2011届高考总复习天津101中学精品教学案:统计单元(教师版全套)1

合集下载

统计复习数学教案

统计复习数学教案

统计复习数学教案标题:统计复习数学教案一、教学目标:1. 学生能够掌握基本的统计概念和术语,如数据、样本、总体、频率等。

2. 学生能够运用统计方法进行数据分析,并理解统计结果的意义。

3. 培养学生的数据意识,学会从数据中发现问题并提出解决方案。

二、教学内容:1. 统计基础知识回顾这部分主要是对已学过的统计知识进行回顾,包括数据的收集、整理和分析。

可以通过一些简单的实例,让学生回忆起相关的知识点。

2. 统计图表的制作和解读这部分主要讲解如何制作和解读各种统计图表,如柱状图、饼图、折线图等。

在讲解的过程中,可以让学生动手制作一些图表,以加深他们的理解和记忆。

3. 数据分析的方法和技巧这部分主要讲解如何通过统计方法进行数据分析,如平均数、中位数、众数、标准差等。

同时,也要讲解如何根据数据分析的结果,做出合理的决策。

三、教学方法:1. 讲解法:教师可以通过讲解和演示,帮助学生理解和掌握统计的知识和技能。

2. 实践法:通过实际的数据分析任务,让学生亲手操作,体验统计的过程,提高他们的实践能力。

3. 讨论法:鼓励学生之间的讨论和交流,激发他们的思考和创新。

四、教学步骤:1. 引入新课:通过一个有趣的问题或者实例,引起学生的兴趣和好奇心。

2. 讲解新知:详细讲解新的统计知识,确保每个学生都能听懂。

3. 动手实践:让学生动手制作统计图表,或者进行数据分析。

4. 互动讨论:组织学生进行小组讨论,分享自己的成果和心得。

5. 总结反馈:对学生的学习情况进行总结和反馈,指出他们的优点和不足。

五、教学评价:1. 进行过程评价,观察学生在学习过程中的表现,及时给予指导和帮助。

2. 进行结果评价,检查学生的学习成果,了解他们对知识的理解和应用情况。

3. 进行自我评价,鼓励学生对自己的学习进行反思和总结。

六、教学反思:1. 对教学过程进行反思,看看哪些地方做得好,哪些地方需要改进。

2. 对学生的学习效果进行反思,看看哪些学生学得好,哪些学生需要更多的帮助。

天津101中学高考数学总复习 平面向量单元精品教学案(教师版全套)

天津101中学高考数学总复习 平面向量单元精品教学案(教师版全套)

平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算⑴既有又有的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= . (λ+μ)= .λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,=,求.解:=AE -=41(+)-=-43a +41b 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+21B .--BA 21C .-21D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,BC使μλ+=.解:c =λ+μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若a =,b =,试用a 、b 表示和.解:连NC ,则==-=+=+=4141;21-=-=变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,=31,试用、表示,,.解:=61a +65b ,=32a +32b ,=21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t 时,)(31,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e ===== ,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD = ,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.①若,a b共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.D1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则:+= -= λ=已知A(x 1、y 1),B(x 2、y 2),则= .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .例1.已知点A (2,3),B (-1,5),且=31AB ,求点C 的坐标.解=31=(-1,32),=+=(1, 311),即C(1, 311)变式训练1.若(2,8)OA = ,(7,2)OB =- ,则31AB= .解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 a =(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).·b 的几何意义是,数量·b 等于 .4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角.⑴ ·=·= ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cos θ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|a +b |的最大值.解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα= ,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+= a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,k a b →+= a kb →-= ,cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(-)·(+-2)=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(-)(2-+)=0⇒2·=0⇒BC ⊥AD ⇒△ABC 是等腰三角形.变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54 变式训练4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+- ,,y ka tb =-+ 且x y ⊥ ,试求函数关系式()k f t =. 解:由11),(2a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=- 1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =. 3.应根据定义找两个向量的夹角。

2011届高考总复习天津101中学精品教学案:导数单元(教师版全套)

2011届高考总复习天津101中学精品教学案:导数单元(教师版全套)

处的导数. 3.导数的几何意义:设函数y= 在点 处可导,那么它在该点的导数等于函数所表示曲线在相应点 处的 . 4.求导数的方法 (1) 八个基本求导公式 = = = = = = , ; ;(n∈Q) ,


= (2) 导数的四则运算 = = = = (3) 复合函数的导数 设 在点x处可导, 在点 处可导,则复合函数 在点x处可导, 且 = . 例1.求函数y= 在x0到x0+Δx之间的平均变化率. 解 ∵Δy= 典型例题 ,即 ,
时,y=f(x)有极值. (1)求a,b,c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值. 解 (1)由f(x)=x3+ax2+bx+c,得 =3x2+2ax+b, 当x=1时,切线l的斜率为3,可得2a+b=0 ① 当x= 时,y=f(x)有极值,则 =0,可得4a+3b+4=0 ② 由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5. (2)由(1)可得f(x)=x3+2x2-4x+5,∴ =3x2+4x-4, 令 =0,得x=-2,x= . 当x变化时,y,y′的取值及变化如下表:
x
-2
(-2,-1) -1 (-1,0) 0
(0,1) 1
(1,2) 2
y ′ y 13

0 4
+ ↗
0 5

0 4
+ ↗ 13
从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4. 例3. 已知函数f(x)=x2e-ax (a>0),求函数在[1,2]上的最大值. 解 ∵f(x)=x2e-ax(a>0),∴ =2xe-ax+x2·(-a)e-ax=e-ax(-ax2+2x). 令 >0,即e-ax(-ax2+2x)>0,得0<x< . ∴f(x)在(-∞,0), 上是减函数,在 上是增函数. ①当0< <1,即a>2时,f(x)在(1,2)上是减函数, ∴f(x)max=f(1)=e-a. ②当1≤ ≤2,即1≤a≤2时, f(x)在 上是增函数,在 上是减函数, ∴f(x)max=f =4a-2e-2. ③当 >2时,即0<a<1时,f(x)在(1,2)上是增函数, ∴f(x)max=f(2)=4e-2a.

高中数学统计章节教案

高中数学统计章节教案

高中数学统计章节教案
目标:通过本节课的学习,学生能够了解统计学的基本概念、方法和应用,能够实际运用
统计方法解决问题。

教学重点:统计的基本概念、数据的整理和描述统计
教学难点:数据的整理和描述统计的应用
教学过程:
一、导入(5分钟)
教师引入统计学的概念,向学生介绍统计学的意义和作用,并举一些实际生活中统计数据
的例子。

二、讲解知识点(15分钟)
1. 统计的定义
2. 数据的分类
3. 数据的整理方法:频数表、频率表、直方图等
4. 描述统计:均值、中位数、众数、标准差等
三、示例分析(15分钟)
老师通过例题向学生讲解数据的整理和描述统计的具体方法,并带领学生一起分析样本数据,计算各种描述统计指标。

四、练习(15分钟)
让学生自行分析一组数据,并完成相应的描述统计工作,包括计算均值、中位数、众数、
标准差等,并进行数据的图表展示。

五、小结(5分钟)
总结本节课的内容,强调统计在解决问题中的重要性,并提醒学生掌握好统计的基本方法。

六、作业布置(5分钟)
布置练习题作业,要求学生通过实际问题应用所学知识,完成描述统计的计算和分析。

教学反思:
本节课主要介绍了统计学的基本概念和方法,包括数据的整理和描述统计。

通过实例分析和练习,学生能够更好地掌握统计学的基础知识,并能够应用到实际问题中。

希望学生能够在课后多加练习,加深对统计学的理解和应用能力。

2012届高考总复习天津101中学精品教案新部编本:简易逻辑单元(教师版全套)

2012届高考总复习天津101中学精品教案新部编本:简易逻辑单元(教师版全套)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校简 易 逻 辑、“且”、“非”的含义;理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.2.学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品1.简易逻辑是一个新增内容,据其内容的特点,在高考中应一般在选择题、填空题中出现,如果在解答题中出现,则只会是中低档题.2.集合、简易逻辑知识,作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.第1课时 逻辑联结词和四种命题1. 可以 的语句叫做命题.命题由 两部分构成;命题有 之分;数学中的定义、公理、定理等都是 命题.2.逻辑联结词有 ,不含 的命题是简单命题.由 的命题是复合命题.复合命题的构成形式有三种: ,(其中p ,q 都是简单命题).3.判断复合命题的真假的方法—真值表:“非p ”形式的复合命题真假与p 的 当p与q 都真时,p 且q 形式的复合命题 ,其他情形 ;当p 与q 都 时,“p 或q ”复合形式的命题为假,其他情形 .二、四种命题1.四种命题:原命题:若p 则q ;逆命题: 、否命题: 逆否命题: .2.四种命题的关系:原命题为真,它的逆命题 、否命题 、逆否命题 .原命题与它的逆否命题同 、否命题与逆命题同 .3.反证法:欲证“若p 则q ”为真命题,从否定其 出发,经过正确的逻辑推理导出矛盾,从而判定原命题为真,这样的方法称为反证法.例1. 下列各组命题中,满足“p 或q ”为真,“p 且q ”为假,“非p ”为真的是 ( )A .p :0=∅;q :0∈∅B .p :在∆ABC 中,若cos2A =cos2B ,则A =B ; :q y =sin x 在第一象限是增函数C .),(2:R b a ab b a p ∈≥+;:q 不等式x x >的解集为()0,∞-D .p :圆()1)2(122=-+-y x 的面积被直线1=x 平分;q :椭圆13422=+y x 的一条准线方程是x=4解:由已知条件,知命题p 假且命题q 真.选项(A)中命题p 、q 均假,排除;选项(B)中,命题p 真而命题q 假,排除;选项(D)中,命题p 和命题q 都为真,排除;故选(C).变式训练1:如果命题“p 或q ”是真命题,“p 且q ”是假命题.那么( )A .命题p 和命题q 都是假命题B .命题p 和命题q 都是真命题C .命题p 和命题“非q ”真值不同D .命题q 和命题p 的真值不同解: D例2. 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1) 若q <1,则方程x 2+2x +q =0有实根;(2) 若ab =0,则a =0或b =0;(3) 若x 2+y 2=0,则x 、y 全为零.解:(1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.变式训练2:写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等;(2)矩形的对角线互相平分且相等;(3)相似三角形一定是全等三角形.解:(1)否命题是:“如果一个三角形的三条边不都相等,那么这个三角形的三个角也不都相等”.原命题为真命题,否命题也为真命题.(2)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”原命题是真命题,否命题是假命题.(3)否命题是:“不相似的三角形一定不是全等三角形”.原命题是假命题,否命题是真命题.例3. 已知p :012=++mx x 有两个不等的负根,q :01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.分析:由p 或q 为真,知p 、q 必有其一为真,由p 且q 为假,知p 、q 必有一个为假,所以,“p 假且q 真”或“p 真且q 假”.可先求出命题p 及命题q 为真的条件,再分类讨论.解:p :012=++mx x 有两个不等的负根.⎪⎩⎪⎨⎧>⇔<->-=∆⇔200421m m m q :01)2(442=+-+x m x 无实根.⇔31016)2(1622<<⇔<--=∆m m 因为p 或q 为真,p 且q 为假,所以p 与q 的真值相反.(ⅰ) 当p 真且q 假时,有⎩⎨⎧≥⇒≥≤>3312m m m m 或;(ⅱ) 当p 假且q 真时,有⎩⎨⎧≤<⇒<<≤21312m m m .综合,得m 的取值范围是{21≤<m m 或3≥m }.变式训练3:已知a>0,设命题p:函数y=a x 在R 上单调递减,q :不等式x+|x-2a|>1的解集为R,若p 和q 中有且只有一个命题为真命题,求a 的取值范围.解 : 由函数y=a x 在R 上单调递减知0<a<1,所以命题p 为真命题时a 的取值范围是0<a<1,令y=x+|x-2a|,则y=⎩⎨⎧<≥-).2(2),222a x a a x ax (不等式x+|x-2a|>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a>1,即a>.21即q 真⇔a>.21若p 真q 假,则0<a ≤;21若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题正确时a 的取值范围是0<a ≤21或a ≥1.例4. 若a ,b ,c 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π.求证:a 、b 、c 中至少有一个大于0.证明:假设c b a ,,都不大于0,即,0≤a ,0≤b 0≤c ,则0≤++c b a 而623222222πππ+-++-++-=++x z z y y x c b a =3)1()1()1(222-+-+-+-πz y x 0)1()1()1(222≥-+-+-z y x Θ,03>-π.00≤++>++∴c b a c b a 这与相矛盾.因此c b a ,,中至少有一个大于0.变式训练4:已知下列三个方程:①x 2+4ax -4a +3=0,②x 2+(a -1)x +a 2=0,③x 2+2ax-2a =0中至少有一个方程有实根,求实数a 的取值范围.解:设已知的三个方程都没有实根.则⎪⎪⎩⎪⎪⎨⎧<+=∆<--=∆<-+=∆08)2(04)1(0)34(4)4(2322221a a a a a a解得123<<-a .故所求a 的取值范围是a ≥-1或a ≤-23.1.有关“p 或q ”与“p 且q ”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义从而分清是“p 或q ”还是“p 且q ”形式.2.当一个命题直接证明出现困难时,通常采用间接证明法,反证法就是一种间接证法.3.反证法的第一步为否定结论,需要掌握常用词语的否定(如“至少”等),而且推理过程中,一定要把否定的结论当条件用,从而推出矛盾.用反证法证明命题的一般步骤为:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从这个假设出发,经过正确的推理论证得出矛盾;(3)由矛盾判断假设不正确,从而肯定所证命题正确.第2课时 充要条件p q ⇒则p 叫做q 的 条件,q 叫做p 的 条件.2.必要条件:如果q p ⇒则p 叫做q 的 条件,q 叫做p 的 条件.3.充要条件:如果p q ⇒且q p ⇒则p 叫做q 的 条件.例1.在下列各题中,判断A 是B 的什么条件,并说明理由.1. A :R p p ∈≥,2,B :方程+++p px x 203=有实根;2. A :)(,2Z k k ∈=+πβα,B :)sin(βα+βαsin sin +=;3.A :132>-x ;B :0612>-+x x ;4.A :圆222r y x =+与直线++by ax 0=c 相切,B :.)(2222r b a c +=分析:要判断A 是B 的什么条件,只要判断由A 能否推出B 和由B 能否推出A 即可.解:(1) 当2≥p ,取4=p ,则方程0742=++x x 无实根;若方程+2x 03=++p px 有实根,则由0>∆推出20)3(42-≤⇒≥+-p p p 或≥p 6,由此可推出2≥p .所以A 是B 的必要非充分条件.(2)若πβαk 2=+则βαsin sin +αααπαsin sin )2sin(sin -=-+=k 02sin )sin(,0==+=πβαk 又所以βαβαsin sin )sin(+=+成立若βαβαsin sin )sin(+=+成立 取απβ==,0,知πβαk 2=+不一定成立,故A 是B 的充分不必要条件.(3) 由21132><⇒>-x x x 或,由0612>-+x x 解得23>-<x x 或,所以A 推不出B ,但B 可以推出A ,故A 是B 的必要非充分条件.(4) 直线0=++c by ax 与圆22y x +2r =相切⇔圆(0,0)到直线的距离r d =,即22b a c+=2c r ⇔=222)(r b a +.所以A 是B 的充要条件.变式训练1:指出下列命题中,p 是q 的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)在△ABC 中,p :∠A=∠B ,q :sinA=sinB ;(2)对于实数x 、y ,p :x+y ≠8,q:x ≠2或y ≠6;(3)非空集合A 、B 中,p :x ∈A ∪B ,q :x ∈B ;(4)已知x 、y ∈R ,p :(x-1)2+(y-2)2=0,q :(x-1)(y-2)=0.解: (1)在△ABC 中,∠A=∠B ⇒sinA=sinB ,反之,若sinA=sinB ,因为A 与B 不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p 是q 的充要条件.(2)易知: ⌝p:x+y=8, ⌝q:x=2且y=6,显然⌝q ⇒⌝p.但⌝p ⌝q,即⌝q 是⌝p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B,但x ∈B 一定有x ∈A ∪B,所以p 是q 的必要不充分条件.(4)条件p:x=1且y=2,条件q:x=1或y=2,所以p ⇒q 但q p,故p 是q 的充分不必要条件.例2. 已知p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.解:若方程x 2+mx +n =0有两个小于1的正根,设为x 1、x 2.则0<x 1<1、0<x 2<1,∵x 1+x 2=-m ,x 1x 2=n∴0<-m <2,0<n <1 ∴-2<m <0,0<n <1∴p 是q 的必要条件.又若-2<m <0,0<n <1,不妨设m =-1,n =21.则方程为x 2-x +21=0,∵△=(-1)2-4×21=-1<0. ∴方程无实根 ∴p 是q 的非充分条件.综上所述,p 是q 的必要非充分条件.变式训练2:证明一元二次方程ax 2+bx+c=0有一正根和一负根的充要条件是ac<0.证明:充分性:若ac<0,则b 2-4ac>0,且a c <0, ∴方程ax 2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根.必要性:若一元二次方程ax 2+bx+c=0有一正根和一负根,则∆=b 2-4ac>0,x 1x 2=ac <0,∴ac<0. 综上所述,一元二次方程ax 2+bx+c=0有一正根和一负根的充要条件是ac<0.例3. 已知p : |1-31-x |≤2,q ::x 2-2x +1-m 2≤0(m >0),若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.解: 由题意知:命题:若┒p 是┑q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p : |1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0*∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0,∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9310121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞)变式训练3:已知集合{||1||3|8}M x x x =++->和集合2{|(8)80}P x x a x a =+--≤,求a 的一个取值范围,使它成为}85|{≤<=x x P M I 的一个必要不充分条件.解:}53|{>-<=x x x M 或,}0)8)((|{≤-+=x a x x P由,}85|{时≤<=x x P M I ,3,35≤≤≤-a a 此时有}85|{3≤<=≠>≤x x P M a I 但所以}85|{3≤<=≤x x P M a I 是是必要但不充分条件. 说明:此题答案不唯一.例4. “函数y =(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴的上方”,这个结论成立的充分必要条件是什么?解:函数的图象全在x 轴上方,若)(x f 是一次函数,则10)1(40542=⇒⎪⎩⎪⎨⎧=--=-+a a a a 若函数是二次函数,则:[]⎪⎩⎪⎨⎧<-+--->-+0)54(12)1(4054222a a a a a 191<<⇒a 反之若19|<≤a ,由以上推导,函数的图象在x 轴上方,综上,充要条件是19|<≤a . 变式训练4:已知P ={x | |x -1| | >2},S ={x | x2+}(1)0a x a ++>,P x ∈且的充要条件是S x ∈,求实数a 的取值范围.分析:P x ∈的充要条件是S x ∈,即任取S x P x ∈⇒∈S P ⊆∴,反过来,任取P x S x ∈⇒∈ P S P S =∴⊆∴据此可求得a 的值.解:ΘP x ∈的充要条件是S x ∈.S P =∴∵P ={x || x -1|>2}}=),3()1,(+∞--∞YS ={x | x2+(a +1)x +a >0)}={x | (x +a)(x +1)>0}1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念.2.确定条件为不充分或不必要的条件时,常用构造反例的方法来说明.3.等价变换是判断充分、必要条件的重要手段之一,特别是对于否定的命题,常通过它的等价命题,即逆否命题来考查条件与结论间的充分、必要关系.4.对于充要条件的证明题,既要证明充分性,又要证明必要性,从命题角度出发,证原命题为真,逆命题也为真;求结论成立的充要条件可以从结论等价变形(换)而得到,也可以从结论推导必要条件,再说明具有充分性.5.对一个命题而言,使结论成立的充分条件可能不止一个,必要条件也可能不止一个.简易逻辑章节测试题一、选择题1.设集合{2},{3},M x x P x x =>=<""x M x P ∈∈那么或""x M P ∈I 是的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2009·合肥模拟)已知条件p :(x+1)2>4,条件q:x>a,且q p ⌝⌝是的充分而不必要条件,则a 的取值范围是 ( )A.a ≥1B.a ≤1C.a ≥-3D.a ≤-34.“a=2”是“直线ax+2y=0平行于直线x+y=1”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设集合M={x|x>2},P={x|x<3},那么“x ∈M 或x ∈P ”是“x ∈M ∩P ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在下列电路图中,表示开关A 闭合是灯泡B 亮的必要但不充分条件的线路图是 ( )7.(2008·浙江理,3)已知a,b 都是实数,那么“a 2>b 2”是“a>b ”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(2008·北京海淀模拟)若集合A={1,m 2},集合B={2,4},则“m=2”是“A ∩B={4}”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.若数列{a n }满足221n n a a +=p (p 为正常数,n ∈N *),则称{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件10.命题p:若a 、b ∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件.命题q:函数y=2|1|--x 的定义域是(][)∞+--∞,,31Y ,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真二、填空题11.已知数列}{n a ,那么“对任意的n ∈N*,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的 条件. 12.设集合A={5,log 2(a+3)},集合B={a ,b},若A ∩B={2},则A ∪B= .13.已知条件p :|x+1|>2,条件q:5x-6>x 2,则非p 是非q 的 条件.14.不等式|x|<a 的一个充分条件为0<x<1,则a 的取值范围为 .15.已知下列四个命题: ①a 是正数;②b 是负数;③a+b 是负数;④ab 是非正数.选择其中两个作为题设,一个作为结论,写出一个逆否命题是真命题的复合命题 .三、解答题16.设命题p :(4x-3)2≤1;命题q:x 2-(2a+1)x+a(a+1)≤0,若⌝p 是⌝q 的必要不充分条件,求实数a 的取值范围.17.求关于x 的方程ax 2-(a 2+a+1)x+a+1=0至少有一个正根的充要条件.18.设p :实数x 满足x 2-4ax+3a 2<0,其中a<0;q :实数x 满足x 2-x-6≤0,或x 2+2x-8>0,且q p ⌝⌝是 的必要不充分条件,求a 的取值范围.19.(1)是否存在实数p,使“4x+p<0”是“x 2-x-2>0”的充分条件?如果存在,求出p 的取值范围;(2)是否存在实数p ,使“4x+p<0”是“x 2-x-2>0”的必要条件?如果存在,求出p 的取值范围.20.已知0>c ,设:p 函数x c y =在R 上单调递减,q :不等式1|2|>-+c x x 的解集为R ,如果p 和q 有且仅有一个正确,求c 的取值范围.简易逻辑章节测试题答案1.B 2.A 3.A 4.C 5.B 6.B7. D 8.A 9.B10. D11.充分而不必要条件12.{1,2,5}13.充分不必要14.a ≥115.若①③则②(或若①②则④或若①③则④)16.解 设A={x|(4x-3)2≤1},B={x|x 2-(2a+1)x+a(a+1)≤0},易知A={x|21≤x ≤1},B={x|a ≤x ≤a+1}.由⌝p 是⌝q 的必要不充分条件,从而p 是q 的充分不必要条件,即A B ,∴,1121⎪⎩⎪⎨⎧≥+≤a a故所求实数a 的取值范围是[0,21]. 17.解方法一 若a=0,则方程变为-x+1=0,x=1满足条件,若a ≠0,则方程至少有一个正根等价于01<+a a 或⎪⎩⎪⎨⎧>++=+01012a a a a 或⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+-++=∆>+>++0)1(4)1(0101222a a a a a a a a a -1<a<0或a>0.综上:方程至少有一正根的充要条件是a>-1.方法二 若a=0,则方程即为-x+1=0,∴x=1满足条件;若a ≠0,∵Δ=(a 2+a+1)2-4a(a+1)=(a 2+a)2+2(a 2+a)+1-4a(a+1)=(a 2+a)2-2a(a+1)+1=(a 2+a-1)2≥0,∴方程一定有两个实根.故而当方程没有正根时,应有,01012⎪⎪⎩⎪⎪⎨⎧≥+≤++aa a a a 解得a ≤-1, ∴至少有一正根时应满足a>-1且a ≠0,综上:方程有一正根的充要条件是a>-1.18.解 设A={x|p}={x|x 2-4ax+3a 2<0,a<0}={x|3a<x<a,a<0}, B={x|q}={x|x 2-x-6≤0或x 2+2x-8>0}={x|x 2-x-6≤0}∪{x|x 2+2x-8>0}={x|-2≤x ≤3}∪{x|x<-4或x>2}={}.24|-≥-<x x x 或方法一 ∵q p ⌝⌝是的必要不充分条件,∴p p q ⌝⌝⇒⌝且,q ⌝.则{}q x ⌝|{}.|p x ⌝而{}=⌝q x |R B={}{}p x x x ⌝-<≤-|,24|=R A={},0,3|<≥≤a a x a x x 或 ∴{}24|-<≤-x x {},0,3|<≥≤a a x a x x 或则⎩⎨⎧<-≤⎩⎨⎧<-≥.0,4,0,23a a a a 或综上可得-.4032-≤<≤a a 或 方法二 由⌝p 是⌝q 的必要不充分条件,∴p 是q 的充分不必要条件,∴A B ,∴a ≤-4或3a ≥-2,又∵a<0, ∴a ≤-4或-32≤a<0.19.解(1)当x>2或x<-1时,x 2-x-2>0,由4x+p<0,得x<-,4p 故-4p ≤-1时, “x<-4p ”⇒“x<-1”⇒“x 2-x-2>0”. ∴p ≥4时,“4x+p<0”是“x 2-x-2>0”的充分条件. (2)不存在实数p 满足题设要求.20.解:函数x c y =在R 上单调递减10<<⇔c不等式||2|>-+c x x 的解集为⇔R 函数|2|c x x y -+=,在R 上恒大于1⎩⎨⎧<≥-=-+∴c x c c x c x c x x 2,22,22|2| ∴函数|2|c x x y -+=在R 上的最小值为c 2∴不等式1|2|>-+c x x 的解集为R2112>⇔>⇔c c ,如果p 正确,且q 不正确 则210≤<c ,如果p 不正确,且q 正确,则1≥c ,所以c 的取值范围为[)+∞⋃⎥⎦⎤ ⎝⎛,121,0.。

高中数学统计单元设计教案

高中数学统计单元设计教案

高中数学统计单元设计教案主题:高中数学统计单元设计教学目标:1. 了解统计学的基本概念和应用;2. 掌握统计学中的常见方法和技巧;3. 能够运用统计学知识解决实际问题;4. 提高数学分析和推理能力。

教学内容:1. 统计学的基本概念;2. 数据的收集、整理、描述和分析;3. 统计学中的常用方法:频率分布、相对频率、累计频率、平均数、中位数、众数等;4. 统计推断:抽样调查、总体参数的估计等。

教学步骤:第一课时:统计学的基本概念1. 引导学生了解统计学的定义和目的;2. 讨论统计学在日常生活和其他学科中的应用;3. 演示统计学中常见的术语和概念。

第二课时:数据的收集和整理1. 介绍数据的来源和收集方式;2. 分析数据的整理和描述方法;3. 学生分组进行数据收集和整理练习。

第三课时:数据的分析和展示1. 讲解频率分布、相对频率和累计频率的概念和计算方法;2. 演示如何用统计图表展示数据;3. 学生练习制作统计图表并进行数据分析。

第四课时:统计推断1. 引导学生了解抽样调查和总体参数的估计方法;2. 结合实例讲解统计推断的应用;3. 学生分组进行统计推断实践。

评估方式:1. 课堂练习成绩;2. 作业和小组报告评分;3. 期末考试成绩。

教学资源:1. 教科书相关章节和习题;2. 纸笔、计算器、统计图表制作工具;3. 实例案例和练习题。

扩展活动:1. 学生提出自己感兴趣的统计问题,进行数据收集和分析;2. 参观统计调查机构或数据分析公司。

教学反思:1. 教学目标是否达成;2. 学生对统计学概念和方法的掌握情况;3. 教师指导和激发学生的学习兴趣和思考能力。

天津101中学2011届高考数学总复习 复数单元精品教学案(教师版全套)

天津101中学2011届高考数学总复习 复数单元精品教学案(教师版全套)

数系的扩充与复数的引入1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用.2、理解复数的基本概念以及复数相等的充要条件3、了解复数的代数表示法及其几何意义,能进行复数代数形式的四则运算,了解复数代数重视复数的概念和运算,注意复数问题实数化.第1课时 复数的有关概念1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且 ≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.例1. m 取何实数值时,复数z =362+--m m m +i m m )152(2--是实数?是纯虚数?解:① z 是实数503015122=⇒⎩⎨⎧≠+=--⇒m m m m ② z 为纯虚数2303060151222-==⇒⎪⎩⎪⎨⎧≠+=--≠--⇒m m m m m m m 或变式训练1:当m 分别为何实数时,复数z=m 2-1+(m 2+3m +2)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.例2. 已知x 、y 为共轭复数,且i xyi y x 643)(2-=-+,求x .解:设),(,R b a bi a y bi a x ∈-=+=则代入由复数相等的概念可得1,1±=±=b a 变式训练2:已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值.由z=1+i 得221z az b z z ++-+=()(2)a b a i i+++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.例3. 若方程0)2()2(2=++++mi x i m x 至少有一个实根,试求实数m 的值.解:设实根为o x ,代入利用复数相等的概念可得o x =222±=⇒±m 变式训练3:若关于x 的方程x 2+(t 2+3t +tx )i=0有纯虚数根,求实数t 的值和该方程的根.解:t=-3,x 1=0,x 2=3i .提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.例4. 复数 (,)z x yi x y R =+∈满足|22|||i z z --=,试求y x 33+的最小值.设),(R y x yi x z ∈+=,则2=+y x ,于是692332=≥+-x x 变式训练4:已知复平面内的点A 、B 对应的复数分别是i z +=θ21sin 、θθ2cos cos 22i z +-=,其中)2,0(πθ∈,设AB 对应的复数为z .(1) 求复数z ;(2) 若复数z 对应的点P 在直线x y 21=上,求θ的值.解:(1) θ212sin21i z z z --=-= (2) 将)sin 2,1(2θ--P 代入xy 21=可得21sin ±=θ611,67,65,6ππππθ=⇒.1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.2.设z =a +bi (a ,b ∈R),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.第2课时 复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行:设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3) 21z z = (≠2z ).2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ n m z z ⋅= .⑵ n m z )(= .⑶ n z z )(21⋅= ),(R n m ∈.例1.计算:ii i i i 2121)1()1(20054040++-++--+ 解:提示:利用i i i i =±=±20052,2)1(原式=0变式训练1:2=(A )1-+ (B )122i + (C )122-+ (D )1解:212===-+ 故选C ; 例2. 若012=++z z ,求2006200520032002z z z z +++解:提示:利用z z z ==43,1原式=2)1(432002-=+++z z z z变式训练2:已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ .解:2例3. 已知4,a a R >∈,问是否存在复数z ,使其满足ai z i z z +=+⋅32(a ∈R ),如果存在,求出z 的值,如果不存在,说明理由解:提示:设),(R y x yi x z ∈+=利用复数相等的概念有⎩⎨⎧==++ax y y x 23222 0034222>∆⇒=-++⇒a y y i a a z a 216224||2-±-+=⇒≤⇒ 变式训练3:若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 解:3例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为2||(1)(1)1 3.z i z i z i +--+=-设yi x z += (x 、y ∈R ,代入上述方程得22221 3.x y xi yi i +--=-221(1)223(2)x y x y ⎧+=⎪∴⎨+=⎪⎩ 将(2)代入(1),整理得281250.x x -+=160,()f x ∆=-<∴方程无实数解,∴原方程在复数范围内无解.变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R, 若12z z -<1z ,求a 的取值范围.解:由题意得 z 1=151i i-++=2+3i,于是12z z -=42a i -+1z =13.13,得a 2-8a +7<0,1<a<7.1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.复数章节测试题一、选择题1.若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.32D.13 2.定义运算bc ad d c ba -=,,,则符合条件01121=+-+i i iz ,,的复数_z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( )A.-4;B.4;C.-1;D.1;4.复数i i ⋅--2123=( )A .-IB .IC . 22-iD .-22+i6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或7.已知复数z 满足2)1()1(i z i +=-,则z =( ) (A) -1+ i (B) 1+i (C) 1-i (D) -1-i8.若复数12,1z a i z i =+=-,且12z z 为纯虚数,则实数a 为 ( )A .1B .-1C .1或-1D .09.如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( )(A )1- (B )31 (C )21 (D )1 10.若z 是复数,且i z 432+-=,则z 的一个值为 ( )A .1-2iB .1+2iC .2-iD .2+i11.若复数15z a i =-+为纯虚数,其中,a R i ∈为虚数单位,则51a i ai+-=( ) A . i B . i - C . 1 D . 1-12.复数1i i+在复平面中所对应的点到原点的距离为( ) A .12 B .22C .1D . 2二、填空题13.设z a bi =+,a ,b ∈R ,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数z 2为纯虚数的概率为 .14.设i 为虚数单位,则41i i +⎛⎫= ⎪⎝⎭. 15.若复数z 满足方程1-=⋅i i z ,则z= .16..已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .17.复数z=12i+,则|z|= . 18.虚数(x -2)+ y i 其中x 、y 均为实数,当此虚数的模为1时,xy 的取值范围是( ) A .[-33,33] B .033[-∪(]330 C .[-3,3] D .[-3,0∪(0,3]19.已知i i a z --=1 (a>0),且复数)(i z z +=ω的虚部减去它的实部所得的差等于23,求复数ω的模.20..复平面内,点1Z 、2Z 分别对应复数1z 、2z ,且i a a z )10(5321-++=,22(25)1z a i a =+--, )(R a ∈其中,若21z z +可以与任意实数比较大小,求21OZ OZ ⋅的值(O 为坐标原点).复数章节测试题答案一、选择题1. A 2.答案:A 3.答案:B4.答案:B6.答案:A7.A8.B9.B10.B11.D12.B二、填空题13. 61 14.2i 15.1i +16.答案:22 17.答案:518. 答案:B ∵⎩⎨⎧≠=+-0y 1y )2x (22, 设k =x y , 则k 为过圆(x -2)2 + y 2 = 1上点及原点的直线斜率,作图如下, k≤3331=, 又∵y≠0 ,∴k≠0.由对称性 选B .【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬.19.解:i a a a i z z 221)(2+++=+=ω i a 3232+=⇒=⇒ω523||=⇒ω 20.解:依题意21z z +为实数,可得。

人教版高中数学《统计》全部教案

人教版高中数学《统计》全部教案

人教版高中数学《统计》第一章教案【教学目标】1. 理解统计学的概念和作用,掌握统计学的基本原理和方法。

2. 学习数据的收集、整理和表达,能够运用图表和数学方法对数据进行分析。

3. 培养学生的数据分析能力和解决问题的能力。

【教学内容】1. 统计学的概念和作用2. 数据的收集和整理3. 图表的绘制和解读4. 统计量的计算和分析5. 概率的基本概念和计算方法【教学重点】1. 统计学的概念和作用2. 数据的收集和整理方法3. 图表的绘制和解读技巧4. 统计量的计算和分析方法5. 概率的基本概念和计算方法【教学难点】1. 数据的收集和整理方法2. 图表的绘制和解读技巧3. 统计量的计算和分析方法4. 概率的基本概念和计算方法【教学过程】第一课时:统计学的概念和作用1. 导入:引导学生思考统计学的应用场景,激发学生的学习兴趣。

2. 讲解统计学的概念和作用,让学生理解统计学的重要性。

3. 举例说明统计学在实际问题中的应用,让学生体验统计学的价值。

第二课时:数据的收集和整理1. 讲解数据的收集方法,让学生了解如何获取数据。

2. 讲解数据的整理方法,让学生学会如何处理数据。

3. 举例说明数据的收集和整理在实际问题中的应用,让学生体验数据处理的重要性。

第三课时:图表的绘制和解读1. 讲解图表的绘制方法,让学生学会如何制作图表。

2. 讲解图表的解读方法,让学生学会如何分析图表。

3. 举例说明图表的绘制和解读在实际问题中的应用,让学生体验图表分析的有效性。

第四课时:统计量的计算和分析1. 讲解统计量的计算方法,让学生学会如何计算统计量。

2. 讲解统计量的分析方法,让学生学会如何分析统计量。

3. 举例说明统计量的计算和分析在实际问题中的应用,让学生体验统计分析的威力。

第五课时:概率的基本概念和计算方法1. 讲解概率的基本概念,让学生了解概率的基本知识。

2. 讲解概率的计算方法,让学生学会如何计算概率。

3. 举例说明概率的计算方法在实际问题中的应用,让学生体验概率计算的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计1.了解随机抽样,了解分层抽样的意义.2.会用样本频率分布估计总体的概率分布.3.会用样本平均数估计总体期望,会用样本的方差、标准差估计总体方差、标准差.“统计”这一章,是初中数学中的“统计初步”的深化和拓展.要求主要会用随机抽样,分层抽样的方法从总体中抽取样本,并用样本频率分布估计总体分布.本章高考题以基本题(中、低档题)为主,每年只出一道填空题,常以实际问题为背景,综合考查学生应用基础知识解决实际问题的能力.高考的热点是总体分布的估计和抽样方法.知识的交汇点是排列、组合、概率与统计的解答题.第1课时 抽样方法与总体分布估计1.总体、样本、样本容量我们要考察的对象的全体叫做_______,其中每个考察的对象叫_______.从总体中抽出的一部分个体叫做_______,样本中个体的数目叫做_______.2.简单随机抽样设一个总体由N 个个体组成,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个个体被抽到的_______相等,就称这样的抽样为_______.3.分层抽样当已知总体由_______的几部分组成时,为了使样本更能充分地反映总体的情况,常将总体分成几个部分,然后按照各部分所占的_______进行抽样,这种抽样叫做_______.其中所分成的各个部分叫做_______.4.总体分布和样本频率分布总体取值的_______分布规律称为总体分布.样本频率分布_______称为样本频率分布.5.总体分布估计:总体分布估计主要指两类.一类是用样本的频率分布去估计总体(的概率)分布.二类是用样本的某些数字特征(例如平均数、方差、标准差等)去估计总体的相应数字特征.基础过关知识网络考纲导读高考导航统计总体期望值 和方差的估计总体分布估计抽样的方法 简单随机抽样分层抽样抽签法 随机数表法频率分布条形频率分布直方6.频率分布条形图和直方图:两者都是用来表示总体分布估计的.其横轴都是表示总体中的个体.但纵轴的含义却截然不同.前者纵轴(矩形的高)表示频率;后者纵轴表示频率与组距的比,其相应组距上的频率等于该组距上的矩形的面积.7.总体期望值指总体平均数.典型例题例1. 某公司在甲、乙、丙、丁四个地区分别有150个,120个,180个,150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②;则完成①②这两项调查采用的抽样方法依次是()A.分层抽样,系统抽样B.分层抽样,简单随机抽样法C.系统抽样,分层抽样D.简单随机抽样法,分层抽样法解:B变式训练1:某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取多少人()A.7,5,8 B.9,5,6C.6,5,9 D.8,5,7解:B样本容量与总体个数的比为20:100=1:5∴各年龄段抽取的人数依次为:11⨯=⨯=--=(人)499,255,2095655例2. 一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本。

解:(1)系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号,…,第20段取196号,这样可得到一个容量为20的样本.(2)分层抽样方法:因为样本容量与总体的个体数的比为20:200=1:10,所以一、二、三级品中分别抽取的个体数目依次是111⨯⨯⨯,即10,6,4.100,60,40101010将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表示,分别抽取10个,6个,4个.这样可得容量为20的一个样本.变式训练2:在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量为20的样本.(1)简述抽样过程;(2)用这种抽样方法可使总体中每个个体被抽到的概率是多少?解:先将产品按等级分成三层,每一层:一等品20个,第二层:二等品30个,第三层:三等品50个,然后确定每一层抽取样品数.因为20:30:50=2:3:5,235204,206,2010101010⨯=⨯=⨯=.所以在第一层中抽取4个,第二层中抽取6个,第三层中抽取10个.最后用简单随机抽样方法在第一层中抽4个,第二层中抽6个,第三层中抽10个.(2)一等品被抽到的概率为41205=,二等品被抽到的概率为61305=,三等品被抽到的概率为101505=,即每个个体被抽到的概率都是2011005=例3. (2004年高考-江苏) 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到阅读所用时间的数据结果用条形图表示如下,根据条形图,问这50名学生这一天平均每人的课外阅读时间为多少?解:由条形图知,在调查的50名同学中课外阅读时间为0h, 0.5h, 1.0h, 1.5h, 2.0h 的人分别为5人,20人,10人,10人,5人.所以这一天中平均每人的课外阅读时间为(50200.510 1.010 1.55 2.0)5h ⨯+⨯+⨯+⨯+⨯÷=50=0.9(h )变式训练3:观察下面的频率分布表分组 频数 频率 [3.95,4.35) 2 [4.35,4.75) 4 [4.75,5.15) 14 [5.15,5.55) 25 [5.55,5.95) 45 [5.95,6.35) 46 [6.35,6.75) 39 [6.75,7.15) 20 [7.15,7.55) 4 [7.55,7.95) 1 合计200(1) 完成上面的频率分布表(2) 根据上表,画出频率分布直方图(3) 根据表和图估计数据落在[4.75,7.15)范围内的概率约是多少?数据小于7.00的概率约是多少?解:(1) (略) (2)频率直方图(略) (3)根据上面的表和图可以估计,数据落在[4.75,7.15)内的概率约为0.945,数据小于7.00的概率约为0.9375例4. 某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n 的样本,求n 的值.解:一年级,二年级,三年级人数总和为400+320+280=1000(人),则0.22001000n n =∴=变式训练4:一个总体有6个个体,要通过逐个抽取的方法从中抽取一个容量为3的样本,求:(1)每次抽取时各个个体被抽到的概率;(2)指定的个体a 在三次抽取时各自被抽到的概率;(3)整个抽样过程中个体a 被抽到的概率;0 0.5 1.0 1.5 2 2010 5解:1.两种抽样方法的比较:类别 共同点 不同点 联 系 适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等从总体中逐个抽取各层抽样时采用简单随机抽样 总体中的个体数较少分层抽样将总体分成几层进行抽取总体由差异明显的几部分组成2.简单随机抽样是一种不放回抽样,所取的样本没有被重复抽取的情况.分层抽样,分层时不要求均分,但抽样时,要按各层中个体总数的比例在各层中抽取个体.以上两种抽样都是一种等概率抽样(即抽样方法的公平性).这种等概率抽样包含有两层含义,其一、每次从总体中抽取一个个体时,各个个体被抽取的概率是相等的.其二、在整个抽样过程中,各个个体被抽取到的概率相等.3.注意以下几个概念的区别与联系:频数、频率、概率.4.频率分布条形图是用高度来表示概率的,而概率分布直方图是用面积来表示概率的.5.统计内容的实践性较强,其重点是如何用样本频率分布去估计总体分布,难点是对频率分布直方图的理解和应用.第2课时 总体特征数的估计1.在统计学中,我们是用样本的数字特征来估计总体相应的数字特征的.2.样本平均数(也称样本期望值)x(1)12111()nn i i x x x x x n n ==+++=∑反映的是这组数据的平均水平.(2)当12,,,n x x x 数值较大时,可将各个数据同时减去一个适当的数a ,得112,,,n n x x a x x a x x a '''=-=-=-=2,,,n n x x a x x a x x a '''=-=-=-,那么x x a'=+(3)如果n 个数据中,1x 出现1n 次, 2x 出现2n 次,…, k x 出现k n 次,那么:11221122k kn n x n x n x n x nx p x p x p +++==+++这里12kn n n n =++基础过关小结归纳3.方差(1)()2211ni i S x xn ==-∑2,(0)S S S >分别称为数据12,,,n x x x 的方差和标准差,它们反映的是数据的稳定与波动,集中与离散的程度.(2)22222121[()]n S x x x nx n=+++-(3)12,,,n x x x 数值较大时,可以将各数据减去一个恰当的常数a ,得到1122,,,,n n x x a x x a x x a '''=-=-=-则22222121[()]nS x x x nx n''''=+++- 例1.某班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:统计量 级别 平均 标准差 第一组 90 6 第二组804求全班的平均成绩和标准差.解:设第一组20名学生的成绩为(1,2,,20)i x i =; 第二组20名学生的成绩为(1,2,,20)i y i =, 1220190()20x x x =+++1220180()20y y y =+++故全班平均成绩为:122012201()401(90208020)8540x x x y y y +++++++=⨯+⨯=又设第一组学生的成绩的标准差为1S ,第二组学生的成绩的标准差为2S ,则 22222112201(20)20S x x x x =+++- 22222212201(20)20S y y y y =+++-此处(90,80x y ==)又设全班40名学生的标准差为S,平均成绩为(85)Z Z =故有22222222122012202222212222221(40)401(2020202040)401(649080285)512S x x x y y y Z S x S y Z =+++++++-=+++-=+++-⨯=51S =变式训练1:对甲乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下: 甲:60 80 70 90 70典型例题乙:80 60 70 80 75问:甲乙谁的各科平均成绩好?谁的各门功课发展较平衡?解:74x =甲 73x =乙 2104S =甲 256S =乙 因为x x >甲乙,22S S >甲乙.所以甲的平均成绩较好,乙的各门发展较平衡.例2. 甲乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm )甲: 10.2 10.1 10.9 8.9 9.9 10.3 9.7 10 9.9 10.1乙: 10.3 10.4 9.6 9.9 10.1 10 9.8 9.7 10.2 10分别计算上面两个样本的平均数与方差.如果图纸上的设计尺寸为10mm ,从计算结果看,用哪台机床加工这种零件较合适. 解:110x =甲(10.2+10.1+10.9++10.1)=101(10.310.49.610)1010x =++++=乙2110S=22甲2[(10.2-10)+(10.1-10)++(10.1-10)]=0.22822221[(10.310)(10.410)10(1010)]0.06S =-+-++-=乙 10x x ∴==甲乙,22S S >甲乙所以乙比甲稳定,用乙较合适.变式训练2:假定下述数据是甲乙两个供货商的交货天数: 甲:10 9 10 10 11 11 9 11 10 10 乙:8 10 14 7 10 11 10 8 15 12 估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性.10.1x =甲 10.5x =乙20.49S =甲 226.05S S =>乙甲从交货天数的平均值看来,甲供货商的供货天数短一些;从方差来看,甲供货商的交货天数较稳定,因此是较具一致性与可靠性的供货商.例3. 个体户王某经营一家餐馆,下面是餐馆所有工作人员在某个月份的工资:王某 厨师甲 厨师乙 杂工 招待甲 招待乙 会计3000元450元400元320元350元320元410元(1)计算平均工资;(2) 计算出的平均工资能否反映帮工人员这个月收入的一般水平?(3)去掉王某工资后,再计算平均工资;(4)后一个平均工资能代表帮工人员的收入吗?(5)根据以上计算,从统计的观点看,你对(1)、(3)的结果有什么看法? 解:(1)平均工资750元;(2)因为帮工人员的工资低于平均工资,所以(1)中算出的平均工资不能反映帮工人员在这个月份的月收入的一般水平;(3)去掉王某的工资后的平均工资375元;(4)(3)中计算的平均工资接近于帮工人员月工资收入,所以它能代表帮工人员的收入;(5)从本题的计算可见,个别特殊值对平均数具有很大的影响,因此在选择样本时,样本中尽量不要选特殊数据. 变式训练3:甲乙两人在相同条件下,射靶10次,命中环数如下:甲:8 6 9 5 10 7 4 8 9 5 乙:7 6 5 8 6 9 6 8 7 7依上述数据估计 ( ) A .甲比乙的射击技术稳定 B .乙比甲的射击技术稳定 C .两人没有区别 D .两人区别不大 解:B例4. 为了科学地比较考试成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为:z =sxx -(其中x 是某位同学的考试分数,x 是该次考试的平均分,s 是该次考试的标准差,z 称为这位学生的标准分).转化为标准分后可能出现小数和负值,因此,又常常将z 分数作线性变换转化或其他分数,例如某次学生选拔考试采用的是T 分数,试性变换公式是:T =40z +60,已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为多少? 解:84分变式训练4:经问卷调查,某班学生对摄影分别执“喜欢”,“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢“的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是:5位“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的人数为多少? 解:设班里“喜欢”的y 人,“一般”的x 人,“不喜欢”的x -12人. ∴3112=-x x ∴x =18 又3518=y∴y =30即全班“喜欢”摄影的人数为30.方差是反映稳定性程度的一个重要特征,在日常生活中常有体现,如两同学的总成绩都一样,但是一个人有偏科现象,而另一个人没有,一般认为没有偏科现象(即方差小)的同学成绩要稳定一些.小结归纳统计初步章节测试题一选择题1.某市为了分析全市9 800名初中毕业生的数学考试成绩,共抽取50本试卷,每本都是30份,则样本容量是………………………………………………………………( ) (A )30 (B )50 (C )1 500 (D )9 800 2.有下面四种说法:(1)一组数据的平均数可以大于其中每一个数据;(2)一组数据的平均数可以大于除其中1个数据外的所有数据; (3)一组数据的标准差是这组数据的方差的平方; (4)通常是用样本的频率分布去估计相应总体的分布.其中正确的有……………………………………………………………………( ) (A )1种 (B )2种 (C )3种 (D )4种3.已知样本数据x 1,x 2,…,x 10,其中x 1,x 2,x 3的平均数为a ,x 4,x 5,x 6,…,x 10的平均数为b ,则样本数据的平均数为…………………………………………( )(A )2b a + (B )1073b a + (C )1037b a + (D )10ba + 4.已知样本数据x 1,x 2,…,x n 的方差为4,则数据2x 1+3,2x 2+3,…,2x n +3的方差为……………………………………………………………………………………( )(A )11 (B )9 (C )4 (D )16 5.同一总体的两个样本,甲样本的方差是2-1,乙样本的方差是3-2,则( )(A )甲的样本容量小 (B )甲的样本平均数小(C )乙的平均数小 (D )乙的波动较小6.某校有500名学生参加毕业会考,其中数学成绩在85~100分之间的有共180人,这个分数段的频率是……………………………………………………………………( )(A )180 (B )0.36 (C )0.18 (D )500 7.某校男子足球队22名队员的年龄如下:16 17 17 18 14 18 16 18 17 18 19 18 17 15 18 17 16 18 17 18 17 18这些队员年龄的众数与中位数分别是……………………………………………( ) (A )17岁与18岁 (B )18岁与17岁 (C )17岁与17岁 (D )18岁与18岁 校六月份里5天的日用电量,结果如下(单位:kW ).400 410 395 405 390根据以上数据,估计这所学校六月份的总用电量为………………………………( )(A )12 400 kW (B )12 000 kW (C )2 000 kW (D )400 kW 【提示】51(400+410+395+405+390)=400,故30×400=12000. 9.已知下列说法:(1)众数所在的组的频率最大; (2)各组频数之和为1;(3)如果一组数据的最大值与最小值的差是15,组距为3,那么这组数据应分为5组;(4)频率分布直方图中每个小长方形的高与这一组的频数成正比例.正确的说法是……………………………………………………………………()(A)(1)(3)(B)(2)(3)(C)(3)(4)(D)(4)10.近年来国内生产总值年增长率的变化情况如图.从图上看,下列结论中不正确的是……………………………………………………………………………………()(A)1995所~1999年,国内生产总值的年增长率逐年减小(B)2000年国内生产总值的年增长率开始回升(C)这7年中,每年的国内生产总值不断增长(D)这7年中,每年的国内生产总值有增有减二填空题11.一批灯泡共有2万个,为了考察这批灯泡的使用寿命,从中抽查了50个灯泡的使用寿命,在这个问题中,总体是__________,样本容量是__________,个体是__________.12.一个班5名学生参加一次演讲比赛,平均得分是89分,有2名学生得87分,两名学生得92分,这组数据的众数是__________.13.某次考试A,B,C,D,E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是__________.14.样本数据-1,2,0,-3,-2,3,1的标准差等于__________.15.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是__________,频率是__________.16.某班通过一次射击测试,在甲、乙两名同学中选出一名同学代表班级参加校射击比赛.这两位同学在相同条件下各射靶5次,所测得的成绩分别如下(单位:环):甲9.6 9.5 9.3 9.4 9.7乙9.3 9.8 9.6 9.3 9.5根据测试成绩,你认为应该由__________代表班级参赛.三解答题:17.近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生.沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为掌握这一防护林共约有多少棵树,从中选出10块(每块长1千米,宽0.5千米)进行统计,每块树木数量如下(单位:棵)65 100 63 200 64 600 64 700 67 30063 300 65 100 66 600 62 800 65 500请你根据以上数据计算这一防护林共约有多少棵树(结果保留3个有效数字).18.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5 月1日至30日.评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图如下.已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,这两组哪组获奖率较高?19.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年)甲 3 4 5 6 8 8 8 10乙 4 6 6 6 8 9 12 13丙 3 3 4 7 9 10 11 12三家广告中都称这种产品的使用寿命是8年.请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数中哪一种反映集中趋势的特征数.20.已知数据x1,x2,x3,x4,x5,其中每一个数均为非负整数且互不相等,中位数是2,x=2.(1)求这组数据;(2)计算这组数据的标准差.21.(15分)某商店将甲、乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=212211m m m a m a ++(元/千克),其中m 1、m 2 分别为甲、乙两种糖果的重量(千克),a 1、a 2分别为甲、乙两种糖果的单价(元/千克).已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克.现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再出售时,混合糖果的单价为17.5元/千克.这箱甲种糖果有多少千克?统计初步章节测试题参考答案一选择题1.【提示】抽取50本,每本30份,这说明什么?【答案】C .【点评】样本容量是样本个体的数量.注意:(A )、(B )错在未理解样本容量的意义,(D )是总体中个体的数量.2.【提示】(2)、(4)正确.【答案】B .【点评】本题涉及到平均数、方差、标准差、频率分布、用样本估计总体等知识点.3.【提示】前3个数据和为3 a ,后7个数据的和7 b ,样本平均数为10个数据的和除以10.【答案】B .【点评】本题考查平均数的求法.注意不能把两个平均数的和相加除以2而误选为(A ).4.【提示】每一个数据都乘以2,则方差变为22×4=16,再把每一个数据加3,不改变方差的大小.【答案】D .5.【提示】2-1=121+,3-2=231+,故2-1>3-2. 【答案】D .【点评】本题考查方差的意义,本题解题关键是方差的大小比较.6.【提示】500180=0.36. 【答案】B .7.【答案】B .8.【提示】51(400+410+395+405+390)=400,故30×400=12000. 【答案】B .【点评】本题需用样本平均数估计总体平均数.注意本题要求的是全月的用电量.9.【答案】D .【点评】本题考查与频率分布有关的概念.判断(4)正确,是因为每一个小长方形的高等于组距频率=数据总数组距⨯1×频数,故小长方形的高与频数成正比例. 10.【提示】认真读懂统计图是关键.【答案】D .【点评】本题是图象阅读题,要注意分清横轴、纵轴意义还要注意本题纵轴反映的是增长率的变化情况,而选择支中涉及的是国内生产总值.二填空题11.【答案】2万个灯泡使用寿命的全体,50,每个灯泡的使用寿命.【点评】注意样本容量没有单位.12.【提示】设另一名学生得x 分,则(92+87)×2+x =89×5,解得x =87.【答案】87.【点评】本题关键是列方程求得另一名学生的成绩.13.【分析】设A 得分为x 分,其余4名学生得分的和为60×4=240分,则240+x=62×5,x =70.【答案】70分.14.【提示】s 2=71(1+4+0+9+4+9+1)=4. 【答案】2.【点评】求标准差一般先计算出样本方差,再取其算术平方根.15.【提示】64×0.125=8,故64-5-7-11-13-8×3=4,644=0.062 5. 【答案】4,0.062 5.【点评】注意应用各组频数之和等于样本容量、频率之和为1这两个性质.16.【提示】比较平均数与方差.【答案】甲.三解答题:17【解】先计算出x =101(65 100+63 200+64 600+64 700+67 300+63 300 +65 100+66 600+62 800+65 500)=64 820.于是,可以估计这一防护林平均每块约有64820株树.又64 820×100=6 482 000≈6.48×106(株),于是可以估计这一防护林大约共有6.48×106株树.【点评】本例一方面要求学生有用样本估计总体的思想方法,另一方面要求学生有应用数学的意识,这是今后中考命题发展的趋势.18.【解】(1)依题意,可算出第三组的频率为1464324+++++=51, 然后依据频率=样本容量第三组的频数,知本次活动其参评的作品数=5112=60(件); (2)根据频率分布直方图,可看出第四组上交的作品数量最多,共有18146432460=+++++⨯(件); (3)易求得第四组获奖率为1810=95, 第六组获奖率为32=96, 由此可知,第六组获奖率较高.19.【答案】甲:众数 乙:平均数 丙:中位数20.【解】(1)因各数据互不相等,不妨设x 1<x 2<x 3<x 4<x 5,则x 3=2,故这组数据为0,1,2,3,4.(2)s =51(12+22+32+42+02-5×22)=2. 21.【提示】本题要依题意找到其中的等量关系,列出方程以求解.【解】设这箱甲种糖果有x 千克,则有1016020++x x (x +5)+80=17.5(x +10). 化简,得2.5 x 2-10 x -150=0,即x 2-4 x -60=0.解得x 1=10,x 2=-6.经检验,x 1=10,x 2=-6都是原方程的根,但x =-6不合题意,舍去. 故这箱甲种糖果有10千克.。

相关文档
最新文档