计量经济学名词解释

合集下载

计量经济学名词解释

计量经济学名词解释

1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。

2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。

3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。

5、结构分析结构分析是对经济现象中变量之间相互关系的研究。

所采用的主要方法是弹性分析、乘数分析与比较静力分析。

6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。

7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。

8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。

9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。

11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。

12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。

13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。

14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。

15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。

16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。

17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。

18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。

计量经济学名词解释

计量经济学名词解释

经济变量:经济变量是用来描述经济因素数量水平的指标。

解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。

被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。

它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。

内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。

外生变量:外生变量是由模型统计之外的因素决定的变量,不受模型内部因素的影响,表现为非随机变量,但影响模型中的内生变量,其数值在模型求解之前就已经确定。

滞后变量:滞后变量是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。

前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。

控制变量:控制变量是为满足描绘和深入研究经济活动的需要,在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。

计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。

函数关系与相关关系线性回归模型总体回归模型与样本回归模型最小二乘法:在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。

其中V为残差向量,P为其权矩阵高斯-马尔可夫定理:在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。

回归变差(回归平方和)剩余变差(残差平方和)估计标准误差样本决定系数:将回归平方和与总离差平方和之比称为判定系数其值界于0~1之间,R²越大,残差平方和所占的比重就越小,回归直线与样本数据拟合的越好。

相关系数显著性检验t检验经济预测点预测区间预测拟合优度:指回归直线对观测值的拟合程度残差.偏回归系数:在多元回归分析中,随机因变量对各个自变量的回归系数,表示各自变量对随机变量的影响程度总变量(总离差平方和):用TSS表示。

计量经济学名词解释

计量经济学名词解释

计量经济学名词解释1.经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。

(1分)3.被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。

计量经济学名词解释全

计量经济学名词解释全

计量经济学名词解释全 Last revised by LE LE in 2021广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

计量经济学:是经济学的一个分支学科,是以揭示经济活动中的客观存在的数量关系为内容的分支学科。

计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

时间序列数据:把反映某一总体特征的同一指标的数据,按照一定的时间顺序和时间间隔排列起来,这样的统计数据称为时间序列数据面板数据:指时间序列数据和截面数据相结合的数据。

总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

样本回归函数:指从总体中抽出的关于Y,X的若干组值形成的样本所建立的回归函数。

随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

总离差平方和:用TSS表示,用以度量被解释变量的总变动。

回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。

残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

协方差:用Cov(X,Y)表示,度量X,Y两个变量关联程度的统计量。

R表示,该值越接近1,模型对样本拟合优度检验:检验模型对样本观测值的拟合程度,用2观测值拟合得越好。

计量经济学名词解释全

计量经济学名词解释全

计量经济学名词解释全Newly compiled on November 23, 2020广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

计量经济学:是经济学的一个分支学科,是以揭示经济活动中的客观存在的数量关系为内容的分支学科。

计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

时间序列数据:把反映某一总体特征的同一指标的数据,按照一定的时间顺序和时间间隔排列起来,这样的统计数据称为时间序列数据面板数据:指时间序列数据和截面数据相结合的数据。

总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

样本回归函数:指从总体中抽出的关于Y,X的若干组值形成的样本所建立的回归函数。

随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

总离差平方和:用TSS表示,用以度量被解释变量的总变动。

回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。

残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

协方差:用Cov(X,Y)表示,度量X,Y两个变量关联程度的统计量。

R表示,该值越接近1,模型对样本拟合优度检验:检验模型对样本观测值的拟合程度,用2观测值拟合得越好。

计量经济学名词解释

计量经济学名词解释

名词解释:1、计量经济学:是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:是人为构造的,用来表征政策等定性事实的数据。

3.回归平方和:用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

4、拟和优度检验:指检验模型对样本观测值的拟合程度,用2R 表示,该值越接 近1,模型对样本观测值拟合得越好。

5、偏回归系数:在多元线性回归模型中,回归系数j β(j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

6. 多重可决系数:“回归平方和”与“总离差平方和”的比值,用2R 表示。

7、修正的可决系数:用自由度修正多重可决系数2R 中的残差平方和与回归平方和。

8、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

9、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

10、正规方程组:指采用OLS 法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为零后得到的一组方程,其矩阵形式为X X X Y β''= 。

11、多重共线性: 解释变量之间精确的线性关系和解释变量之间近似的线性关系。

12、完全的多重共线性: 解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。

13、辅助回归: 多元线性回归模型,分别以每个解释变量为被解释变量,做对其他解释变量的回归。

14、方差扩大因子VIF j: 1除以(1-多重可决系数的平方),决定了方差和协方差增大的速度。

15、逐步回归法: 将变量逐个的引入模型,每引入一个解释变量后,都要进行F 检验,并对已经选入的解释变量逐个进行t 检验。

计量经济学 名词解释

计量经济学 名词解释

1. 残差项是指对每个样本点,样本观测值与模型估计值之间的差值。

2. 线性性,即估计量,是Y的线性组合。

3.无偏性:所谓无偏性是指参数估计量的均值(期望)等于模型的参数值。

4.有效性(最小方差性):即在所有线性无偏估计量中,普通最小二乘估计量,具有最小方差。

5.异方差性:在线性回归模型中,经典假设要求随机误差项具有0均值和同方差。

所谓异方差性是指这些随机误差项服从不同方差的正态分布。

6.序列相关性:指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。

7.虚假序列相关:指由于忽略了重要解释变量而导致模型出现的序列相关性。

8.多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

9.完全共线性:对于多元线性回归模型,其基本假设之一是解释变量,,…,是相互独立的,如果存在,i=1,2,…,n,其中c不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。

10.工具变量:工具变量是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。

11.虚拟变量:在建立模型时,有一些影响经济变量的因素无法定量描述,如职业、性别对收入的影响,教育程度,季节因素等往往需要用定性变量度量。

为了在模型中反映这类因素的影响,并提高模型的精度,需要将这类变量“量化”。

根据这类边另的属性类型,构造仅取“0”或“1”的人工变量,通常称这类变量为“虚拟变量”。

12.内生变量:是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。

内生变量一般都是经济变量。

13.外生变量:一般是确定性变量,或者是具有临界概率分布的随机变量,其参数不是模型系统研究的元素。

外生变量影响系统,但本身不受系统的影响。

外生变量一般是经济变量、条件变量、政策变量、虚变量。

计量经济学(重要名词解释)

计量经济学(重要名词解释)

——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。

与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。

经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。

确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。

没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。

有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。

布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。

布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。

若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。

因此,这是相对于非嵌套对立假设而对一个模型的检验。

在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。

回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。

它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。

怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。

这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释
1、截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

2、时间序列数据:时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。

3、虚变量数据:虚拟变量数据是人为设定的虚拟变量的取值。

是表征政策、条件等影响研究对象的定性因素的人工变量,其取值一般只取“0”或“1”。

4、内生变量与外生变量:内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

第二章一元线性回归模型
1、总体回归函数:是指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说将
总体被解释变量的条件期望表示为解释变量的某种函数)
2、最大似然估计法(ML): 又叫最大或然法,指用产生该样本概率最大的原则去确定样本
回归函数的方法。

3、OLS估计法:指根据使估计的剩余平方和最小的原则来确定样本回归函数的方法。

4、残差平方和:用RSS表示,用以度量实际值与拟合值之间的差异,是由除解释变量之外
的其他因素引起的被解释变量变化的部分。

5、拟合优度检验:指检验模型对样本观测值的拟合程度,用表示,该值越接近1表示拟
合程度越好。

第三章多元线性回归模型
1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量
2、调整的可决系数:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了随解释变量的增加而增大的缺陷,与的关系为。

3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。

4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为。

5、方程显著性检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出判断。

第四章随机解释变量问题
1、随机解释变量:指在现实经济现象中,解释变量不是可控的,即解释变量的观测值具有随机性,并且与模型的随机干扰项可能有相关关系,这样的解释变量称为随机解释变量
2、工具变量:顾名思义是在模型估计过程中被作为工具使用的变量,用以替代与随机干扰项相关的随机解释变量。

第五章多重共线性
1、多重共线性:指两个或两个以上解释变量之间存在某种线性相关关系。

2、不完全多重共线性:在实际经济活动中,多个解释变量之间存在多重共线性问题,但解释变量之间的线性关系是近似的,而不是完全的
第六章异方差性
1、异方差性:指对于不同的样本值,随机干扰项的方差不再是常数,而是互不相同的。

2、广义最小二乘法:(GLS)是最具有普遍意义的最小二乘法,可用来处理模型存在异方差或序列相关时的估计问题
第七章序列相关性
1、序列相关性:指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。

2、差分法:是克服序列相关性的有效方法,它是将原计量经济学模型变换为差分模型后再进行OLS估计,分为一阶差分法和广义差分法。

3、DW检验:全称杜宾—瓦森检验,适用于一阶自相关的检验。

该法构造一个统计量:
,计算该统计量的值,根据样本容量和解释变量数目查D.W.分布表,得到临界值和,然后按照判断准则考察计算得到的D.W.值,以判断模型的自相关状态。

第八章
1、虚拟变量:在建立模型时,有一些影响经济变量的因素无法定量描述,如职业、性别对收入的影响,教育程度,季节因素等往往需要用定性变量度量。

为了在模型中反映这类因素的影响,并提高模型的精度,需要将这类变量"量化"。

根据这类边另的属性类型,构造仅取"0"或"1"的人工变量,通常称这类变量为"虚
拟变量"
2、虚拟变量陷阱:一般在引入虚拟变量时要求如果有m个定性变量,字在模型中引入m-1个虚拟变量。

否则,如果引入m个虚拟变量,就会导致模型解释变量间出现完全共线性的情况。

我们一般称由于引入虚拟变量个数与定性因素个数相同出现的模型无法估计的问题,称为"虚拟变量陷阱"
第九章
1、分布滞后模型:指模型中的解释变量仅是解释变量X的当期值与若干期滞后值,而没有被解释变量Y 的滞后期值,叫做分布滞后模型。

2、自回归模型:指模型中的解释变量仅是X的当期值与被解释变量Y的若干期滞后值,它由于被解释变量的滞后期值对被解释变量现期做了回归,故叫做自回归模型。

第十章
1、结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。

结构式模型中的每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规形式。

2、先决变量:模型中的外生变量和滞后内生变量被统称为先决变量,其含义是在模型求解时,这些变量已有所赋的值。

3、不可识别:如果联立方程计量经济学模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别。

或者说如果从参数关系体系无法求出其结构方程的参数,则称该方程为不可识别。

如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程系统是不可识别的。

4、间接最小二乘法:先对关于内生解释变量的简化式方程采用普通最小二乘法估计简化式参数,得到简化式参数估计量,然后通过参数关系体系,计算得到的结构式参数的估计量,这种方法称为间接最小二乘法。

期末测试一
1、横截面数据:一批发生在同一时间截面上的调查数据
2、拟合优度检验:检验模型对样本观测值的拟合程度,使用的统计量是可决系数,(0,1),越接近1,模型拟合程度越好
3、工具变量:顾名思义是在模型估计过程中被作为工具使用的变量,用以替代与随机干扰项相关的随机解释变量序列相关性:指对于不同的样本点,随机干扰之间不再是完全相互独立的,而是存在某种相关性。

4、分布滞后模型:仅有解释变量的当期值与若干期滞后值,而没有滞后被解释变量的滞后变量模型。

5、结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统。

期末测试二
1、总体回归曲线:给定解释变量条件下被解释变量的期望轨迹。

2、D-W检验:全称杜宾-瓦森检验,适用于一阶自相关的检验。

该法构造一个统计量,计算该统计量的值,根据样本容量和解释变量数目查D.W.分布表,得到临界值和,然后按照判断准则考察计算得到的D. W.值,以判断模型的自相关状态。

3、虚拟变量陷阱:在虚拟变量的设置中,虚拟变量的个数须按以下原则确定:每一个定性变量所需的虚拟变量的个数要比该定性变量的类别数少1,即如果有m 个定性变量,只能在模型中引入m-1个虚拟变量。

如果引入m个虚拟变量,就会导致模型解释变量间出现完全共线性,模型无法估计的情况,称为虚拟变量陷阱。

4、自回归模型:指模型中的解释变量仅是X的当期值与被解释变量Y的若干期滞后值。

由于被解释变量的滞后期值对被解释变量现期做了回归,故叫做自回归模型。

相关文档
最新文档