和
。(注:我们初中阶段只需掌握凸四边形)。
6、下列四边形哪些是凸四边形?哪些是凹四边形?
冀教版八年级数学下册第二十二章《四边形》同步学案设
计
22.1 平行四边形的性质
第 1 课时 平行四边形的性质定理 1
学习目标:
1、复习四边形的概念、结构、分类;
2、掌握平行四边形的概念、结构、表示、读法;
3、理解平行四边形的性质.
重难点:平行四边形性质的应用
学习过程
一、回顾思考
1、 三角形的概念:
。
,OB=
(
) )
)
3、归纳:平行四边形的对角线的交点是每条
的
平行四边形的
。
三、课堂练习
1、图在□ ABCD 中,对角线 AC 与 BD 相交于点 O,
若 AC=34,OB=10,则有
【冀教版】八年级数学下册教案:第二十二章复习

第二十二章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯.【教学重点】1、平行四边形与各种特殊平行四边形的区别.2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法.【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用.【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件.【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕.(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米.3、顺次连结矩形ABCD各边中点所成的四边形是菱形.4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米.5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形 .(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A .正方形B .菱形C .矩形D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形. (5)、正方形具有而矩形不具有的特征是( D )A. 内角为3600B. 四个角都是直角C. 两组对边分别相等D. 对角线平分对角问:那么正方形具有而菱形不具有的特征是什么?对角线相等2、集合表示,突出关系二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗已知:如图1,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF . 证明: ∵变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?BC对角线互相平分的四边形是平行四边形.变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?对角线互相平分的四边形是平行四边形.变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?对角线互相平分的四边形是平行四边形.变式4.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形.变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?为什么?可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形.BB变式6.在变式5中,若将“□ABCD ”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长.) 略解:∵AB=6,BC=8 ∴BD=AC=10. 设OG = x ,则BG = GD=252+x . 在Rt △ABG 中,则勾股定理得: AB 2 + AG 2 = BG 2 ,即()()22222252586+=+-+x x ,解得 415=x .∴GH = 2 x = 7.5.(二)一题多解,培养发散思维 〖例题2〗已知:如图,在正方形ABCD ,E 是BC 边上一点, F 是CD 的中点,且AE = DC + CE .求证:AF 平分∠DAE .证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)∵四边形ABCD 是正方形,∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°, ∴∠C =∠GDF在△EFC 和△GFD 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF GDF C 21 ∴△EFC ≌△GFD (ASA )∴CE=DG ,EF=GF ∵AE = DC + CE , ∴AE = AD + DG = AG , ∴AF 平分∠DAE .FE BCA G证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,∴AD // BC ,DA=DC ,∠FCG=∠D=90°(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°, ∴∠FCG =∠D在△FCG 和△FDA 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF D FCG 21 ∴△△FCG 和△FDA (ASA )∴CG=DA ∵AE = DC + CE ,∴AE = CG + CE = GE , ∴∠4 =∠G ,∴∠3 =∠4, ∴AF 平分∠DAE .思考:如果用“截取法”,即在AE 上取点G ,使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?三、综合训练,总结规律 (一)综合练习,提高解题能力1. 在例2中,若将条件“AE = DC + CE ”和结论 “AF 平分∠DAE ”对换,所得命题正确吗?为什么?你有几种证法?2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,G、H分别是BC、AD的中点.求证:四边形EGFH是平行四边形.(用两种方法)(二)课堂小结,领悟思想方法1.一题多变,举一反三.经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获.也只有这样,才能做到举一反三,提高应变能力.2.一题多解,触类旁通.在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的. 3.善于总结,领悟方法.数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力.四、课后反思。
冀教版八数学下册第二十二章平行四边形教学设计

(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生探索数学规律的欲望。
-教师通过生动有趣的教学方式,让学生感受到几何图形的魅力,培养学习兴趣。
-学生在探索平行四边形性质的过程中,感受到数学的规律性和美感,激发学习欲望。
2.培养学生的团队协作精神,学会尊重他人,提高人际沟通能力。
-学生在解答过程中,注意运用不同的判定方法,提高解题效率。
-对于有困难的学生,教师提供适当的提示和指导,帮助他们克服困难。
4.创新思维题:设计一道关于平行四边形的几何作图题,要求创意独特,具有一定的挑战性。
-学生可以自由发挥,结合平行四边形的性质,设计有趣的作图题目。
-在下一节课上,学生互相交换作图题目,共同探讨解题方法。
2.学会运用平行四边形的相关性质进行几何作图,提高空间想象能力和推理能力。
-学生能够利用平行四边形的性质,如对边平行且相等、对角相等等,进行简单的几何作图。
-学生能够通过作图活动,加深对平行四边形性质的理解,培养空间想象能力和推理能力。
(二)过程与方法
1.通过自主探究、合作交流的方式,培养学生的观察能力、动手操作能力和解决问题的能力。
-学生在自主探究过程中,通过观察、操作、推理等方法,发现并掌握平行四边形的性质。
-学生在合作交流中,分享自己的发现和经验,倾听他人的意见,提高合作解决问题的能力。
2.运用生活实例,将平行四边形知识与实际应用相结合,提高学生学以致用的能力。
-教师通过引入生活中的实例,如建筑、设计等领域,让学生了解平行四边形在实际应用中的重要性。
-对于难度较大的题目,鼓励学生进行小组讨论,共同寻找解题思路。
冀教版八年级数学下册优秀教案第二十二章复习

第二十二章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A .正方形B .菱形C .矩形D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章 四边形
【学习目标】
1.理解平行四边形与各种特殊平行四边形的区别。
2.梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
3.在回顾与思考的过程中体会特殊与一般的关系,进一步体会类比、转化等一些重要的数学思想。
【重点难点】灵活应用所学知识解决有关问题。
【教学过程】 一.知识再现
1.下列命题中,正确的是( ) 2.矩形具有而平行四边形不具有的性质是( )
A.对边相等
B.对角相等
C.对角互补
D.对角线平分 3.三角形三条中位线的长分别为5米,12米,13米,则原三角形的面积是_____米 4.如图,正方形ABCD 中,E 是CD 边上的一点, F 为BC 延长线上一点,CE =CF .
(1)求证:△BEC ≌△DFC ;(2)若∠BEC =60°,求∠EFD .
二.梳理沟通(学生先自主学习,再合作交流;教师穿插于学生之中,及时引导,答疑解惑,参与讨论并了解学生动向.)
1.建成下列框架结构,理解各特殊四边形的联系与区别。
2.结合下表中的图形,用文字语言或符号语言写出它们的性质.
3.学会判定方法(让学生用符号语言再以文字语言对照比较)
(通过活动,让学生明白结构,熟悉图形语言、文字语言、符号语言的互相翻译与应用。
)
由教师演示课件,师生共述,加深理解本章的知识脉络。
)
三.知识运用,拓展与创新(教师引导学生深度加工,习得悟得)
例题1:已知,在四边形ABCD中,AB=CD,AD=BC,点F,E
分别在BC和AD边上,AE=CF,EF和对角线AD交于点O,
求证:点O是BD的中点。
例题2、已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是平行四边形.
变式一:顺次链接矩形各边的中点得到的四边形是菱形。
变式二:顺次链接菱形各边的中点得到的四边形是矩形。
变式三:顺次链接正方形各边的中点得到的四边形是正方形。
变式四:顺次链接等腰梯形各边的中点得到的四边形是菱形。
变式五:若AC=BD,AC┻BD,则四边形EFGH是正方形。
变式六:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,若AB=CD,,求证:四边形EFGH 是平行四边形.
变式七:在四边形ABCD 中,E 是AB 上的一点,△ADE 与△BCE 都是等边三角形,P,Q,M,N 分别是AB,BC,CD,DA 上的中点,求证:四边形PQMN 是菱形。
四、链接中考
1.如图,E F ,是四边形ABCD 的对角线AC 上两点,
AF CE DF BE DF BE ==,,∥.求证:(1)AFD CEB △≌△.
(2)四边形ABCD 是平行四边形.
A
B
D
E
F
C
A
B
C
D
E
2.如图.矩形ABCD 的对角线相交于点0.DE ∥AC ,
CE ∥BD .求证:四边形OCED 是菱形; 练一练
1、如图,D 、E 、F 分别是△ABC 各边的中点,(1)如果EF =4cm ,那么BC = cm ;如果AB =10cm ,那么DF =__cm ;(2)中线AD 与中位线EF 的关系是 2.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A .2cm B .4cm C .6cm D .8cm
3.如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则BE 的长为( )A .6 B .12
C .2
D .4
第1题图 第2题图 第3题图
【及时反馈,激励评价】
1.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm,BC=_____cm 。
2.如图,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则 阴影部分的面积为( ).A .3 B .6 C .12 D .24
3.如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,
使点
B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6, 则AF 等于 ( )
A.34
B.33
C.24
D.8
4.如图,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE=BK=AG .(1)求证:①DE=DG; ②DE⊥DG
5.如图所示,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.
A B
C
D E
F。