人教版七年级数学下册第八章期末复习解析版

合集下载

人教版七年级数学下册知识点总结第八章二元一次方程组

人教版七年级数学下册知识点总结第八章二元一次方程组

第八章 二元一次方程组一、学问网络构造二、学问要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。

使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有多数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。

使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:视察方程组中,⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组是否有用含一个未知数的式子表示另一个未知数,假如有,那么将它干脆代入另一个方程中;假如没有,那么将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:〔1〕方程组的两个方程中,假如同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;〔2〕把两个方程的两边分别相加或相减,消去一个未知数;〔3〕解这个一元一次方程,求出一个未知数的值;〔4〕将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①视察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,及另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简洁的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

专题12 第八章 二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

专题12  第八章  二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练第八章 二元一次方程组[能力提优测评卷]时间:90分钟 满分:120分一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020广西钦州四中月考,2)下列方程组中,为二元一次方程组的是( )A.⎩⎨⎧3x+4y =65z -6y =4B. ⎩⎪⎨⎪⎧x+y =31x -1y=2C.⎩⎨⎧x+y =2x 2-y 2=8D.⎩⎨⎧x+y =2.5x -y =42.(2020北京海淀期末,4)若{x =是关于x 和y 的二元一次方程mx+ny =3的解,则2m -4n 的值等于( ) A.3B.6C.-1D.-23.(2020湖南长沙一中月考,4)如果方程组⎩⎨⎧2x+y =□x -2y =3的解为,那么“口”和“△”所表示的数分别是( )A.14,4B.11,1C.9,-1D.6,-44.(2020河南郑州八中期末,5)用加减消元法解方程组⎩⎨⎧3x -2y =10①4x -y =15②时,最简捷的方法是( )A.②×2+①,消去yB.②x 2-①,消去yC.①x 4-②×3,消去xD.①4+②×3,消去x5.(2020陕西延安实验中学月考,4)三元一次方程组⎩⎪⎨⎪⎧x+y =3y+z =5x+z =4 的解为( )A.⎩⎪⎨⎪⎧x =1y =3z =2 B.⎩⎪⎨⎪⎧x =2y =1z =3 C.⎩⎪⎨⎪⎧x =3y =2z =1 D.⎩⎪⎨⎪⎧x =1y =2z =3 6.(2020黑龙江牡丹江中考,8)若⎩⎨⎧a =2b =1是二元一次方程组⎩⎪⎨⎪⎧32 ax+by =5ax -by =2 的解,则x+2y 的算术平方根为( )A.3B.3,-3C. 3D. 3 ,- 37.(2019山东临沂一模,8)将两块完全相同的长方体木块先按图①的方式放置,再按图②的方式放置,测得的数据(单位:cm)如图所示,则桌子的高度为( )A. 30 cmB. 35 cmC.40 cmD. 45 cm8.(2019黑龙江齐齐哈尔中考,8)学校计划购买和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元学校准备将1500元全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A.3种B.4种C.5种D.6种二、填空题(本大题共8小题,每小题4分,共32分)9.(2020黑龙江哈尔滨三中月考,10)若x|2m -3|+(m -2)y =6是关于x 、y 的二元一次方程,则m =________。

2020-2021学年人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练

2020-2021学年人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练

2021人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练(附答案)一.二元一次方程的定义1.下列各式中是二元一次方程的是()A.2x+y=5B.xy+5=4C.+2=3y D.ax+y=22.下列是二元一次方程的是()A.3x﹣6=x B.2x﹣3y=x2C.D.3x=2y3.下列方程中,是二元一次方程的是()A.xy=100B.x=2y+1C.D.x2+y=134.若方程x﹣3my=2x﹣4是关于x、y的二元一次方程,则m为()A.m≠0B.m≠1C.m≠2D.m≠35.已知3x2a+b﹣3﹣5y3a﹣2b+2=﹣1是关于x、y的二元一次方程,则(a+b)b=.二.二元一次方程的解6.已知是关于x、y的二元一次方程x+my=5的一组解,则m的值是()A.1B.﹣1C.﹣2D.27.关于x,y的二元一次方程3x﹣2y=5的解有()A.B.C.D.8.已知二元一次方程2x﹣3y=3的一组解为,则下列说法一定不正确的是()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0 9.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.210.方程2x+y=9在正整数范围内的解有()A.1个B.2 个C.3个D.4个11.二元一次方程x+2y=5的所有非负整数解为.三.解二元一次方程12.已知3x﹣=1,用含x的式子表示y下列正确的是()A.y=6x﹣2B.y=2﹣6x C.y=﹣1+3x D.13.下列各组数中,不是二元一次方程2x﹣5y=3的解是()A.B.C.D.14.已知方程3x﹣4y=5,用含x的式子表示y正确的是()A.x=B.y=C.x=D.y=15.写出二元一次方程x+4y=11的一个整数解.16.已知方程4x﹣3y﹣6=0,用含y的代数式表示x,则x=.17.将方程2x+3y=1改写成用含x的式子表示y的形式:.四.由实际问题抽象出二元一次方程18.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?19.根据下列语句,设适当的未知数,列出二元一次方程(组):甲数的2倍与乙数的的差等于48的.五.二元一次方程的应用20.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.21.为倡导绿色出行,构建低碳环保生活理念,大青山李白文化旅游区于9月22日“世界无车日”上午9:00举办“2018当涂大青山环骑活动”.甲、乙同时从同一起点分别以一定的速度骑车,如果反向而行,那么他们每隔40分钟相遇一次;如果同向而行,那么他们每隔80分钟乙就追上甲一次.乙的速度是甲的速度的几倍?22.为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.六.二元一次方程组的定义23.下列方程组中不是二元一次方程组的是()A .B .C .D .24.下列方程组中,是二元一次方程组的是()A .B .C .D .25.下列方程组中,不是二元一次方程组的是()A .B .C .D .26.下列方程组中,二元一次方程组是()A .B .C .D .七.二元一次方程组的解27.若关于x,y 的二元一次方程组的解也是二元一次方程2x+3y=12的解,则k 的值为()A .B .C .D .28.已知关于x、y 的方程组的解满足x+y=5,求:m2021+2的值.29.已知,关于x、y 二元一次方程组的解满足方程2x﹣y=13,求a的值.30.若方程组与有相同的解,则a、b的值为多少?31.已知关于x的方程m+x=3的解满足,若﹣1<y<5,求实数m的取值范围.八.解二元一次方程组32.对于实数x,y定义一种新运算F(x,y)=mx+ny(其中m,n均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,例如m=3,n=1时,F (2,4)=3×2+1×4=10.若F(1,﹣3)=6,F(2,5)=1,则F(3,﹣2)=.33.二元一次方程组的解是.34.解方程:.35.解方程组.36.按要求解方程组:(1);(代入法)(2).(加减法)37.解方程组:(1);(2).38.解方程组:.九.由实际问题抽象出二元一次方程组39.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这两位数所列的方程组是.40.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.41.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,根据题意可列方程组为.十.二元一次方程组的应用42.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?十一.解三元一次方程组43.已知三元一次方程组,则x+y+z=.44.当x=﹣2时,代数式ax2+bx+c的值是5;当x=﹣1时,代数式ax2+bx+c的值是0;当x=1时,代数式ax2+bx+c的值是﹣4;则当x=2时,代数式ax2+bx+c的值是.45.已知方程组,则x:y:z=.46.已知关于a、b、c的方程组,则(a﹣b)c=.十二.三元一次方程组的应用47.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元.问购买铅笔11支,作业本5本,圆珠笔2支共需多少元?48.已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.49.为了组织一个50人的旅游团开展“乡间民俗”游,旅游团住村民家,住宿客房有三人间、二人间、单人间三种,收费标准是三人间每人每晚20元,二人间每人每晚30元,单人间每人每晚50元,旅游团共住20间客房,旅游团如何安排住宿才能够使得住宿费最低,并说明理由.50.有甲、乙、丙三人,若甲、乙的年龄之和为15岁,乙、丙的年龄之和为16岁,丙、甲的年龄之和为17岁,则甲、乙、丙三人的年龄分别为多少岁?参考答案一.二元一次方程的定义1.解:A、该方程是二元一次方程,符合题意;B、该方程的未知数项的最高次数是2,不是二元一次方程,不符合题意;C、该方程不是整式方程,不符合题意;D、当a=0时,该方程不是二元一次方程,不符合题意.故选:A.2.解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是二元二次方程,故本选项不符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.3.解:A.是二元二次方程,不是二元一次方程,故本选项不符合题意;B.是二元一次方程,故本选项符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元二次方程,不是二元一次方程,故本选项不符合题意;故选:B.4.解:x﹣3my﹣2x=﹣4,﹣x﹣3my=﹣4,由题意得:﹣3m≠0,m≠0,故选:A.5.解:因为3x2a+b﹣3﹣5y3a﹣2b+2=﹣1是关于x、y的二元一次方程,则,利用代入法求出a=1,b=2.把a=1,b=2代入,得(a+b)b=9.二.二元一次方程的解(共6小题)6.解:由题意,得1+2m=5,解得m=2.故选:D.7.解:将代入方程3x﹣2y=5的左边,左边=5,左边=右边,所以是该方程的解.将代入方程3x﹣2y=5的左边,左边=6,左边≠右边,所以不是该方程的解.将代入方程3x﹣2y=5的左边,左边=2,左边≠右边,所以不是该方程的解.将代入方程3x﹣2y=5的左边,左边=﹣25,左边≠右边,所以不是该方程的解.故选:A.8.解:由2x﹣3y=3,得x=,y=,因为二元一次方程2x﹣3y=3的一组解为,所以当m<0时,n<0,故选项C符合题意.故选:C.9.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.10.解:由题意,得x=,要使x,y都是正整数,则合适的y的值只能是y=1,3,5,7,相应的x的值为x=4,3,2,1.答案是4个.故选:D.11.解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数,∴y=0,1,2,相应的x=5,3,1.∴二元一次方程x+2y=5的所有非负整数解为,,.故答案为:,,.三.解二元一次方程(共6小题)12.解:∵3x﹣=1,∴,∴y=6x﹣2.故选:A.13.解:A、把代入方程得:左边=3﹣0=3,右边=3,左边=右边,不符合题意;B、把代入方程得:左边=﹣2﹣5=﹣7,右边=3,左边≠右边,符合题意;C、把代入方程得:左边=8﹣5=3,右边=3,左边=右边,不符合题意;D、把代入方程得:左边=﹣12+15=3,右边=3,左边=右边,不符合题意,故选:B.14.解:方程3x﹣4y=5,移项得:﹣4y=﹣3x+5,解得:.故选:D.15.解:方程整理得:x=﹣4y+11,当y=1时,x=7,则方程的一个整数解为,故答案为:16.解:方程4x﹣3y﹣6=0,移项得:4x=3y+6,解得:x=y+.故答案为:y+.17.解:方程2x+3y=1,解得:y=,故答案为:y=.四.由实际问题抽象出二元一次方程(共2小题)18.解:设甲,乙速度分别为x,y千米/时,,解得:,甲的速度是3.6千米每小时,乙的速度是6千米每小时.19.解:设甲数为x,乙数为y,则2x﹣y=48×.五.二元一次方程的应用(共3小题)20.解:设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.21.解:设乙的速度是xm/s,甲的速度是ym/s,环山一周为am,依题意有,解得:x=3y,答:乙的速度是甲的速度的3倍.22.解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,依题意,得:,解得:.答:每辆A型车有45个座位,每辆B型车有60个座位.(2)设租m辆A型车,n辆B型车,依题意,得:45m+60n=480,解得:n=8﹣m.∵m,n为整数,∴(舍去),,,∴有两种租车方案,方案1:租4辆A型车、5辆B型车;方案2:租8辆A型车、2辆B型车.当租4辆A型车、5辆B型车时,所需费用为350×4+400×5=3400(元),当租8辆A型车、2辆B型车时,所需费用为350×8+400×2=3600(元).∵3400<3600,∴租4辆A型车、5辆B型车所需租金最少,最少租金为3400元.六.二元一次方程组的定义(共4小题)23.解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是.故选:D.24.解:A.是二元一次方程组,故本选项符合题意;B.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;D.第二个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;故选:A.25.解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是,因为方程xy=0中未知数的次数是2次,故选:B.26.解:A、是二元二次方程组,不合题意;B、,是二元一次方程组,符合题意;C、,是二元二次方程组,不合题意;D、,第2个方程不是整式方程,不合题意.故选:B.七.二元一次方程组的解(共5小题)27.解:解方程组得:.将代入2x+3y=12中得:2×7k+3×(﹣2k)=12.解得:k=.故选:D.28.解:,①﹣②,得x+y=4﹣m,∵关于x、y的方程组的解满足x+y=5,∴4﹣m=5,解得m=﹣1.∴m2021+2=(﹣1)2021+2=﹣1+2=1.29.解:由题意可得,解得,将代入2x﹣3y=7a﹣9,得10+9=7a﹣9,解得a=4.30.解:联立得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,∴方程组的解为,代入得:,解得:a=,b=﹣.31.解:,②﹣①,得3y=6a﹣3,解得y=2a﹣1,把y=2a﹣1代入①,得x﹣2a+1=3﹣a,解得x=a+2,∵关于x的方程m+x=3的解满足,∴x=3﹣m,∴y=2a﹣1=2(a+2)﹣5=2x﹣5=2(3﹣m)﹣5=1﹣2m,又∵﹣1<y<5,∴﹣1<1﹣2m<5,解得﹣2<m<1.八.解二元一次方程组(共7小题)32.解:∵F(1,﹣3)=6,F(2,5)=1,∴根据题中的新定义化简得:,解得:,即F(x,y)=3x﹣y,则F(3,﹣2)=9+2=11.故答案为:11.33.解:,①+②,得4x=20,解得x=5,把x=5代入②,得5﹣2y=5,解得y=0,故方程组的解为.故答案为:.34.解:(1)∵(x﹣4)2=25,∴x﹣4=±5,∴x=9或x=﹣1.(2),①×3得:6x+3y=6,③②﹣③得:x=,将x=代入①得:y=﹣1,∴该方程组的解为.35.解:将②代入①得:﹣y=﹣1,∴y=4,将y=4代入①中,x=12,∴.36.解:(1),由①得:y=3x﹣6③,把③代入②得:2x+3(3x﹣6)=15,解得:x=3,把x=3代入③得:y=3,则方程组的解为;(2),①+②×2得:5x=10,解得:x=2,把x=2代入②得:y=3,则方程组的解为.37.解:(1),①×2+②得:﹣5y=﹣9,解得:y=1.8,把y=1.8代入②得:﹣4x+1.8=﹣3,解得:x=1.2,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:8﹣y=5,解得:y=3,则方程组的解为.38.解:由①得:4x+4=6y﹣2③,由②×2得:4x﹣12=10y﹣16④,③﹣④得:16=﹣4y+14,解得:y=﹣,把y=﹣代入③得:x=﹣,则方程组的解为.九.由实际问题抽象出二元一次方程组(共3小题)39.解:依题意得:.故答案为:.40.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.41.解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共60件,所以x+y=60因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=800由上可得方程组:.故答案为:.一十.二元一次方程组的应用(共1小题)42.解:(1)设甲种型号的空气加湿器每台的进价为x元,乙种型号的空气加湿器每台的进价为y元,依题意得:,解得:.答:甲种型号的空气加湿器每台的进价为200元,乙种型号的空气加湿器每台的进价为170元.(2)设该超市本次购进购进甲种型号的空气加湿器m台,则购进乙种型号的空气加湿器(60﹣m)台,依题意得:(260﹣200)m+(190﹣170)(60﹣m)=2800,解得:m=40,∴60﹣m=20(台).答:该超市本次购进购进甲种型号的空气加湿器40台,乙种型号的空气加湿器20台.一十一.解三元一次方程组(共4小题)43.解:,①+②+③,得2x+2y+2z=12,等式两边都除以2,得x+y+z=6,故答案为:6.44.解:根据题意,得,解得,∴当x=2时,代数式ax2+bx+c的值为:1×22+(﹣2)×2+(﹣3)=4﹣4﹣3=﹣3.故答案为:﹣3.45.解:,①+②,得2x﹣4z=0,∴x=2z.①﹣②,得2y﹣6z=0,∴y=3z.∴x:y:z=2z:3z:z=2:3:1.故答案为:2:3:1.46.解:,②﹣①得:2a﹣2b=4,即a﹣b=2,把a﹣b=2代入①得:c=3,则原式=23=8.故答案为:8.一十二.三元一次方程组的应用(共4小题)47.解:设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得:,3×①﹣②得:11x+5y+2z=5.答:购买铅笔11支,作业本5本,圆珠笔2支共需5元.48.解:设该三角形的最长边为xcm,最短边为ycm,另一边为zcm,根据题意得:,解得:.答:△ABC的最长边为23cm,最短边为9cm,另一边长为16cm.49.解:设三人间,二人间,单人间分别住了x,y,z间,其中x,y,z都是自然数,总的住宿费为W元,则,解得(2分)∵x,y,z都是自然数∴,或,或,或,或,或(5分)∴w=60x+60y+50z=﹣10z+1200,∴w随z的增大而减小,∴当z=5时,即x=15,y=0,z=5时,住宿的总费用最低.(7分)50.解:设甲的年龄为x岁,乙的年龄为y岁,丙的年龄为z岁,依题意,得:,解得:.答:甲的年龄为8岁,乙的年龄为7岁,丙的年龄为9岁.。

人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)

人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)

人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)1.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次 4 5 31第二次 3 6 30(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?2.“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?3.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电15台.(1)若用8辆汽车装运甲、乙两种家电共150台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(列二元一次方程组解应用题)(2)如果每台甲种家电的利润是100元,每台乙种家电的利润是200元,那么该公司售完这150台家电后的总利润是多少?4.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.5.小敏和小强参加社会实践,要用白板纸做长方体包装盒,准备把所有白板纸分成两部分,一部分做盒身,另一部分做盒底,已知每张白板纸可以做盒身2个,或者做盒底3个,且一个盒身和两个盒底恰好做成一个包装盒.(1)现有12张白板纸,问能否使做成的盒身与盒底正好配套,为什么?(2)在(1)条件下,小敏和小强经过尝试发现,将一张白板纸经过适当套裁就可以裁出一个盒身和一个盒底,请把这种套裁方式综合考虑,探究能否使裁出的盒身与盒底正好配套,若能,请求出最多可做包装盒的个数;否则说明理由.6.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措.小明家先后两次在同一电商平台以相同的单价免邮购买了A、B两种型号的口罩.第一次购买20个A型口罩,30个B型口罩,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元.(1)求A、B两种型号口罩的单价;(2)“五一”期间,该电商平台举行促销活动,小明发现同样花费160元购买B型口罩,以活动价购买可以比原价多买8个,求“五一”期间B型口罩的活动价.7.为保护环境的需要,电动汽车已经成为未来汽车生产和销售的大趋势,市场上各种品牌的电动汽车如雨后春笋般涌现出来.某电动汽车经销商负责销售某种品牌的A型和B型电动汽车,今年9月份共售出该品牌汽车的A型和B型电动汽车共413台,受国庆黄金周的影响,10月份该经销商售出这两种型号的汽车达到510台,其中A型和B型汽车的销量分别比9月份增长25%和20%.(1)今年10月份,该经销商销售的A型和B型汽车分别是多少台?(2)该品牌电动汽车生产厂家为了占领市场提高销量,决定对该经销商采取销售奖励活动,若A型电动汽车每台售价为10万元,B型电动汽车每台售价为12万元,奖励办法是:每销售一台A型电动汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励,奖励办法出台后的11月份,A型汽车的销量比10月份增加了10a%,而B型汽车受到某问题零件召回的影响,销售量比10月份减少了20a%,如果11月份该经销商共获得奖励金额为355680元,求a的值.【参考学习:我们以后会学到这样的运算:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式乘以多项式的每一项,再把所得结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.此题在解方程时要用到这样的运算哦!】8.由于武汉“新冠病毒疫情”严重,医疗物资紧缺,乐山市某公司决定捐赠A、B两种型号的医疗物品,这两种医疗物品的体积和质量如表所示:体积(m3/件)质量(吨/件)A型医疗物品0.8 0.5B型医疗物品 2 1(1)已知医疗物品A、B,体积一共是20m3,质量一共是10.5吨,求A、B两种型号的医疗物品各有多少件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元;要将(1)中的物品一次或分批运输到武汉,该公司应如何选择运送、付费方式,才能使运费最少?并求出该方式下的运费.9.某景点的门票价格如下表:购票人数(人)1~50 51~99 100以上(含100)门票单价(元)48 45 42(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?10.有一片牧场原有的草量为akg,草每天都匀速地生长,这片牧场每天牧草的生长量都为mkg.若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为xkg.问:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为kg;(2)试用x表示a,m;(3)若放牧16头牛,则几天可以吃完牧草?11.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)12.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)35 45标价(元/千克)50 65求这两个品种的草莓各购进多少千克.13.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?14.甲、乙两个拖拉机厂,按计划每月共生产拖拉机460台,由于两厂都改进了技术,本月甲厂完成计划的110%,乙厂本月完成计划的115%,两厂共生产拖拉机519台,本月两厂各超额生产拖拉机多少台?15.“元旦”期间,某校组织开展“班级歌咏比赛”,甲、乙班共有学生102人(其中甲班人数多于乙班人数,且甲班人数不够100人)报名统一购买服装参加演出.下面是某服装厂给出的演出服装的价格表购买服装的套数1~50 51~100 ≥101每套服装的价格/元70 60 50如果两班分别单独购买服装,总共要付款6580元(1)如果甲、乙两班联合起来购买服装,那么比各自购买服装总共可以节省多少钱?(2)甲、乙班各有多少学生报名参加比赛?(3)如果甲班有5名学生因特殊情况不能参加演出,请你为两班设计一种省钱的购买服装方案.。

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案)(1)计算:322-+⎭; (2)解方程组:22345x y x y ⎧+=⎪⎨⎪-=⎩. 【答案】;(2)23x y =⎧⎨=⎩. 【解析】【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)将原方程组进行化简,化简后用加减消元法求解即可得出结论.【详解】解:(1)原式=3242=+⎭13222⎛=--+ ⎝=1;(2)方程组整理得:321245x y x y +=⎧⎨-=⎩①②, ①+②×2得:11x =22,解得:x =2,把x =2代入①得:6+2y =12,解得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查了实数运算和解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.82.解下列方程组:(1)y x y 4x 15=⎧+=⎨⎩; (2)5x 2y 12x 3y 4-=⎧-=-⎨⎩. 【答案】(1){x 3y 3==;(2){x 1y 2==.【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)y x y 4x 15=⎧+=⎨⎩①②, 将①代入①得x+4x=15,解得:x=3,由①知y=3,则方程组的解为{x 3y 3==;(2)5x 2y 12x 3y 4-=⎧-=-⎨⎩①②,①×3得,15x-6y=3①,①×2得,4x-6y=-8①,由①-①得11x=11,解得:x=1,把x=1代入①得y=2,则方程组的解是{x1y2==.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.83.(1)计算:9×(﹣13)2﹣|﹣8|;(2)解方程组:371 x yx y-=⎧⎨-=-⎩.【答案】(1)-5;(2)45xy=⎧⎨=⎩.【解析】【分析】(1)原式利用乘方的意义,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程组利用加减消元法求出解即可.【详解】解:(1)原式=1+2﹣8=﹣5;(2)371x yx y-=⎧⎨-=-⎩①②,①﹣②得:2x =8,解得:x =4,把x =4代入①得:y =5,则方程组的解为45x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.84.下列方程:①257x y +=;②21x y=+;③21x y +=;④()()28x y x y +--=;⑤210x x --=;⑥132x y x y -+=-; (1)请找出上面方程中,属于二元一次方程的是:________(只需填写序号);(2)请选择一个二元一次方程,求出它的正整数解;(3)任意选择两个二元一次方程组成二元一次方程组,并求出这个方程组的解.【答案】(1)①④⑥;(2)选择①,正整数解为:11x y =⎧⎨=⎩;(3)选择①和④,方程组的解为:199x y =-⎧⎨=⎩. 【解析】【分析】(1)根据二元一次方程的定义,即可解答;(2)根据方程求出整数解,即可解答;(3)根据二元一次方程组的解法,即可解答.【详解】解:(1)方程中,属于二元一次方程的是①④⑥,故答案为:①④⑥;(2)选择①257x y +=,则正整数解为:11x y =⎧⎨=⎩; (3)选①和①,则()()25728y x x y x y +-+=⎧-=⎪⎨⎪⎩, 整理得:73825x y x y +=⎨=+⎧⎩①②, ②×2得:2616x y +=③,③-①得:9y =,把9y =代入①得:2597x +⨯=,解得:19x =-,∴方程组的解为:199x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程、解二一次方程组,解决本题的关键是解二元一次方程组.85.若关于x ,y 的方程组3523518x y m x y m -=⎧⎨+=-⎩的解满足x <0且y <0,求m 的范围.【答案】﹣18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.【详解】解:3523518x y m x y m -=⎧⎨+=-⎩①②, ①+②,得:6x =3m ﹣18,解得:x =m 62-, ②﹣①,得:10y =﹣m ﹣18,解得:y =m 1810--, ∵x <0且y <0, ∴60218010m m -⎧⎪⎪⎨--⎪⎪⎩<<, 解得:﹣18<m <6.【点睛】本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.86.解方程组:(1)729y x x y =+⎧⎨-=⎩(2)324237x y x y +=⎧⎨-=⎩【答案】(1) 1623x y =⎧⎨=⎩;(2) 21x y =⎧⎨=-⎩. 【解析】(1)将第一个方程代入第二个方程消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)先用加减消元法求出x的值,再用代入法求出y的值即可.【详解】(1)729y xx y=+⎧⎨-=⎩①②,把①代入②得:2x﹣7﹣x=9,解得:x=16,把x=16代入①得:y=23,则方程组的解为:1623xy=⎧⎨=⎩;(2)324237x yx y①②+=⎧⎨-=⎩,①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为:21xy=⎧⎨=-⎩.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.87.解方程组:21 3211 x yx y+=⎧⎨-=⎩.【答案】31 xy=⎧⎨=-⎩【解析】【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【详解】解:213211x yx y①②+=⎧⎨-=⎩,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是31xy=⎧⎨=-⎩.【点睛】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.88.(1)233x-=12x+﹣1(2)20 346 x yx y+=⎧⎨+=⎩【答案】(1)x=79(2)63xy=⎧⎨=-⎩【解析】【分析】(1) 先去分母,再去括号,最后移项,化系数为1,从而解得方程;(2) 先利用加减消元法求出y,然后利用代入法求出x即可.【详解】(1) 233x-=12x+﹣1 2(2-3x)=3(x+1)-6,4-6x=3x+3-6,-9x=-7,x=79;(2)20346x yx y+=⎧⎨+=⎩①②, ①×3-②得6y-4y=-6,解得y=-3,把y=-3代入①得x-6=0,解得x=6,所以方程组的解为63xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程和二元一次方程组,解题的关键是熟练掌握解一元一次方程的步骤和解二元一次方程组的基本方法.89.解方程组415 323x yx y+=⎧⎨-=⎩.【答案】33 xy=⎧⎨=⎩【解析】【分析】直接利用加减消元法解方程得出答案.【详解】解:415 323, x yx y+=⎧⎨-=⎩①②①×2+②得:11x=33,解得:x=3,把x=3代入①得:12+y=15,解得:y=3,故方程组的解为33xy=⎧⎨=⎩.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.90.(阅读理解)在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组2()3 +1x x yx y++=⎧⎨=⎩①②(2)已知432109+7525x y zx y z①②++=⎧⎨+=⎩,求x+y+z的值解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为1xy=⎧⎨=⎩,(2)①×2得:8x+6y+4z=20.③②﹣③得:x+y+z=5.(类比迁移)(1)若133523x y zx y z++=⎧⎨++=⎩,则x+2y+3z=.(2)解方程组22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②(实际应用)打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?【答案】【类比迁移】(1)18;(2)34xy=⎧⎨=⎩;【实际应用】比不打折少花了288元.【解析】【分析】(1)133523x y zx y z++=⎧⎨++=⎩中的两式相加再除以2即可得出答案;(2)先对①移项得到2x﹣y=2,再将2x﹣y=2带入②,即可求出答案;【实际应用】设打折前A商品每件x元,B商品每件y元,由题意得:39x+21y=1080,即可求出答案.【详解】(1)133523x y zx y z++=⎧⎨++=⎩①②,(①+②)÷2,得:x+2y+3z=18.故答案为:18.(2)22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②,由①得:2x﹣y=2③,将③代入②中得:1+2y=9,解得:y=4,将y=4代入①中得:x=3.∴方程组的解为34xy=⎧⎨=⎩.(实际应用)设打折前A商品每件x元,B商品每件y元,根据题意得:39x+21y=1080,即13x+7y=360,将两边都乘4得:52x+28y=1440,1440﹣1152=288(元).答:比不打折少花了288元.【点睛】本题考查解二元一次方程组和二元一次方程组的应用,解题的关键是掌握解二元一次方程组的方法和根据题意列二元一次方程组.。

第8章二元一次方程组单元复习2022—2023学年人教版数学七年级下册

第8章二元一次方程组单元复习2022—2023学年人教版数学七年级下册

第8章 二元一次方程组 单元复习【知识网络】二元一次方程组{二元一次方程{定义:①方程中含有两个未知数;②含有未知数的项的次数是1;③方程两边是整式方程的解:使方程两边的值相等的未知数的值二元一次方程组{ 定义:①方程组中含有两个未知数;②每个方程中含未知数的项的次数都是1;③由两个方程组成方程组的解:两个方程的 解法:①代入消元法;② 应用:关键是找出题中的等量关系,根据等量关系列出方程(组)具体步骤:①审题;② ;③ ;④解方程组;⑤检验、作答*三元一次方程组{定义:①方程组中含有三个未知数;②每个方程中含未知数的项的次数都是1;③由三个方程组成解法:①代入消元法;②加减消元法 【知识梳理】1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解二、消元二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。

【方法指导】如果这两个方程中有同一个未知数的系数相反或相等,可以直接对其两个方程相加减,消去其中的一个未知数;如果没有同一个未知数的系数相反或相等,则可以根据等式的性质对某一个方程进行变形,使得这两个方程中某个未知数的系数相反或相等.【方法指导】运用二元一次方程组这一数学模型解决方案设计问题,首先要准确分析实际问题中的数量关系,找出已知量和未知量,并能发现其中的几个等量关系,然后根据等量关系列出方程组,并解方程组.在此基础上,用方程组的解来解释问题.【考点突破】考点1:二元一次方程组及其解【例1】已知⎩⎨⎧ x =2y =1是方程组⎩⎨⎧ax +by =5bx +ay =1的解,则a +b 的值是( ) A .-1 B .2 C .3 D .4【针对训练1-1】在方程组①⎩⎨⎧2x -y =1,y =3z +1;②⎩⎨⎧x =2,3y -x =1;③⎩⎨⎧x +y =0,3x -y =5;④⎩⎨⎧xy =1,x +2y =3;⑤⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,二元一次方程组有 ( ) A .2个 B .3个 C .4个 D .5个【针对训练1-2】若⎩⎨⎧x =2,y =1是关于x ,y 的方程kx -y =3的解,则k 的值是____ . 【针对训练1-3】若方程组{y -(a -1)x =5,y |a |+(b -5)xy =3是关于x ,y 的二元一次方程组,则代数式ab 的值是 .考点2:解二元一次方程组【例2】解二元一次方程组⎩⎨⎧ 2x -y =7 ①3x +2y =0 ②. 【针对训练2-1】利用加减消元法解方程组{2x +3y =-6, ①3x -2y =4, ②下列做法正确的是( ) A.①×2-②×3,消去yB.①×3+②×2,消去xC.①×2+②×(-3),消去yD.①×3-②×2,消去x【针对训练2-2】方程组⎩⎨⎧x -y =1,3x +y =7的解为__ __. 【针对训练2-3】已知{x =1,y =2是方程ax +by =3的解,则代数式2a +4b -5的值为 . 【针对训练2-4】已知关于x ,y 的二元一次方程组{2ax +by +4=0,ax -by -1=0的解为{x =-1,y =1,则a -2b = .【针对训练2-5】解方程组:(1)⎩⎨⎧x +2y =5,①3x -2y =-1;②(2)⎩⎪⎨⎪⎧x +4y =14,①x -34-y -33=112.②【针对训练2-6】已知关于x,y的方程组{x+ay=5,①bx-3y=4,②由于粗心,甲看错了方程①中的a,得到方程组的解为{x=-1,y=-2;乙看错了方程②中的b,得到方程组的解为{x=2,y=3.(1)试确定a,b的值;(2)请你求出原方程组的解.考点3:列方程组解应用题【例3】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元,该校计划在一年内拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,拆除校舍则超过了计划的10%,结果恰好完成了原计划的拆、建的总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金大约可绿化多少平方米?【针对训练3-1】如图,面积为36的正方形ABCD,分成4个完全相同的小长方形和一个面积为4的小正方形,则小长方形的长和宽分别是()A.8,4B.4,2C.6,2D.3,1【针对训练3-2】某工厂向银行申请了甲、乙两种贷款共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,若设甲、乙两种贷款的数额分别为x 万元和y 万元,则 ( )A .x =15,y =20B .x =20,y =15C .x =12,y =23D .x =23,y =12【针对训练3-3】某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A .1种B .2种C .3种D .4种【针对训练3-4】李师傅加工1个甲种零件和1个乙种零件的时间都是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个零件共需____分钟.【针对训练3-5】2020年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只,李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,她将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是____次.【针对训练3-6】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店需付费用少?(3)在(2)的条件下,若装修完后,商店每天可盈利200元,现有如下三种方式装修:①甲组单独做;②乙组单独做;③甲、乙两组合作.你认为如何安排施工更有利于商店?考点4:三元一次方程组的解法及应用【例4】解方程组⎩⎨⎧ 2x +4y +3z =9 ①3x -2y +5z =11②5x -6y +7z =13③【针对训练4-1】若方程组⎩⎨⎧x +4=y ,2x -y =2z中的x 是y 的2倍,则z 的值为 ( )A .-9B .8C .-7D .-6【针对训练4-2】桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水,先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升,若过程中水没有溢出,则原本甲、乙两杯内的水量相差 ( )A .80毫升B .110毫升C .140毫升D .220毫升【综合练习】1.下列方程组中是二元一次方程组的是( )A.⎩⎨⎧ x +2y =1x 2+y 2=3 B .⎩⎨⎧ 2x -y =3z +y =8 C.⎩⎨⎧ x +2y =1xy =-6D .⎩⎨⎧x +2y =13x -5y =3 2.已知⎩⎨⎧ x =2y =1是二元一次方程组⎩⎨⎧ mx +ny =8nx -my =1的解,则2m -n 的算术平方根为( ) A .±2 B .2 C .4 D .2 3.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,求甲、乙两人每天各做多少个零件?若设甲、乙两人每天分别做x 、y 个零件,由题意可列出的方程组是( )A.⎩⎨⎧ 5+1x =5y 30+4x =4y +10 B .⎩⎨⎧ 1+5x =5y 30+4x =4y -10 C.⎩⎨⎧ 5+1x =5y 30+4x =4y -10 D .⎩⎨⎧1+5x =5y 30+4x =4y +104.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个 5.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =5k x -y =9k的解也是二元一次方程2x +3y =-8的解,则k 的值为 . 6.将三元一次方程组⎩⎨⎧ 5x +4y +z =0①3x +y -4z =11②x +y +z =-2③,经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是 .7.解下列方程组: (1)⎩⎨⎧2x +3y =11,①y -2x =1;②(2)⎩⎨⎧4x +3y =14,①3x +2y =22.②8.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可)①⎩⎨⎧ x +2y =32x +y =3的解为 ⎩⎨⎧ x =1y =1; ②⎩⎨⎧ 3x +2y =102x +3y =10的解为 ⎩⎨⎧ x =2y =2 ; ③⎩⎨⎧ 2x -y =4-x +2y =4的解为 ⎩⎨⎧x =4y =4. (2)以上每个方程组的解中,x 值与y 值的大小关系为 ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.9.七(1)班的生活委员利用周末时间为班上买了4把扫帚和6把铲子共64元,到班长那儿报账时,班长拿出了他上个月购买的扫帚和铲子的账目:3把扫帚和5把铲子,共用55元。

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

第八章 二元一次方程组*8.4 三元一次方程组的解法基础过关全练知识点1 三元一次方程(组)1.(2023河北唐山遵化期中)下列是三元一次方程组的是( )A.2x=5x2+y=7x+y+z=6-y+z=-22y+z=9=-3C.x+y-z=7xyz=1x-3y=4 D.x+y=2y+z=1x+z=9知识点2 三元一次方程组的解法2.(2021四川遂宁安居期中)解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,以下解法不正确的是( )A.由①②消去z,再由①③消去zB.由①③消去z,再由②③消去zC.由①③消去y,再由①②消去yD.由①②消去z,再由①③消去y3.(2023云南昆明十中期中)解方程组2x-y+3z=1,3x+y-7z=2,5x-y+3z=3,若要使运算简便,则消元时最好( )A.先消去xB.先消去yC.先消去zD.先消常数项4.(2023天津南开期末)已知2x+3y=z,3x+4y=2z+6中的x,y满足x+y=3,则z 的值为( )A.9B.-3C.12D.不确定5.【新考法】请认真观察,动脑筋想一想,图中“?”表示的数是( )A.420B.240C.160D.706.在等式y=ax2+bx+c中,当x=0时,y=-5;当x=2时,y=3;当x=-2时,y=11,则a= ,b= ,c= .7.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,则这个三位数是 .8.解方程组:(1)2x-3y+4z=12, x-y+3z=4,4x+y-3z=-2.(2)【一题多解】x+y=27,①y+z=33,②z+x=30.③9.【新独家原创】一只蜘蛛有8条腿,一只蜻蜓有6条腿和2对翅膀,一只小鸟有2条腿和1对翅膀.现在这三种动物共有14只,共有70条腿和17对翅膀,则每种动物各有几只?10.小明从家到学校的路程为3.3千米,且从家到学校分别为一段上坡路,一段平路和一段下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校要用一个小时,从学校到家要用44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米.能力提升全练11.(2023浙江杭州拱墅期中,15,★★☆)若关于x,y的方程组3x+5y=m+2,2x+3y=m满足x、y的和等于3,则m= .12.(2022湖北武汉汉阳期末,14,★★☆)某联赛中A,B,C,D,E五支球队的积分和胜负情况如下表:队名比赛场次胜场平场负场积分A1684428B16016016C16012412D16286aE16b82c从中可知a= ,b= ,c= .13.(2023四川资阳安岳期中,13,★★☆)有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件共需63元;购买甲4件、乙10件、丙1件共需84元,则购买甲、乙、丙各一件共需 元.14.(2022广东深圳龙岗月考,27,★★☆)A、B、C三个阀门,同时开放,1小时可注满水池.只开放A、C两个阀门,1.5小时可注满水池.只开放B、C两个阀门,2小时可注满水池.问:只开放A、B两个阀门,需多少时间才能注满水池?素养探究全练15.【运算能力】阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:x=1,y=8是方程3x+y=11的一组“好解”;x=1, y=2, z=3是方程组3x+2y+z=10,x+y+z=6的一组“好解”.(1)求方程x+2y=5的所有“好解”.(2)关于x,y,k的方程组x+y+k=15,x+5y+3k=27有“好解”吗?若有,请求出对应的所有“好解”;若没有,请说明理由.答案全解全析基础过关全练1.DA选项,第二个方程中x2的次数是2;B选项,第一个方程中分母含有未知数;C选项,第二个方程中xyz的次数是3;D选项,方程组中含有三个未知数,且含未知数的项的次数都是1,故D选项中的方程组是三元一次方程组.故选D.2.D解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,利用加减法消去同一个未知数,组成二元一次方程组,故解法不正确的是由①②消去z,再由①③消去y.故选D.3.B观察各方程未知数x,y,z的系数发现:未知数y的系数要么相等,要么互为相反数,所以要使运算简便,那么消元时最好先消去y,故选B.4.B由题意,得2x+3y=z①,3x+4y=2z+6②, x+y=3③,①×2-②,得x+2y=-6④,④-③,得y=-9.把y=-9代入③,得x-9=3,解得x=12.把x=12,y=-9代入①,得z=2×12+3×(-9)=-3.5.B设题图中一个篮球表示的数是x,一顶帽子表示的数是y,一双鞋表示的数是z,依题意得x-3y+z=30②,2x-3z=20③,①+②,得2x+3z=140④,③+④,得4x=160,解得x=40,把x=40代入③得2×40-3z=20,解得z=20,把x=40,z=20代入①得40+3y+2×20=110,解得y=10,则方程组的解为x=40, y=10, z=20.故x+yz=40+10×20=240.故选B.6.3;-2;-5解析 根据题意,得c=-5,①4a+2b+c=3,②4a-2b+c=11,③②-③,得4b=-8,解得b=-2,把b=-2,c=-5代入②得4a-4-5=3,解得a=3,∴a=3,b=-2,c=-5.7.275解析 设这个三位数个位上的数字为x,十位上的数字为y,百位上的数字为z.根据题意得x+z=y①,7z=x+y+2②,x+y+z=14③,把①代入③得2y=14,解得y=7,把y=7代入①得x+z=7④,把y=7代入②得7z=x+9⑤,④+⑤得8z=16,解得z=2,把z=2代入④得x+2=7,解得x=5,∴这个三位数为2×100+7×10+5=275.8.解析 (1)x -y +3z =4②,4x +y -3z =-2③,②+③,得5x=2,解得x=25,①+③×3,得14x-5z=6④,把x=25代入④得285-5z=6,解得z=-225.把x=25,z =―225代入②得25―y ―625=4,解得y=-9625.所以原方程组的解为x =25,y =-9625,z =-225.(2)解法一:由①+②+③得2x+2y+2z=90,即x+y+z=45,④④-①,得z=18,④-②,得x=12,④-③,得y=15,所以原方程组的解为x =12,y =15,z =18.解法二:由①+②-③得2y=30,解得y=15,由①+③-②得2x=24,解得x=12,由②+③-①得2z=36,解得z=18,所以原方程组的解为x =12,y =15,z =18.解法三:由①得x=27-y,④把④代入③,得z+27-y=30,即z-y=3,⑤由②与⑤组成方程组,得y +z =33,z -y =3,解得y =15,z =18,把y=15代入④,得x=12,所以原方程组的解为x =12,y =15,z =18.9.解析 设蜘蛛有x 只,蜻蜓有y 只,小鸟有z 只,由题意得x +y +z =14,8x +6y +2z =70,2y +z =17,解得x =3,y =6,z =5.答:蜘蛛3只,蜻蜓6只,小鸟5只.10.解析 设小明家到学校上坡路是x 千米,平路是y 千米,下坡路是z 千米.+y +z =3.3,+y 4+z 5=1,+y 4+x5=4460,解得x =2.25,y =0.8,z =0.25.答:上坡路是2.25千米,平路是0.8千米,下坡路是0.25千米.能力提升全练11.5解析 由题意,得3x +5y =m +2①,2x +3y =m ②,x +y =3③,由①-②得x+2y=2④,联立③④得方程组x +y =3③,x +2y =2④,解得x =4,y =-1,把x =4,y =-1代入②得m=2×4+3×(-1)=5.12.14;6;26解析 设胜一场得x 分,平一场得y 分,负一场得z 分,∴8x+4y+4z=28,16y=16,12y+4z=12,∴x=3,y=1,z=0.a=2x+8y+6z=14,b=16-8-2=6,c=6x+8y+2z=26.故答案为14;6;26.13.21解析 设甲的单价为x元,乙的单价为y元,丙的单价为z元,根据题意,得3x+7y+z=63①, 4x+10y+z=84②,②-①得x+3y=21,∴3x+9y=63,由②得x+(3x+9y)+y+z=84,∴x+63+y+z=84,∴x+y+z=21.14.解析 设单独开放A、B、C三个阀门,分别需要x、y、z小时才能注满水池,易知x,y,z都不为0,+1+×1=1, +×1.5=1, +×2=1,∴1x =12,1y=13,1z=16,∴1x+1y=56,∴开放A、B两个阀门需要的时间为+=1÷56=65(小时),∴开放A、B两个阀门,需65小时才能注满水池.素养探究全练15.解析 (1)当y=0时,x=5;当y=1时,x=3;当y=2时,x=1,所以方程x+2y=5的所有“好解”为x =5,y =0,x =3,y =1,x =1,y =2.(2)有.x +y +k =15,①x +5y +3k =27.②②-①,得4y+2k=12,则k=6-2y.①×3-②,得2x-2y=18,则x=9+y.∵x,y,k 为非负整数,∴当y=0时,x=9,k=6;当y=1时,x=10,k=4;当y=2时,x=11,k=2;当y=3时,x=12,k=0,∴关于x,y,k 的方程组x +y +k =15,x +5y +3k =27的“好解”为x =9,y =0,k =6,x =10,y =1,k =4,x =11,y =2,k =2,x =12,y =3,k =0.。

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习试题(含答案) (38)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习试题(含答案) (38)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习试题(含答案)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

(1)求文具袋和圆规的单价。

(2)学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:方案一:购买一个文具袋还送1个圆规。

方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.【答案】(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为(3240)m+元,方案二总费用为(2.4306)m+元;②方案一更合算.【解析】【分析】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.【详解】(1)设文具袋的单价为x元,圆规单价为y元。

由题意得2212339x yx y+=⎧⎨+=⎩解得153xy=⎧⎨=⎩答:文具袋的单价为15元,圆规单价为3元。

(2)①设圆规m个,则方案一总费用为:20153(20)(3240)m m⨯+-=+元方案二总费用2015103380%(10)(2.4306)m m⨯+⨯+⨯-=+元故答案为:(3240)m+元;(2.4306)m+①买圆规100个时,方案一总费用:20153(10020)540⨯+-=元,方案二总费用:2015103380%(10010)546⨯+⨯+⨯-=元,①方案一更合算。

【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.72.已知方程组913x y ax y a+=--⎧⎨-=-+⎩的解x、y满足:x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,关于x的不等式2ax+x>2a+1的解集为x<1.【答案】(1)-2<a≤5;(2)-1.【解析】【分析】(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据不等式2ax+x>2a+1的解为x<1,得出2a+1<0且-2<a≤5,解此不等式得到关于a取值范围,找出符合条件的a的值.【详解】(1)解这个方程组的解为524x ay a--⎩-⎧⎨==,由题意,得50240aa≤--⎩-⎧⎨<,第一个不等式的解集是:a≤5,第二个不等式的解集是:a>-2,则原不等式组的解集为-2<a≤5;(2)∵不等式2ax+x>2a+1的解集为x<1,∴2a+1<0且-2<a≤5,∴在-2<a<-12范围内的整数有a=-1.【点睛】本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a当作已知求出x、y的值,再根据已知条件得到关于a的不等式组求出a 的取值范围是解答此题的关键.73.某车间有90人,一人每天加工10个螺栓或25个螺母,组装一部机器需4个螺栓和5个螺母,问应安排多少人生产螺栓,多少人生产螺母,才能尽可能多的组装成这种机器?【答案】安排60人生产螺栓,40人生产螺母【解析】【分析】本题可以从问题入手,设安排x人生产螺栓,y人生产螺母,那么等量关系有:x+y=90;x人生产的螺栓总数:y人生产的螺母总数=4:5,据此可列方程组求解.【详解】解:设安排x人生产螺栓,y人生产螺母则90 102545 x yx y+⎧⎨⎩=:=:解得:6030 xy=⎧⎨=⎩答:安排60人生产螺栓,40人生产螺母,才能尽可能多地组装成这种机器.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.74.在平面直角坐标系中,已知A(a,b),B(2,2),且=0.(1)求点A的坐标;(2)过点A作AC⊥x轴于点C,连接BC,AB,延长AB交x轴于点D,设AB交y轴于点E,那么OD与OE是否相等?请说明理由.(3)在x轴上是否存在点P,使S△OBP=S△BCD?若存在,请求出P点坐标,若不存在,请说明理由.【答案】(1)点A 的坐标为(-2,6);(2)OD 与OE 相等.理由见解析;(3)存在. P (-6,0)或(6,0).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)如图2,OD 与OE 相等.通过计算证明OE=4,OD=4即可解决问题.(3)假设存在.设P (m ,0),构建方程求出m 即可解决问题.【详解】(1)由=0,803260a b a b -+⎧⎨+-⎩==, 解得:26a b -⎧⎨⎩==. ∴点A 的坐标为(-2,6);(2)如图2,OD 与OE 相等.理由如下:设点D的坐标为(x,0)(x>0),点E的坐标为(0,y)(y>0),则CD=x+2,OE=y,因为,三角形ABC的面积=三角形ACD的面积-三角形BCD的面积,所以,12=12×(x+2)×6-12×(x+2)×2=2(x+2),解得,x=4,即OD=4.又因为,三角形EOD的面积=三角形ACD的面积-梯形ACOE的面积,所以,12×4×y=12×6×6-12×(y+6)×2,解得:y=4,即OE=4,所以,OD=OE.(3)存在.设P(m,0),由题意:12•|m|×2=6,解得m=±6,∴P(-6,0)或(6,0).【点睛】本题属于三角形综合题,考查了非负数的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.75.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过15吨(含15吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过15吨,则超过部分每吨按市场价n 元收费,小明家5月份用水22吨,交水费48元;6月份用水20吨,交水费42元.求每吨水的政府补贴优惠价和市场价分别是多少?【答案】每吨水的政府补贴优惠价1.8元,市场调节价为3元.【解析】【分析】首先设每吨水的政府补贴优惠价为m 元,市场价为n 元.根据题意,得出二元一次方程组,解得m 和n 的值即可.【详解】解:设每吨水的政府补贴优惠价为m 元,市场价为n 元.根据题意,得: 15(2215)4815(2015)42m n m n +-=⎧⎨+-=⎩ 解得: 1.83m n =⎧⎨=⎩答:每吨水的政府补贴优惠价1.8元,市场价为3元.【点睛】此题主要考查二元一次方程的实际应用问题,理解题意,列出关系式,即可得解.76.一般地,二元一次方程的解可以转化为点的坐标,其中x 的值对应为点的横坐标,y 的值对应为点的纵坐标,如二元一次方程x −2y=0的解00x y ==⎧⎨⎩ 和21x y =⎧⎨=⎩可以转化为点的坐标A(0,0)和B(2,1).以方程x −2y=0的解为坐标的点的全体叫做方程x −2y=0的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册第八章期末复习解析版一、单选题(共10题;共30分)1.下列方程中,是二元一次方程的是()A. B. C. D.2.已知某个二元一次方程的一个解是,则这个方程可能是()A. 2x+y=5B. 2x-y=0C. x-2y=0D. x=2y3.若是关于x .y的方程的一个解,则常数a为()A. 1B. 2C. 3D. 44.为了绿化校园,30名学生共种80棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是( )A. B. C. D.5.方程组的解为()A. B. C. D.6.已知是方程kx﹣y=3的解,那么k的值是()A. 2B. ﹣2C. 1D. ﹣17.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A. B. C. D.8.用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A. B. C. D.9.已知关于方程组的解满足,则m的值为( )A. 10B. 8C. 7D. 610.已知方程的解为,“△“与“■”表示两个数,则数“△-与“■”分别()A. B. C. D.二、填空题(共6题;共24分)11.已知方程2x+y=10,用含x的代数式表示y,则y=________.12.写出一个解为的二元一次方程组:________.13.已知方程组的解是,则a+b的值为________.14.小红到超市购买钢笔、笔记本、圆珠笔发现:若购买3支钢笔、7个笔记本、1支圆珠笔共需315元;若购买4支钢笔、10个笔记本、1支圆珠笔,共需420元钱.现若只购买2支钢笔、6个笔记本,共需________元钱.15.方程组中,若的的值的和等于2,则k的值=________.16.一个正整数N的各位数字不全相等,且都个为0,现要将N的各位数字重新排列,必可得到一个最大数和一个最小数,此最大数与最小数的和记为N的“和数”,例如,245的“和数”为:542+245=787,一个三位数M,其中百位数字为a,十位数字为1,个位数字为b(且a≥1,b≥1)若它的“和数”是686,则三位数M 是________三、解答题(共7题;共46分)17.解方程组.18.当m、n为何值时,方程组与方程组同解?19.已知方程组的解x,y的和等于2,①求m的值.②原方程组的解.20.已知甲、乙二人解关于的方程组甲正确地解出而乙把抄错了,结果解得求的值.21.∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.22.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

王强答对7道题,答错3道题共获得50分;李想答对8道题,答错1道题,共获得62分。

问答对一题得多少分,答错一题扣多少分。

23.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?答案解析部分一、单选题1.【答案】B【解析】【解答】解:A、此方程是二元二次方程,故A不符合题意;B、此方程是二元一次方程,故B符合题意;C、是代数式,不是方程,故C不符合题意;D,此方程是分式方程,故D不符合题意;故答案为:B【分析】根据二元一次方程的定义:含有两个未知数,且含未知数项的最高次数是1的整式方程,再对各选项逐一判断可解答。

2.【答案】B【解析】【解答】解:A、2x+y=2+2=4≠5,故A不符合题意;B、2x-y=2-2=0,故B不符合题意;C、x-2y=2-4=-2,故C不符合题意;D、2y=2×2=4≠1,故D不符合题意;故答案为:B【分析】将x、y的值分别代入各选项,若方程的左右两边相等,就可得出答案。

3.【答案】B【解析】【解答】解:将代入方程得-2-2+2a=0解之:a=2故答案为:B【分析】将已知方程的解代入原方程,建立关于a的方程,然后解方程求出a的值。

4.【答案】C【解析】【解答】解:依题可得男生种的棵数为3x,女生种的棵数为2y,可得如下方程,.故答案为:C.【分析】根据题意列出二元一次方程组即可.5.【答案】D【解析】【解答】解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故答案为:D.【分析】跟怒方程组的解能使方程组中的每一个方程都成立,故将4组解分别代入原方程组,一一判断即可得出答案。

6.【答案】A【解析】【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故答案为:A.【分析】利用二元一次方程租的解求另一个未知数的值,将x ,y的值带入到2K-1=3中即可.7.【答案】A【解析】【解答】设进2个球的有x人,进3个球的有y人,根据题意得:,即.故答案为:A.【分析】根据总人数和总进球数分别列出方程组成二元一次方程组即可。

8.【答案】C【解析】【解答】解:,将方程①代入②得:x-2(2x-3)=8即x-4x+6=8故答案为:C【分析】将方程①代入②中,消去y,可得到关于x的方程,注意:代入时,该加括号的要加括号,去括号时,括号前是负号,去掉括号和负号,括号里的各项符号都要变号。

9.【答案】C【解析】【解答】解:①+②得5x+5y=2m+1,∴x+y=,∵x+y=3,∴=3,解得m=7.故答案为:C.【分析】将方程①+②可得:x+y=,由“x+y=3”,可得=3,解出m即可.10.【答案】D【解析】【解答】解:设■为a,△为b将代入方程组得:解之:即故答案为:D【分析】设■为a,△为b,将方程组的解代入方程组,建立关于a、b的方程组,解方程组求出a、b的值,就可得出“△-与“■”分别表示的数。

二、填空题11.【答案】【解析】【解答】解:2x+y=10y=10-2x故答案为:10-2x【分析】先移项,将含x的项移到方程的右边,就可求出结果。

12.【答案】【解析】【解答】解:∵x=2,y=-3,∴x+y=-1 x-y=5,∴二元一次方程组为,故答案为:(答案不唯一).【分析】由x与y和组成一个方程,x与y差组成一个方程,将两个方程联立即得(答案不唯一).13.【答案】3【解析】【解答】把代入即得关于的方程组,即可得到结果。

由题意得,+②得,则【分析】根据题意将x,y的值代入二元一次方程组即可得到关于a,b的二元一次方程组;然后将关于a,b的二元一次方程组进行变式即可得到a+b的值。

14.【答案】210【解析】【解答】解:设每支钢笔x元,每个笔记本y元,每支圆珠笔z元,根据题意得:由②-①得:x+3y=105③由③×2得2x+6y=210∴现若只购买2支钢笔、6个笔记本,共需210元。

故答案为:210【分析】抓住题中关键的已知条件:若购买3支钢笔、7个笔记本、1支圆珠笔共需315元;若购买4支钢笔、10个笔记本、1支圆珠笔,共需420元钱,设未知数建立关于x、y、z的方程组,利用加减消元法消去z,就可得到x+3y=105,然后将方程的两边同时乘以2,就可解答问题。

15.【答案】4【解析】【解答】解:由(1)-(2)得:x+2y=2∵x、y的和为2∴x+y=2解之:把代入(2)得:2×2+0=k解之:k=4故答案为:4【分析】将方程组中的两方程相减,消去k,就可得到方程x+2y=2,再由x、y的和为2,可知x+y=2,解方程组求出x、y的值,然后将x、y的值代入(1)或(2)就可求出k的值。

16.【答案】514或415【解析】【解答】解:∵一个三位数M,其中百位数字为a,十位数字为1,个位数字为b(且a≥1,b≥1)∴M=100a+10+b∴最大的数的各位数字为:百位数为a,十位数为b,个位数为1,则这个三位数为:100a+10b+1或百位数为b,十位数为a,个位数为1,则这个三位数为:100b+10a+1最小的数的百位数可能为:百位数为1,十位数为a,个位数为b,则这个三位数为:100+10a+b或百位数为1,十位数为b,个位数为a,则这个三位数为:100+10b+a当最大的数为:100a+10b+1,最小的数为:100+10a+b则100a+10b+1+100+10a+b=686整理得:110a+11b=585,不符合题意;当最大的数为:100a+10b+1,最小的数为:100+10b+a则100a+10b+1+100+10b+a=686整理得:101a+20b=585当a=5时,20b=585-505=80解之:b=4∴M=5×100+1×10+4=514;当最大的数为:100b+10a+1,最小的数为:100+10a+b则100b+10a+1+100+10a+b=686整理得:101b+20a=585,当b=5时,则20a=585-505=80解之:a=4∴M=4×100+1×10+5=415;当最大的数为:100b+10a+1,最小的数为:100+10b+a则100b+10a+1+100+10b+a=686整理得:110b+11a=585不符合题意;故答案为:514或415【分析】由题意可知:M=100a+10+b,根据最大数与最小数的和记为N的“和数”,可知最大数可能为100a+10b+1或100b+10a+1;最小数可能为100+10a+b或100+10b+a,再分情况讨论,分别建方程:100a+10b+1+100+10a+b=686;100a+10b+1+100+10b+a=686;100b+10a+1+100+10a+b=686;100b+10a+1+100+10b+a=686,再分别解方程求出符合题意的a、b的值,即可得出答案。

三、解答题17.【答案】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.则原方程组的解是【解析】【分析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:方程组的解与方程组的解相同得① ②,解①得,把代入②得,解得,当m=1,n=2时,方程组与方程组同解.∴m=1,n=2.【解析】【分析】由题意可知两个方程组x,y为同值可以先联立为关于x,y的二元一次方程组解出x,y,再代入关于m,n的二元一次方程组解出m,n19.【答案】解:①将y=2−x代入方程组得:整理得:解得:②当时,原方程组的解为.【解析】【分析】由方程组的解x,y的和等于2,得出y=2−x ,将y=2−x代入方程组即可求出m,x的值,将x的值代入y=2−x即可求出y的值,从而得出方程组的解。

相关文档
最新文档